1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
|
%D \module
%D [ file=mp-grap.mpiv,
%D version=2012.10.16, % 2008.09.08 and earlier,
%D title=\CONTEXT\ \METAPOST\ graphics,
%D subtitle=graph packagesupport,
%D author=Hans Hagen \& Alan Braslau,
%D date=\currentdate,
%D copyright={PRAGMA ADE \& \CONTEXT\ Development Team}]
%C
%C This module is part of the \CONTEXT\ macro||package and is
%C therefore copyrighted by \PRAGMA. See licen-en.pdf for
%C details.
if known context_grap : endinput ; fi
boolean context_grap ; context_grap := true ;
% Instead we could include graph here and then clean it up as well as use private
% variables in the grap_ namespace. After all, graph is frozen.
input graph.mp ;
vardef roundd(expr x, d) =
if abs d > 4 :
if d > 0 :
x
else :
0
fi
elseif d > 0 :
save i ; i = floor x ;
i + round(Ten_to[d]*(x-i))/Ten_to[d]
else :
round(x/Ten_to[-d])*Ten_to[-d]
fi
enddef ;
Ten_to0 = 1 ;
Ten_to1 = 10 ;
Ten_to2 = 100 ;
Ten_to3 = 1000 ;
Ten_to4 = 10000 ;
def sFe_base = enddef ;
if unknown Fe_plus :
picture Fe_plus ; Fe_plus := textext("+") ; % btex + etex ;
fi ;
vardef format (expr f,x) = dofmt_.Feform_(f,x) enddef ;
vardef Mformat (expr f,x) = dofmt_.Meform (f,x) enddef ;
vardef formatstr (expr f,x) = dofmt_.Feform_(f,x) enddef ;
vardef Mformatstr(expr f,x) = dofmt_.Meform(f,x) enddef ;
vardef escaped_format(expr s) =
"" for n=1 upto length(s) : &
if ASCII substring (n,n+1) of s = 37 :
"@"
else :
substring (n,n+1) of s
fi
endfor
enddef ;
vardef dofmt_@#(expr f, x) =
textext("\MPgraphformat{" & escaped_format(f) & "}{" & (if string x : x else: decimal x fi) & "}")
% textext(mfun_format_number(escaped_format(f),x))
enddef ;
% note that suffix @# is ignored above...
vardef strfmt(expr f, x) =
"\MPgraphformat{" & escaped_format(f) & "}{" & (if string x : x else: decimal x fi) & "}"
enddef ;
% We redefine autogrid from graph.mp adding the possibility of differing X and Y
% formats. Autoform is defined in graph.mp (by default "%g").
% graph.mp: string Autoform; Autoform = "%g";
% graph.mp:
% graph.mp: vardef autogrid(suffix tx, ty) text w =
% graph.mp: Gneedgr_:=false;
% graph.mp: if str tx<>"": for x=auto.x: tx(Autoform,x) w; endfor fi
% graph.mp: if str ty<>"": for y=auto.y: ty(Autoform,y) w; endfor fi
% graph.mp: enddef;
% string Autoform_X ; Autoform_X := "@.0e" ;
% string Autoform_Y ; Autoform_Y := "@.0e" ;
vardef autogrid(suffix tx, ty) text w =
Gneedgr_ := false ;
if str tx <> "" :
for x=auto.x :
tx (
if string Autoform_X :
if Autoform_X <> "" :
Autoform_X
else :
Autoform
fi
else :
Autoform
fi,
x
) w ;
endfor
fi
if str ty <> "" :
for y=auto.y :
ty (
if string Autoform_Y :
if Autoform_Y <> "" :
Autoform_Y
else :
Autoform
fi
else :
Autoform
fi,
y
) w ;
endfor
fi
enddef ;
% A couple of extensions:
% Define a function plotsymbol() returning a picture: 10 different shapes,
% unfilled outline, interior filled with different shades of the background.
% This allows overlapping points on a plot to be more distinguishable.
% grap_symsize := fontsize defaultfont ; % can be redefined
%
% dynamic version:
vardef grap_symsize =
% fontsize defaultfont
% .8ExHeight
.35BodyFontSize
enddef ;
path grap_sym[] ; % (internal) symbol path
grap_sym[0] := (0,0) ; % point
grap_sym[1] := fullcircle ; % circle
grap_sym[2] := (up -- down) scaled .5 ; % vertical bar
for i = 3 upto 9 : % polygons
grap_sym[i] :=
for j = 0 upto i-1 :
(up scaled .5) rotated (360j/i) --
endfor cycle ;
endfor
grap_sym[12] := grap_sym[2] rotated +90 ; % horizontal line
grap_sym[22] := grap_sym[2] rotated +45 ; % backslash
grap_sym[32] := grap_sym[2] rotated -45 ; % slash
grap_sym[13] := grap_sym[3] rotated 180 ; % down triangle
grap_sym[23] := grap_sym[3] rotated -90 ; % right triangle
grap_sym[33] := grap_sym[3] rotated +90 ; % left triangle
grap_sym[14] := grap_sym[4] rotated +45 ; % square
grap_sym[15] := grap_sym[5] rotated 180 ; % down pentagon
grap_sym[16] := grap_sym[6] rotated +90 ; % turned hexagon
grap_sym[17] := grap_sym[7] rotated 180 ;
grap_sym[18] := grap_sym[8] rotated +22.5 ;
numeric l ;
for j = 5 upto 9 :
l := length(grap_sym[j]) ;
pair p[] ;
for i = 0 upto l :
p[i] = whatever [point i of grap_sym[j],
point (i+2 mod l) of grap_sym[j]] ;
p[i] = whatever [point (i+1 mod l) of grap_sym[j],
point (i+l-1 mod l) of grap_sym[j]] ;
endfor
grap_sym[20+j] := for i = 0 upto l : point i of grap_sym[j]--p[i]--endfor cycle ;
endfor
path s ; s := grap_sym[4] ;
path q ; q := s scaled .25 ;
numeric l ; l := length(s) ;
pair p[] ;
grap_sym[24] := for i = 0 upto l-1 :
hide(
p[i] = whatever [point i of s, point (i+1 mod l) of s] ;
p[i] = whatever [point i of q, point (i-1+l mod l) of q] ;
p[i+l] = whatever [point i of s, point (i+1 mod l) of s] ;
p[i+l] = whatever [point i+1 of q, point (i+2 mod l) of q] ;
)
point i of q -- p[i] -- p[i+l] --
endfor cycle ;
grap_sym[34] := grap_sym[24] rotated 45 ;
% usage: gdraw p plot plotsymbol(1,red,1) ; % a filled red circle
% usage: gdraw p plot plotsymbol(4,blue,0) ; % a blue square
% usage: gdraw p plot plotsymbol(14,green,0.5) ; % a 50% filled green diamond
def plotsymbol(expr n,c,f) = % (number,color,color|number)
if known grap_sym[n] :
image(
path p ; p := grap_sym[n] scaled grap_symsize ;
undraw p withpen currentpen scaled 2 ;
if cycle p : fill p withcolor
if color f and known f :
f
elseif numeric f and known f and color c and known c :
f[background,c]
elseif numeric f and known f :
f[background,black]
else :
background
fi ;
fi
draw p if color c and known c : withcolor c fi ;
)
else :
nullpicture
fi
enddef ;
% The following extensions are not specific to graph and could be moved to metafun...
% convert a polygon path to a smooth path (useful, e.g. as a guide to the eye)
def smoothpath (suffix $) =
if path $ :
(for i=0 upto length $ :
if i>0 : .. fi
(point i of $)
endfor )
fi
enddef ;
% return a path of a function func(x) with abcissa running from f to t over n intervals
def makefunctionpath (expr f, t, n) (text func) =
(for x=f step ((t-f)/n) until t :
if x<>f : .. fi
(x, func)
endfor )
enddef ;
% shift a path, point by point
%
% example:
%
% p1 := addnoisetopath(p0,(.1normaldeviate,.1normaldeviate)) ;
vardef addnoisetopath (suffix p) (text t) =
if path p :
hide(pair p_i)
(for i=0 upto length p :
if i>0 : -- fi
hide(p_i := point i of p; x := xpart p_i; y := ypart p_i)z shifted t
endfor)
fi
enddef ;
% return a new path of a function func(x) using the same abcissa as an existing path
vardef functionpath (suffix p) (text t) =
(for i=0 upto length p :
if i>0 : .. fi
(hide(x := xpart(point i of p))x,t)
endfor )
enddef ;
% least-squares "fit" to a polynomial
%
% example:
%
% path p[] ;
% numeric a[] ; a0 := 1 ; a1 := .1 ; a2 := .01 ; a3 := .001 ; a4 := 0.0001 ;
% p0 := makefunctionpath(0,5,10,polynomial_function(a,4,x)) ;
% p1 := addnoisetopath(p0,(0,.001normaldeviate)) ;
% gdraw p0 ;
% gdraw p1 plot plotsymbol(1,black,.5) ;
%
% numeric b[] ;
% polynomial_fit(p1, b, 4, 1) ;
% gdraw functionpath(p1,polynomial_function(b,4,x)) ;
%
% numeric c[] ;
% linear_fit(p1, c, 1) ;
% gdraw functionpath(p1,linear_function(c,x)) dashed evenly ;
% a polynomial function:
%
% y = a0 + a1 * x + a2 * x^2 + ... + a[n] * x^n
vardef polynomial_function (suffix $) (expr n, x) =
(for j=0 upto n : + $[j]*(x**j) endfor) % no ;
enddef ;
% find the determinant of a (n+1)*(n+1) matrix; indices run from 0 to n
vardef det (suffix $) (expr n) =
hide(
numeric determinant ; determinant := 1 ;
save jj ; numeric jj ;
for k=0 upto n :
if $[k][k]=0 :
jj := -1 ;
for j=0 upto n :
if $[k][j]<>0 :
jj := j ;
exitif true ;
fi
endfor
if jj<0 :
determinant := 0 ;
exitif true ;
fi
for j=k upto n : % interchange the columns
temp := $[j][jj] ;
$[j][jj] := $[j][k] ;
$[j][k] := temp ;
endfor
determinant = -determinant ;
fi
exitif determinant=0 ;
determinant := determinant * $[k][k] ;
if k<n : % subtract row k from lower rows to get a diagonal matrix
for j=k+1 upto n:
for i=k+1 upto n:
$[j][i] := $[j][i]-$[j][k]*$[k][i]/$[k][k] ;
endfor
endfor
fi
endfor ;
)
determinant % no ;
enddef ;
numeric fit_chi_squared ;
% least-squares fit of a polynomial $ of order n to a path p (unweighted)
%
% reference: P. R. Bevington, "Data Reduction and Error Analysis for the Physical
% Sciences", McGraw-Hill, New York 1969.
vardef polynomial_fit (suffix p, $) (expr n) (text t) =
if not path p :
Gerr(p, "Cannot fit--not a path") ;
elseif length p < n :
Gerr(p, "Cannot fit--not enough points") ;
else :
fit_chi_squared := 0 ;
% calculate sums of the data
save sumx, sumy ; numeric sumx[], sumy[] ;
save w ; numeric w ;
for i=0 upto 2n :
sumx[i] := 0 ;
endfor
for i=0 upto n :
sumy[i] := 0 ;
endfor
for i=0 upto length p :
clearxy; z = point i of p ;
w := if length(t) > 0 : t else : 1 fi ; % weight
x1 := w ;
for j=0 upto 2n :
sumx[j] := sumx[j] + x1 ;
x1 := x1 * x ;
endfor
y1 := y * w ;
for j=0 upto n :
sumy[j] := sumy[j] + y1 ;
y1 := y1 * x ;
endfor
fit_chi_squared := fit_chi_squared + y*y*w ;
endfor
% construct matrices and calculate the polynomial coefficients
save m ; numeric m[][] ;
for j=0 upto n :
for k=0 upto n :
m[j][k] := sumx[j+k] ;
endfor
endfor
save delta ; numeric delta ;
delta := det(m,n) ; % this destroys the matrix m[][], which is OK
if delta = 0 :
fit_chi_squared := 0 ;
for j=0 upto n :
$[j] := 0 ;
endfor
else :
for i=0 upto n :
for j=0 upto n :
for k=0 upto n :
m[j][k] := sumx[j+k] ;
endfor
m[j][i] := sumy[j] ;
endfor
$[i] := det(m,n) / delta ; % matrix m[][] gets destroyed...
endfor
for j=0 upto n :
fit_chi_squared := fit_chi_squared - 2sumy[j]*$[j] ;
for k=0 upto n :
fit_chi_squared := fit_chi_squared + $[j]*$[k]*sumx[j+k] ;
endfor
endfor
% normalize by the number of degrees of freedom
fit_chi_squared := fit_chi_squared / (length(p) - n) ;
fi
fi
enddef ;
% y = a0 + a1 * x
%
% of course a line is just a polynomial of order 1
vardef linear_function (suffix $) (expr x) = polynomial_function($,1,x) enddef ;
vardef linear_fit (suffix p, $) (text t) = polynomial_fit(p, $, 1, t) ; enddef ;
% and a constant is polynomial of order 0
vardef constant_function (suffix $) (expr x) = polynomial_function($,0,x) enddef ;
vardef constant_fit (suffix p, $) (text t) = polynomial_fit(p, $, 0, t) ; enddef ;
% y = a1 * exp(a0*x)
%
% exp and ln defined in metafun
vardef exponential_function (suffix $) (expr x) = $1*exp($0*x) enddef ;
% since we take a log, this only works for positive ordinates
vardef exponential_fit (suffix p, $) (text t) =
save a ; numeric a[] ;
save q ; path q ; % fit to the log of the ordinate
for i=0 upto length p :
if ypart(point i of p)>0 :
augment.q(xpart(point i of p),ln(ypart(point i of p))) ;
fi
endfor
linear_fit(q,a,t) ;
$0 := a1 ;
$1 := exp(a0) ;
enddef ;
% y = a1 * x**a0
vardef power_law_function (suffix $) (expr x) = $1*(x**$0) enddef ;
% since we take logs, this only works for positive abcissae and ordinates
vardef power_law_fit (suffix p, $) (text t) =
save a ; numeric a[] ;
save q ; path q ; % fit to the logs of the abcissae and ordinates
for i=0 upto length p :
if (xpart(point i of p)>0) and (ypart(point i of p)>0) :
augment.q(ln(xpart(point i of p)),ln(ypart(point i of p))) ;
fi
endfor
linear_fit(q,a,t) ;
$0 := a1 ;
$1 := exp(a0) ;
enddef ;
% gaussian: y = a2 * exp(-ln(2)*((x-a0)/a1)^2)
%
% a1 is the hwhm; sigma := a1/sqrt(2ln(2)) or a1/1.17741
numeric lntwo ; lntwo := ln(2) ; % brrr, why not inline it
vardef gaussian_function (suffix $) (expr x) =
if $1 = 0 :
if x = $0 : $2 else : 0 fi
else :
$2 * exp(-lntwo*(((x-$0)/$1)**2))
fi
if known $3 :
+ $3
fi
enddef ;
% since we take a log, this only works for positive ordinates
vardef gaussian_fit (suffix p, $) (text t) =
save a ; numeric a[] ;
save q ; path q ; % fit to the log of the ordinate
for i=0 upto length p :
if ypart(point i of p)>0 :
augment.q(xpart(point i of p), ln(ypart(point i of p))) ;
fi
endfor
polynomial_fit(q,a,2,if t > 0 : ln(t) else : 0 fi) ;
$1 := sqrt(-lntwo/a2) ;
$0 := -.5a1/a2 ;
$2 := exp(a0-.25*a1*a1/a2) ;
$3 := 0 ; % polynomial_fit will NOT work with a non-zero background!
enddef ;
% lorentzian: y = a2 / (1 + ((x - a0)/a1)^2)
vardef lorentzian_function (suffix $) (expr x) =
if $1 = 0 :
if x = $0 : $2 else : 0 fi
else :
$2 / (1 + ((x - $0)/$1)**2)
fi
if known $3 :
+ $3
fi
enddef ;
vardef lorentzian_fit (suffix p, $) (text t) =
save a ; numeric a[] ;
save q ; path q ; % fit to the inverse of the ordinate
for i=0 upto length p :
if ypart(point i of p)<>0 :
augment.q(xpart(point i of p), 1/ypart(point i of p)) ;
fi
endfor
polynomial_fit(q,a,2,if t <> 0 : 1/(t) else : 0 fi) ;
$0 := -.5a1/a2 ;
$2 := 1/(a0-.25a1*a1/a2) ;
$1 := sqrt((a0-.25a1*a1/a2)/a2) ;
$3 := 0 ; % polynomial_fit will NOT work with a non-zero background!
enddef ;
|