1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
|
%%%%
%%%% This file belongs to the ROEX package.
%%%%
%%%% ---------------------------------------------------------------------
%%%% MFT formatting commands
%%%% ---------------------------------------------------------------------
%%% length quicksort
%%% length cycle zang pos_turn neg_turn
%%% good enc
%%% labels makelabel
%%% length make_cycle make_join make_cyclic_join make_end make_edge
%%% point predir postdir upredir upostdir udir
%%% dotprod det
%%% subpath pos_subpath neg_subpath
%%% message info_ro info_es
%%% draw roex_default
%%% -- &&
%%%% ---------------------------------------------------------------------
%%%% \TeX formatting commands
%%%% ---------------------------------------------------------------------
%%\vsize245mm
%%\font\titfnt cmtt10 at 48 pt
%%{\let\makefootline\empty \let\makeheadline\empty
%%\vglue0ptplus1fill
%%\centerline{\titfnt ROEX.MF}
%%\bigskip
%%\centerline{ver. 0.56 (Wednesday, October 25th, 1995)}
%%\vfill\vfill\eject}
%% % ---
%% \vsize 245mm
%% % an innocent formatting trick: the underscore character ending a name
%% % will be typeset as an superscript asterisk
%% \let\oriunderscore\_
%% \newif\ifbgroupopen\bgroupopenfalse
%% \def\altdblbackslash#1{\bgroup\bgroupopentrue\it#1}
%% \def\optegroup{\ifbgroupopen\egroup\fi}
%% \def\underscoreasasterisk#1{%
%% \ifx#1\relax\optegroup^*\else\oriunderscore#1\fi}
%% \def\\#1{%
%% \let\_\underscoreasasterisk
%% \altdblbackslash{#1\relax}\optegroup
%% \let\_\oriunderscore}
%% % ---
%% \def\dblhyph{--}
%% \def\8#1{\def\eightparm{#1}\mathrel{\mathcode`\.="8000 \mathcode`\-="8000
%% \ifx\eightparm\dblhyph\setbox\shorthyf\hbox{\bf -\kern-.05em}\fi%
%% #1\unkern}} % `..' and `--'
%% % ---
%% \def\MP{{\tenlogo META}\-{\tenlogo POST}}
% ------------------------------------------------------------------------
% This is ROEX.MF file containing \MF definitions implementing
% operations known as `remove overlap' and `expand stroke'.
% ------------------------------------------------------------------------
% Authors: \bf{}B. Jackowski, P. Pianowski, M. Ry\'cko \& S. Soko\l{}owski
% ------------------------------------------------------------------------
% H I S T O R Y
% ver. 0.1 (1 / 9 VI 1994):
% * incunabula version
% ver. 0.5 (15 VIII / 1 IX 1995):
% * pioneer version, released during the 9th Euro\TeX conference in Arnhem
% ver. 0.55 (26 IX 1995):
% * if a single path is an argument to |remove_overlap|, removing
% of self-overlaps is performed, hence several adjustments, most
% significant changes were introduced in |is_far_enough| and
% |intersect_two_segments|; this ismprovement is, in fact, a prelude
% towards a more general approach
% * a bug trap added in |clean_path|
% * positioning of labels not forced in |mark_nodes|
% * |quicksort| more flexible
% * more statistics available (optionally) in |find_minimal_secant|
% * displaying information changed
% * \TeX formatting comments collected at the beginning of the file
% * a result of mental laps corrected in |build_node_structure|
% (minimal secant has nothing to do with minimal distance between nodes)
% * a silly bug removed in |prepare_input_data| (|W| instead of |W_|)
% This version was released during the CyrTUG-95 meeting in Moscow
% ver. 0.56 (27 X 1995):
% * comments adjusted to a new distribution
% * the name |miter_limit| changed to |miter_size| in order to avoid
% misunderstanding, as in this implementation it is a dimen, while
% in PostScript it is a dimensionless quantity
% ------------------------------------------------------------------------
% S Y N O P S I S
% ------------------------------------------------------------------------
%
% Such operations as `remove overlap' and `expand stroke' are perhaps
% particularly useful in the contex of exporting data from \MF to other
% languages, e.g., to PostScript or HP-GL. Therefore the file ROEX.MF has
% been included into the MFTOEPS package (which accomplishes export from \MF
% to Encapsulated PostScript), although it can be used by ``normal'' \MF
% users, too. Therefore our favourite macros (e.g., |pos_turn|, |neg_turn|,
% |make_list|), are defined identically in both ROEX and MFTOEPS.
%
% We hope that tiny adjustments, if any, should be sufficient for transforming
% the macros to the form accepted by both \MF and \MP.
%
% Sample \MF programs (i.e., simple examples) illustrating the use of the
% ``interface'' macros, i.e., |remove_overlap|, |expand_stroke| and
% |change_weight|, can be found in a subdirectory ROEXSAMP. It is instructive
% to generate EPS files and then to play around with the results using
% CorelDRAW! or Adobe Illustrator.
%
%
% REMOVING OVERLAPS
%
% The command |remove_overlap_| requires three parameters. The first
% parameter is a list of paths to be processed; the paths are assumed to
% have a non-zero |turningnumber| and no self intersecting points (no
% checking is performed, except that non-cyclic paths are ignored).
% The second parameter is a list (possibly empty) of weights assigned
% to paths; more exactly, it is a list of pairs |(i,w.i)|, where |i| is
% the order number of a path and |w.i| is the respective weight.
% If the weight is not specified it is assumed to be equal to |1|.
% The last parameter is a suffix, i.e., the name of the resulting data
% structure; given a suffix is |R|, |R.num| is the number of the resulting
% paths, and |R1|, |R2|, ..., |R[R.num]| are the paths. If the suffix
% contains an index, e.g., |P[x]q|, the user is responsible for providing
% appropriate declarations prior to calling |remove_overlap|,
% in this case: |numeric P[\\]q.num; path P[\\]q[\\]|. If a variable
% |append_results| is assigned a definite value (by default it is undefined),
% |R.num| is not zeroed at the stage of initialisation, thus the results
% are accumulated (see example ROES-02.MF in the subdirectory ROEXSAMP).
%
% The algorithm assumes that a path |p| fills its interior with the colour
% |w*turningnumber(p)|, where |w| is the weight assigned to |p|. If an
% area is coloured by several paths, the colors are summed up. The user
% decides which areas are the resulting ones. By default, these are areas
% which have the interior painted with a colour $\ge1$ and the exterior
% painted with a colour $\le0$. There is a two-parameter function
% (parameters are numbers) that can be redefined by a user, |good_colors|,
% which governs the decision. The user is responsible for a proper definition
% of this function (the formula |good_colors(m,n) and good_colors(n,m)| must
% be false; cf. the default definition of |good_colors| at the end of this
% file). There is also a variable |background_color|, by default equal to |0|,
% which determines the colour of the Euclidian plane. One more function that
% is meant to be redefined by the user, if needed, is one-parameter function
% |touch_path|; the function is applied to every input path at the stage of
% initialisation, and can be used, e.g., for adjusting the direction of paths
% (cf. example RO-04.MF in the subdirectory ROEXSAMP).
%
% The orientation of paths generated by the |remove_overlap| macro is defined
% in such a way that in order to fill the resulting figure the internal
% variable |turningcheck| should be set to zero prior to using the |fill|
% command.
%
% Examples:
% Assume that paths |A|, |B| and |C| are defined as follow (say, |w=h=1cm|):
% |A=unitsquare xscaled 1/5w yscaled h shifted (2/5w,0);|
% |B=A rotatedaround((1/2w,1/2h), 60);|
% |C=B rotatedaround((1/2w,1/2h), 60);|
% Calling
% |remove_overlap (A,B,C) () R;|
% will result in generating a single path |R1| (|R.num=1|) of a six-arm
% propeller shape. Adding one more path:
% |D=reverse fullcircle scaled 3/4w shifted (1/2w,1/2h);|
% and calling
% |remove_overlap (A,B,C,D) ((4,2)) R;|
% (|D| has weight |=2|) will result in generating seven objects: six
% ``tips'' of a propeler and a regular hexagon in the center. Try to guess
% what would be the result of
% |remove_overlap (A,B,C,D) () R;|
% Not all paths need to intersect. For example, the following set of paths
% |A=fullcircle scaled w shifted (1/2w,1/2h);|
% |B=reverse unitsquare xscaled 1/5w yscaled 3/5w shifted (2/5w,1/5w);|
% |C=B rotatedaround((1/2w,1/2h), 90);|
% after calling
% |remove_overlap (A,B,C) () R;|
% will yield a circle surrounding a white cross. Since the orientation
% of the resulting paths is important here, the |fill| commands should be
% preceded by
% |interim turningcheck:=0;|
% assignment.
%
%
% EXPANDING STROKES
%
% Expanding stroke means finding the trace of the outline of an imaginary pen
% moving along a path. There are two commands accomplishing expanding stroke:
% |expand_stroke| and |change_weight|. Both make use of the essentially the
% same algorithm, except that the latter finds only one edge and ignores
% non-cyclic paths. Both commands require three parameters: first and third
% are analogous to the parameters of the |expand_stroke| macro (see above),
% the second denotes the radius (not diameter) of the circular pen.
% The algorithm works in such a way that the result of the |expand_stroke|
% does not depend on the direction of a path for cyclic paths, namely,
% the outer edge is always positively directed and the inner is negatively
% directed, provided the radius is positive; if the radius is negative,
% the outer edge is negatively directed and the inner one---positively.
% For non-cyclic paths positive radius yields positively directed resulting
% paths, negative radius---negatively oriented paths. Although the macro
% |change_weight| is subdued to the same rules, the result depends both
% on the direction of a path and on the sign of a radius. Let |t| and |r|
% denote the turning number and the radius, respectively; there are
% four cases:
% 1) |t>0| and |r>0|: the resulting path is an outer edge positively
% directed,
% 2) |t>0| and |r<0|: the resulting path is an inner edge positively
% directed,
% 3) |t<0| and |r>0|: the resulting path is an inner edge negatively
% directed,
% 4) |t<0| and |r<0|: the resulting path is an outer edge negatively
% directed.
% Following PostScript, we introduced three variables which govern the shape
% of joins and ends: |join_kind| (corresponds to |setlinejoin|), |end_kind|
% (corresponds to |setlinecap|) and |miter_size| (corresponds, as the name
% suggest, to |setmiterlimit|; however, here |miter_size| is a dimen,
% while in PostScript miter limit is a dimensionless quantity).
% Currently both |join_kind| and |end_kind| can receive value |0| or |1|,
% while in PostScript value |2| is also admissible. (The latter option
% will perhaps be included also into the ROEX package some day, but more
% tempting is the implementation of extrapolated non-linear joins.)
% Since the interpretation of |miter_size| (dimen) is slightly different than
% the interpretation of |miter_limit| (a number), |miter_size| must merely
% be non-negative, while |miter_limit| must be greater than or equal to $1$.
% Roughly speaking, value |0| for |join_kind| and |end_kind| denotes cusp
% joins, cut if necessary at miter limit; value |1| denotes rounded rounded
% joins (for details see, e.g., ``PostScript Language Reference Manual,''
% second ed., Addison-Wesley Publishing Company, Ltd.).
%
% Example:
% Assume that a path |A| is simply a square (say, |w=h=1cm|):
% |A=unitsquare scaled w;|
% After calling
% |expand_stroke(A)(1mm)R;|
% |R1| is a positively directed square of side |12mm|, and |R2| is
% negatively directed square of side |8mm|.
% ------------------------------------------------------------------------
% C A V E A T S , H I N T S A N D C O M M E N T S
% * The employed algorithms expect that the results are well defined;
% if the data are weird (e.g., self-loooping path are supplied)
% the results, if any, may be weird as well.
% * The case of curves partially overlapping is not handled and, frankly
% speaking, we have no idea how to implement it efficiently and robustly;
% if there are such pairs of paths in the input data, the algorithm almost
% certainly will not produce good results.
% * Only circular pens are implemented so far.
% * Be aware of rounding errors, they may cause unpredictable results;
% in some cases increasing accuracy by using a higher resolution may
% help, but more adequate seems to be preparing better data (cf. the
% program RO-07.MF in the subdirectory ROEXSAMP).
% * Comments in the code are meant primarily for the authors; the user
% is kindly requested not to complain fiercely if they are of a little
% use to her/him.
% * Unfortunately, \MF has no error-handling facility, hence a lot of
% ``bug traps'' can be found in the code; messages issued in the case
% of falling into such a trap are rather useless if you don't know the
% details of the algorithm; this part of the program is certainly to be
% improved; usually the error help says ``Better stop now! Algorithm
% failed'' and this advice should be followed; in practice this means that
% \MF is not able to recognize the details of the picture because of
% very close nodes (intersection points).
% * Usually, the first stage of removing overlaps (finding all intersection
% points) is the longest one, the more segments paths have the longer it
% lasts; a pity that \MF has no built-in function informing about all
% intersection points/times of two B\'ezier curves.
% * Improper definition of |good_colors| may result in erroneous behaviour of
% the algorithm.
% * One peculiar case is considered by the expanding stroke algorithm,
% namely cyclic path of length 2; some more cases might have been taken
% into account...
% * There remain a lot of unsolved problems with numerical instability
% connected with detecting tangent and close points.
% * In The \MF{}book, p. 229, D. E. Knuth writes:
% ``...tiny little loops won't hurt anything if you are filling cycles
% in the correct direction.''
% Cf. also preceding dangerous band paragraph and exercise on pp. 228--229.
% ROEX does much more complex things with paths than merely filling them,
% hence tiny loops may cause some mess, the more so as the built-in
% function |turningnumber| is very sensitive to such loops, e.g., it may
% happen that |turningnumber(p)=1| while |turningnumber(reverse p)=0|
% (cf. example RO-6.MF in the subdirectory ROEXSAMP); hence a hopefully
% more robust (from the point of view of this application) function
% is used, |check_turn|, which makes use of \MF's |fill| operation.
% * There remain several suboptimal algorithms employed, partially on
% purpose: less efficient algorithms are usually (although not necessarily)
% more comprehensible and flexible (easier to modify), which is important
% at the stage of developing a program.
% * Parameters that may have influence on the process of removing
% overlaps are |epsil.time|, |epsil.ang| (in degrees), |epsil.dist| (in
% resolution-dependent units), and |max_idx|; the choice of good default
% values will need some practice.
% * Incompatible modifications may come, although we shall do our best
% to avoid them.
% ------------------------------------------------------------------------
% We follow the naming convention of The \MF{}book:
% ``Private tokens always end with the underscore character.''
% Since the underscore is a rather illegible character, in a ``neat''
% printing (using MFT utility) it will appear as an superscript asterisk.
% ------------------------------------------------------------------------
% D E F I N I T I O N S
% ------------------------------------------------------------------------
% UNIVERSAL MACROS:
% ---
% Without the following redefinition:
def -- = {curl 1} .. tension (1+eps) .. {curl 1} enddef;
% the result of |p intersectiontimes reverse p|, where |p=(a,b)--(a+3c,b+3d)|,
% |a|, |b|, |c|, |d| are arbitrary (sic!) \MF's numbers, yields the result
% |(1/2,1/2)|, which contradicts the statement preceding the exercise 14.17
% on the page 137 of The \MF{}book. Since it is no longer a ``standard''
% macro, its formatting is slightly modified.
% ---
%%% length ]]] ]]]]
%%% ; ]
def ]]] = ] ] ] enddef;
def ]]]] = ] ] ] ] enddef; % right brackets should be loners, indeed
%%% ) ] ]] ]]] ]]]]
% ---
vardef distance(expr za,zb) = length(za-zb) enddef; % in fact, an alias
% ---
vardef interval(expr ta,tb,p) =
save ta_,tb_;
if cycle p:
ta_:=ta mod length(p); tb_:=tb mod length(p);
min(length(p)-abs(ta_-tb_), abs(ta_-tb_))
else:
ta_:=min(max(0,ta),length(p)); tb_:=min(max(0,tb),length(p));
abs(ta_-tb_)
fi
enddef;
% ---
def make_list(expr k,l) suffix s =
for i_:=k upto l: if i_>k: , fi \\ s[i_] endfor
enddef;
% ---
vardef dec_pair(expr z) =
"(" & decimal(xpart z) & "," & decimal(ypart z) & ")"
enddef;
% ---
primarydef u det v = % dual operation to |dotprod|
(xpart u * ypart v - xpart v * ypart u)
enddef;
% ---
vardef zang(expr u,v) = % useful during testing
% computes the angle form |u| to |v| (useful for testing)
angle(u dotprod v,u det v) mod 360 % CAVEAT! rounding errors
enddef;
% ---
vardef turn_ang(expr za,zb) = % more robust version of |zang|
% The idea of computing the turn angle is based on the following observation:
% |z reflectedabout (origin,right)=1/z| for a complex number |z| such that
% |abs(z)=1|; recall also that multiplication of complex numbers
% (|zscaled| operation) implies addition of their angle arguments.
if (abs(za)>=epsil.len) and (abs(zb)>=epsil.len): % |eps| may be not enough
angle(unitvector(za) zscaled (unitvector(zb) reflectedabout (origin,right)))
else: whatever fi
enddef;
% ---
def predir expr t of p = ((point t of p)-(precontrol t of p)) enddef;
def postdir expr t of p = ((postcontrol t of p)-(point t of p)) enddef;
def udir expr t of p = unitvector(direction t of p) enddef;
def upredir expr t of p = unitvector(predir t of p) enddef;
def upostdir expr t of p = unitvector(postdir t of p) enddef;
% ---
vardef pos_turn primary p =
interim autorounding:=0;
if check_turn(p)=0: show p;
errhelp "I will leave the path intact, continue with crossed fingers.";
errmessage "Cannot make positive turn (check_turn=0)";
elseif check_turn(p)<0: reverse fi \\ p
enddef;
% ---
vardef neg_turn primary p =
interim autorounding:=0;
if check_turn(p)=0: show p;
errhelp "I will leave the path intact, continue with crossed fingers.";
errmessage "Cannot make negative turn (check_turn=0)";
elseif check_turn(p)>0: reverse fi \\ p
enddef;
% ---
vardef check_turn primary p = % seems more adequate than |turningnumber|
% |epsilon|=|totalweight currentpicture| after |fill unitsquare|,
% |eps/epsilon=32|, i.e., we admit accuracy of 32 pixels (isn't it too many?)
save r_,currentpicture; picture currentpicture;
interim turningcheck:=0; interim autorounding:=0;
currentpicture:=nullpicture; fill p; r_:=totalweight(currentpicture);
if r_>eps: 1 elseif r_<-eps: -1 else: turningnumber(p) fi
enddef;
% ---
def check_embedding(expr a,b)(suffix res) =
begingroup
% see comment in |check_turn|
save napb_,panb_,currentpicture; picture currentpicture;
interim turningcheck:=0; interim autorounding:=0;
currentpicture:=nullpicture; fill pos_turn a; fill neg_turn b; cullit;
panb_:=totalweight currentpicture;
currentpicture:=nullpicture; fill neg_turn a; fill pos_turn b; cullit;
napb_:=totalweight currentpicture;
if (panb_<eps) and (napb_<>0): res:=1; % $a \subset b$
elseif (panb_<>0) and (napb_<eps): res:=2; % $b \subset a$
else: res:=0; fi % undefined result
endgroup
enddef;
% ---
vardef pos_subpath expr z of p =
if not cycle p: subpath z of p
else:
if xpart(z)<=ypart(z): subpath z of p
else: subpath (xpart(z),ypart(z)+length(p)) of p
fi
fi
enddef;
% ---
vardef neg_subpath expr z of p =
if not cycle p: subpath z of p
else: reverse(pos_subpath (ypart z,xpart z) of p) fi
enddef;
% ---
tertiarydef p && q = % |length(p)>0|
(subpath(0,length(p)-1) of p) ..
controls (postcontrol length(p)-1 of p) and (precontrol length(p) of p)
.. q
enddef;
% ---
def make_cycle expr p = % |length(p)>0|
(subpath(0,length(p)-1) of p) ..
controls (postcontrol length(p)-1 of p) and (precontrol length(p) of p)
.. cycle
enddef;
% ---
vardef is_line(expr B) =
% checks if a B\'ezier segment |B| is an almost straight line;
% recall that |z reflectedabout (origin,right)=1/z| for a complex
% number |z| such that |length(z)=1|; recall also that the multiplication
% of complex numbers (|zscale| operation) implies the addition of
% their angle arguments
save pa_,pb_,pc_,pd_,ba_,da_,dc_; pair pa_,pb_,pc_,pd_,ba_,da_,dc_;
pa_:=point 0 of B; pd_:=point 1 of B;
if distance(pa_,pd_)<epsil.dist:
false % either really not a line or an uncertain situation (rounding errors)
else:
da_=unitvector(pd_-pa_) reflectedabout (origin,right);
pb_:=postcontrol 0 of B; if distance(pa_,pb_)<epsil.dist: pb_:=pa_; fi
pc_:=precontrol 1 of B; if distance(pd_,pc_)<epsil.dist: pc_:=pd_; fi
if (pa_=pb_) and (pc_=pd_): true
elseif (pa_=pb_):
dc_=unitvector(pd_-pc_); abs(angle(dc_ zscaled da_))<epsil.ang
elseif (pc_=pd_):
ba_=unitvector(pb_-pa_); abs(angle(ba_ zscaled da_))<epsil.ang
else:
ba_=unitvector(pb_-pa_); dc_=unitvector(pd_-pc_);
(abs(angle(ba_ zscaled da_))<epsil.ang)
and (abs(angle(dc_ zscaled da_))<epsil.ang)
fi
fi
enddef;
% ---
vardef is_tiny_bez(expr B) =
% checks if B\'ezier segment |B| is negligibly small
(distance((postcontrol 0 of B),(point 0 of B))<epsil.dist)
and (distance((precontrol 1 of B),(point 0 of B))<epsil.dist)
and (distance((point 1 of B),(point 0 of B))<epsil.dist)
enddef;
% ---
vardef are_parallel(expr B,C) =
% checks if B\'ezier segments |B| and |C| are linear and parallel
save a_;
if is_line(B) and is_line(C):
a_:=turn_ang((point 0 of B)-(point 1 of B),(point 0 of C)-(point 1 of C));
(if known a_: abs(a_)<epsil.ang else: false fi)
else: false fi
enddef;
% ---
vardef tidy_lines(expr P) =
% converts almost linear segments of a path |P| into a ``tidy'' lines (|--|)
save B_; path B_;
for i_:=1 upto length(P): if i_>1: & fi
hide(B_:=subpath (i_-1,i_) of P)
if is_line(B_): ((point 0 of B_)--(point 1 of B_)) else: B_ fi
endfor if cycle P: & cycle fi
enddef;
% ---
def add_bez(expr ta,tb, p) =
.. controls (postcontrol ta of p) and (precontrol tb of p) .. (point tb of p)
enddef;
% ---
vardef clean_path(expr P) =
% this routine joins together colinear neighbouring segments and removes
% ``tiny'' edges of a cyclic path |P| (performed at the end of removing
% overlaps and expanding stroke); since some nodes may become ``midline''
% ones after cleaning, the operation is performed twice
if cycle P:
save P_,for_del_,not_del_,i_,j_; path P_;
% mark all deletable nodes and one non-deletable node:
for i_:=0 upto length(P)-1:
if are_parallel(subpath (i_-1,i_) of P,subpath (i_,i_+1) of P)
or is_tiny_bez(subpath(i_-1,i_) of P):
for_del_[i_]:=1;
else:
not_del_:=i_;
fi
endfor;
% BUG TRAP:
if unknown not_del_:
err_helpless;
errmessage "ROEX ERROR: all nodes deleted during path cleaning";
fi
% delete nodes:
i_:=j_:=not_del_; % we start with |not_del_|: one of not deleted points
P_:=(point j_ of P)
forever:
% invariant: |i_| recent not deleted point, |j_| current point
hide(j_:=(j_+1) mod length(P))
if unknown for_del_[j_]: add_bez(i_,j_,P) \\ hide(i_:=j_) fi
exitif j_=not_del_;
endfor & cycle;
tidy_lines(P_)
else: P fi
enddef;
% ---
vardef is_less(expr a,b) = (a<b) enddef;
vardef quicksort@#(expr ii,jj)(suffix s)(text t) =
% sorts |@#.s[ii..jj]| along with |@#.$[ii..jj]| for |$| in |t|,
% using Tony Hoare's ``quick sort'' method; suffix |s| must must not occur
% in the |t| list (no checking is performed); if both |s| and |t| are empty,
% |t| is ignored.
% REMARK 1: the algorithm has no explicit recursion, because of \MF's limits
% on recursion level.
% REMARK 2: the algorithm, of course, is not stable, i.e., it does not
% preserve the order of equal items, but it does not matter here
save i_,j_,k_,l_,cell_,stack_,incl_t_; boolean incl_t_;
pair stack_[\\]; stack_.lev:=0; stack_[incr stack_.lev]:=(ii,jj);
i_:=0; for $:=t: i_:=i_+1; endfor % ``measure'' |t|-list
incl_t_:=(str s <> "") or ((str s = "") and (i_<>0));
forsuffixes $:= s if incl_t_: , t fi:
if numeric @#.$[ii]: numeric cell_.$;
elseif string @#.$[ii]: string cell_.$;
elseif boolean @#.$[ii]: boolean cell_.$;
fi
endfor
forever:
exitif stack_.lev<=0;
numeric i_,j_; (i_,j_)=stack_[stack_.lev]; stack_.lev:=stack_.lev-1;
if i_<j_:
forsuffixes $:= s if incl_t_: , t fi: cell_.$:=@#.$[i_]; endfor
l_:=i_;
for k_:=i_+1 upto j_:
if is_less(@#.s[k_],cell_.s):
forsuffixes $:=s if incl_t_: , t fi:
@#.$[l_]:=@#.$[k_]; @#.$[k_]:=@#.$[l_+1];
endfor
l_:=l_+1;
fi
endfor
forsuffixes $:= s if incl_t_: , t fi: @#.$[l_]:=cell_.$; endfor
stack_[incr stack_.lev]:=(i_,l_-1); stack_[incr stack_.lev]:=(l_+1,j_);
fi
endfor
enddef;
% ---
% R-O MACROS:
% ---
% visualising macros (useful for testing):
% ---
def mark_nodes =
if proofing>0:
for i_:=1 upto NODE_.num:
makelabel(decimal(i_) & ":" & decimal(NODE_.pth[i_]),
point TIME_[NODE_.pth[i_]]tim[NODE_.tim[i_]] of PATH_[NODE_.pth[i_]]);
endfor
fi
enddef;
% ---
def mark_area(expr i) =
begingroup
save j_,v_; j_:=i; mark_edge(j_); v_[j_]:=0;
forever: j_:=EDGE_.out[j_]; exitif (j_=i) or (known v_.emerg);
if known v_[j_]: v_.emerg:=0; else: mark_edge(j_); v_[j_]:=0; fi
endfor
endgroup
enddef;
% ---
def mark_edge(expr i) =
begingroup
if proofing>0:
save currentpen, currentpen_path; pen currentpen; path currentpen_path;
makelabel(decimal(i),
(point .5length(the_edge(i)) of the_edge(i))+
1pt*(udir .5length(the_edge(i)) of the_edge(i)) rotated 90);
pickup pencircle scaled 1;
draw (point .5length(the_edge(i)) of the_edge(i))--
((point .5length(the_edge(i)) of the_edge(i))+
(1pt*(udir .5length(the_edge(i)) of the_edge(i)) rotated 90));
makelabel("", point 0 of the_edge(i));
fi
endgroup
enddef;
% ---
def mark_edges =
for i_:=-EDGE_.num upto EDGE_.num: if i_<>0: mark_edge(i_); fi endfor
enddef;
% ---
def show_area(expr i) =
begingroup
save j_,v_; j_:=i;
message "EDGE " & decimal(j_) & "/" & decimal(EDGE_.pth[j_]) & ":";
message "color " &
if known EDGE_.col[j_]: decimal(EDGE_.col[j_]) else: "???" fi;
v_[j_]:=0;
forever: j_:=EDGE_.out[j_]; exitif (j_=i) or (known v_.emerg);
if known v_[j_]: v_.emerg:=0; fi
v_[j_]:=0; message " " & decimal(j_) & "/" & decimal(EDGE_.pth[j_]);
endfor
endgroup
enddef;
% ---
def show_areas =
for i_:=-EDGE_.num upto EDGE_.num: if i_<>0: show_area(i_); fi endfor
enddef;
% ---
def err_helpless =
errhelp "Better stop now! Algorithm failed.";
enddef;
% ---
def err_extra_info(expr i,j) =
message
"========================== BEGIN OF ERROR INFO: ==========================";
for k_:=i,j:
if known k_:
message "Edge " & decimal(k_) &
" (a subpath of the path " & decimal(EDGE_.pth[k_]) & "):";
message "Color:"; show EDGE_.col[k_]; show the_edge(k_);
fi
endfor;
enddef;
% ---
% principal macros:
% ---
vardef edge_path(expr i) = PATH_[EDGE_.pth[i]] enddef;
vardef first_time(expr i) =
TIME_[NODE_.pth[EDGE_.fnd[i]]]tim[NODE_.tim[EDGE_.fnd[i]]]
enddef;
vardef last_time(expr i) =
TIME_[NODE_.pth[EDGE_.lnd[i]]]tim[NODE_.tim[EDGE_.lnd[i]]]
enddef;
% ---
vardef the_edge(expr i) =
if i>0: pos_subpath else: neg_subpath fi
(first_time(i), last_time(i)) of edge_path(i)
enddef;
% ---
vardef make_area(expr i) =
save j_,q_,v_; path q_; j_:=i; v_[j_]:=0; q_:=the_edge(j_);
forever: j_:=EDGE_.out[j_]; exitif (j_=i) or (known v_.emerg);
if known v_[j_]:
show_area(i); err_helpless;
errmessage "RO ERROR: Edge " & decimal(j_) & " revisited";
v_.emerg:=0;
fi
v_[j_]:=0; q_:=q_ && the_edge(j_);
endfor
make_cycle(q_)
enddef;
% ---
vardef is_tangent(expr i,j,k,l) =
save e_,d_,pi_,pj_,ti_,tj_; path e_,pi_,pj_;
if (TIME_[i]num=0) or (TIME_[j]num=0): true
else:
ti_.loc:=TIME_[i]tim[k];
ti_.prv:=TIME_[i]tim[(k-1) mod (TIME_[i]num+1)];
ti_.nxt:=TIME_[i]tim[(k+1) mod (TIME_[i]num+1)];
tj_.loc:=TIME_[j]tim[l];
tj_.prv:=TIME_[j]tim[(l-1) mod (TIME_[j]num+1)];
tj_.nxt:=TIME_[j]tim[(l+1) mod (TIME_[j]num+1)];
pi_:=PATH_[i] shifted (-point ti_.loc of PATH_[i]);
pj_:=PATH_[j] shifted (-point tj_.loc of PATH_[j]);
d_:=min(
distance(point ti_.loc of pi_, point ti_.prv of pi_),
distance(point ti_.loc of pi_, point ti_.nxt of pi_),
distance(point tj_.loc of pj_, point tj_.prv of pj_),
distance(point tj_.loc of pj_, point tj_.nxt of pj_));
% BUG TRAP 1:
if d_<epsil.dist:
err_helpless;
errmessage "RO ERROR: Cannot check tangency (too short secants)";
fi
e_:=enc.pth scaled (1/2[epsil.dist,d_]);
save ta_,tb_,tc_,td_;
save tt_;
(tt_,ta_)=(pos_subpath (ti_.prv,ti_.loc) of pi_) intersectiontimes e_;
save tt_;
(tt_,tb_)=(pos_subpath (ti_.loc,ti_.nxt) of pi_) intersectiontimes e_;
save tt_;
(tt_,tc_)=(pos_subpath (tj_.prv,tj_.loc) of pj_) intersectiontimes e_;
save tt_;
(tt_,td_)=(pos_subpath (tj_.loc,tj_.nxt) of pj_) intersectiontimes e_;
% BUG TRAP 2:
if (ta_<0) or (tb_<0) or (tc_<0) or (td_<0):
err_helpless; errmessage "RO ERROR: Cannot check tangency";
fi
forsuffixes tt_:=tb_,tc_,td_: tt_:=(tt_-ta_) mod enc.len; endfor
((tc_>=tb_) and (td_>=tb_)) or ((tc_<=tb_) and (td_<=tb_))
fi
enddef;
% ---
vardef multi_path_case = PATH_.num>1 enddef;
def prepare_input_data(text P)(text W) =
% |P|: list of paths to be processed (non-cyclic paths are ignored);
% |W|: list of weights given as pairs: (index, value)
PATH_.num:=0;
for P_:=P: if cycle P_: PATH_[incr PATH_.num]:=touch_path(P_); fi endfor
for W_:=W: PATH_.wei[xpart W_]:=ypart W_; endfor
for i_:=1 upto PATH_.num:
if unknown PATH_.wei[i_]: PATH_.wei[i_]:=1; fi
endfor
enddef;
% ---
def initialise_removing_overlaps =
% Given paths are |PATH_1|, |PATH_2|, ..., |PATH_[P.num]|;
% if |PATH_[i][j]| is known, paths |PATH_[i]| and |PATH_[j]| at least touch
% each other; |PATH_.wei[i]| is a weight of a path (corresponds to
% multiplying a turning number by this value or, in other words, to
% applying |PATH_.wei[i]| times a fill operation to the path |PATH_[i]|).
numeric PATH_.num, PATH_[\\][\\], PATH_.wei[\\]; path PATH_[\\];
%
% Lone paths are stored in variable |LONE_|; |LONE_.col[i]| determines
% the color (being an integer number) of the plane surrounding the path
% |LONE_[i]|; |LONE_.wei| is a weight inherited from |PATH_.wei| (see above).
numeric LONE_.num, LONE_.col[\\], LONE_.wei[\\]; path LONE_[\\];
%
% |TIME_[i]num| is the number of intersection points for paths |PATH_[i]|,
% |TIME_[i]tim[j]| is the time of intersection of the |j|-th point of path
% |PATH_[i]| (points are sorted with respect to time), |TIME_[i]ntp[j]|
% marks non-tangent points (if known), |TIME_[i]nod[j]| is the node number
% of |j|-th point of path |PATH_[i]| (only non-tangent points are considered
% to be nodes, points on a path are numbered from |0|).
numeric TIME_[\\]num, TIME_[\\]tim[\\], TIME_[\\]ntp[\\], TIME_[\\]nod[\\];
%
% Variables with prefix |EDGE_| describe the edge structure that results from
% intersecting process; the data structure is similar to Dijkstra's data
% structure for the algorithm finding the convex hull of for a given
% set of points (E. W. Dijkstra, ``A Discipline of programming'',
% Prentice-Hall, Inc., 1976): the edges (edsges?) are numbered
% |-EDGE_.num|, |-EDGE_.num+1|, ..., |-1|, |1|, ... |EDGE_.num-1|,
% |EDGE_.num|; edges |i| and |-i| are in fact the same edge but
% differently oriented, the positive value denotes the edge which
% direction is consistent with the direction of the original path;
% |EDGE_.out[i]| is the number of the leftmost edge outcoming from
% the last node, i.e., |EDGE_.lnd[i]|; the number of the first node
% of |i|-th edge is |EDGE_.fnd[i]|; color of |i|-th edge, i.e., the color
% of the area surrounded by the edge and its leftmost successors is stored
% in |EDGE_.col[i]|; |i|-th edge belongs to the path of |PATH_[EDGE_.pth[i]]|;
% |EDGE_.aux[\\]| is an auxiliary variable; all intersecting paths
% can be grouped into |SPOT_.num| of disjoint ``spots''; for |i=1|, |2|, ...,
% |SPOT_.num|, |EDGE_.bed[i]| is the number of the edge which leftmost
% successors form the area being a boundary of the intersecting paths
% for a given spot and |EDGE_.bpa[i]| is the boundary (since there is
% one-to-one correspondence between boundaries and spots, boundaries are
% pairwise disjoint, too).
numeric EDGE_.num, EDGE_.pth[\\], EDGE_.out[\\], EDGE_.aux[\\], EDGE_.col[\\],
EDGE_.fnd[\\], EDGE_.lnd[\\], EDGE_.are[\\], EDGE_.bed[\\];
path EDGE_.bpa[\\];
%
% Variables with prefix |NODE_| describe the node structure and are related
% to the edge structure; the node is not a point on a plane but a point on a
% path, hence several nodes may correspond to one Euclidian point;
% |NODE_.num| is the number of nodes, |NODE_.pth[i]| is the number of a path
% to which the node |i| belongs, |NODE_.tim[i]| is the corresponding time on
% path |PATH_[NODE_.pth[i]]|, |NODE_.ped[i]| is the ordering number of a
% positively-numbered edge leaving the node |i|, |NODE_.ned[i]| is the
% ordering number of negatitively-numbered edge leaving node |i|,
% |NODE_.nod[i]num| is the number of nodes coinciding with node |i| and
% these are nodes |NODE_.nod[i]1|, |NODE_.nod[i]2|, ...,
% |NODE_.nod[i][NODE_.nod[i]num]|.
numeric NODE_.num, NODE_.pth[\\], NODE_.tim[\\], NODE_.ned[\\],
NODE_.ped[\\], NODE_.nod[\\]num, NODE_.nod[\\][\\];
%
% It often happens that intersecting paths form disjoint areas or that
% there are paths that do not intersect; it is crucial for the colouring
% algorithm to know the embedding ``hierarchy''; the hierarchy is stored in
% a tree structure: the links (suffix |emb|) point upward (from leaves to
% the root), moreover, with each leaf (node) is associated a ``level,''
% i.e., the number of leaves beneath this leaf; the information stored in
% a leaf is either the number of a lone path or the number of an area being
% the result of the intersecting process (negative value marks the former
% case); the tree is built by adding at first lone paths and next boundary
% paths, i.e., negatively oriented paths surrounding groups of paths (areas,
% see below) resulting from the intersecting process; if there is a lone path
% or a boundary path |q| embedded in a boundary path |p|, there must be also
% an area which belongs to the group of areas surrounded by |p|, which apears
% in the tree between |q| and |p|; such a structure is convenient at the
% stage of finding colors of areas and lone paths.
numeric TREE_.num,TREE_.pth[\\],TREE_.emb[\\],TREE_.lev[\\];
%
% Finally there are areas which arise during intersecting process;
% |AREA_1|, |AREA_2|, ..., |AREA_[AREA_.num]| are the ordering numbers
% of edges which leftmost successors form areas such that areas arising
% from |AREA_[i]| and |AREA_[j]| are either disjoint or have at most a common
% edge, and, moreover, areas arising from |AREA_1|, |AREA_2|, ...,
% |AREA_[AREA_.num]| exhaust the list of all possible areas in question
% (plus lone paths, i.e., with no intersecting points); |AREA_.spt[i]| is
% a spot number (areas of the same spot number are subsets of the same
% boundary, different boundaries are disjoint); areas are sorted wrt spot
% numbers, moreover, |AREA_[SPOT_[s-1]+1]| thru |AREA_[SPOT_[s]]| are areas
% belonging to a spot |s|, |s=1|, |2|, ..., |SPOT_.num|.
numeric AREA_.num, AREA_[\\], AREA_.spt[\\]; numeric SPOT_.num, SPOT_[\\];
enddef;
% ---
vardef is_far_enough(expr i,k,dk) =
if act_idx_>=max_idx: were_more_:=1; false
else:
save z_; pair z_; z_:=point k+dk of PATH_[i];
true
for j_:=0 upto TIME_[i]num:
and
if multi_path_case:
(distance(point TIME_[i]tim[j_] of PATH_[i],z_)>=epsil.dist)
else:
(interval(TIME_[i]tim[j_],(k+dk),PATH_[i])>=epsil.time)
fi
endfor
for j_:=0 upto ignored_.num:
and
if multi_path_case:
(distance(point ignored_[j_] of PATH_[i],z_)>=epsil.dist)
else:
(interval(ignored_[j_],(k+dk),PATH_[i])>=epsil.time)
fi
endfor
fi
enddef;
% ---
def intersect_two_segments(expr i,j,k,l) =
begingroup
save pi_,pj_,stack_; path pi_,pj_,stack_[\\]; numeric stack_.lev;
pi_:=subpath (k,k+1) of PATH_[i]; pj_:=subpath (l,l+1) of PATH_[j];
stack_.lev:=1; stack_[stack_.lev]:=pj_;
forever:
exitif stack_.lev<=0;
pj_:=stack_[stack_.lev]; stack_.lev:=stack_.lev-1;
save dk_,dl_; (dk_,dl_)=pi_ intersectiontimes pj_;
if dk_>=0:
if is_far_enough(i,k,dk_):
act_idx_:=act_idx_+1; TIME_[i].tim[incr TIME_[i].num]:=k+dk_;
else: ignored_[incr ignored_.num]:=k+dk_;
fi
if (dl_+epsil.time)<length(pj_):
stack_[incr stack_.lev]:=subpath (dl_+epsil.time,length pj_) of pj_;
fi
if (dl_-epsil.time)>0:
stack_[incr stack_.lev]:=subpath (0,dl_-epsil.time) of pj_;
fi
fi
endfor
endgroup
enddef;
% ---
def intersect_two_paths(expr i,j) =
begingroup
save ignored_,were_more_,act_idx_;
act_idx_:=0; ignored_.num:=-1;
for k_:=0 upto length(PATH_[i])-1:
for l_:=0 upto length(PATH_[j])-1:
if (i<>j) or (k_<>l_):
intersect_two_segments(i,j,k_,l_);
fi
endfor
endfor
if known were_more_:
errhelp "Dangerous situation: rounding errors may screw up results.";
errmessage "RO ERROR: there were more than "
& decimal(max_idx) & " intersections (thus some were ignored)";
fi
quicksort TIME_[i](0,TIME_[i].num)(tim)();
endgroup
enddef;
% ---
def intersect_all_paths =
for i_:=1 upto PATH_.num: TIME_[i_]num:=-1; endfor
for i_:=1 upto PATH_.num:
for j_:=i_+1 upto PATH_.num:
if xpart(PATH_[i_] intersectiontimes PATH_[j_])>-1:
PATH_[i_][j_]:=0;
% the process is repeated twice (for both paths in turn) because we haven't
% invented an efficient soultion to the following problem:
% given a subpath |S| of a path |P| and a time |t.S|; find a time |t.P| such
% that |point t.S of S=point t.P of P|
intersect_two_paths(i_,j_); intersect_two_paths(j_,i_);
fi
endfor
endfor
if not multi_path_case:
for i_:=1 upto PATH_.num:
PATH_[i_][i_]:=0; intersect_two_paths(i_,i_);
endfor
fi
enddef;
% ---
vardef find_minimal_secant =
save secants_, intervals_;
secants_.num:=0; intervals_.num:=0;
minimal_secant:=minimal_interval:=infinity;
for i_:=1 upto PATH_.num:
for j_:=0 upto TIME_[i_].num:
if TIME_[i_].num>0:
secants_[if tracingremoving>1: incr fi \\ secants_.num]:=
distance(point TIME_[i_]tim[j_] of PATH_[i_],
point TIME_[i_]tim[(j_+1) mod (TIME_[i_].num+1)] of PATH_[i_]);
if tracingremoving>1:
secants_.pth[secants_.num]:=i_; secants_.tim[secants_.num]:=j_;
fi
minimal_secant:=min(minimal_secant,secants_[secants_.num]);
intervals_[if tracingremoving>1: incr fi \\ intervals_.num]:=
interval(TIME_[i_]tim[j_],
TIME_[i_]tim[(j_+1) mod (TIME_[i_].num+1)], PATH_[i_]);
if tracingremoving>1:
intervals_.pth[intervals_.num]:=i_; intervals_.tim[intervals_.num]:=j_;
fi
minimal_interval:=min(minimal_interval,intervals_[intervals_.num]);
fi
endfor;
endfor;
if minimal_secant<>infinity:
info_ro "Minimal secant = " & decimal(minimal_secant/pt)
& "pt, i.e., " & decimal(minimal_secant) & "pxl, " &
if minimal_secant<4/3epsil.dist: "CAVEAT!" else: "seems OK" fi
& " (bound=" & decimal(epsil.dist) & "pxl)";
fi
if minimal_interval<>infinity:
info_ro "Minimal interval = " & decimal(minimal_interval) & ", " &
if minimal_interval<4/3epsil.time: "CAVEAT!" else: "seems OK" fi
& " (bound=" & decimal(epsil.time) & ")";
fi
if tracingremoving>1:
quicksort secants_(1,secants_.num)()(tim,pth);
quicksort intervals_(1,intervals_.num)()(tim,pth);
for i_:=1 upto secants_.num:
info_ro "secant=" & decimal(secants_[i_])
& " path=" & decimal(secants_.pth[i_])
& " time=" & decimal(secants_.tim[i_]);
endfor
for i_:=1 upto intervals_.num:
info_ro "interval=" & decimal(intervals_[i_])
& " path=" & decimal(intervals_.pth[i_])
& " time=" & decimal(intervals_.tim[i_]);
endfor
fi
enddef;
% ---
def build_node_structure =
begingroup
save n_,Tik_,Tjl_;
NODE_.num:=0;
for i_:=1 upto PATH_.num:
for j_:=i_ if multi_path_case: +1 fi upto PATH_.num:
if known PATH_[i_][j_]:
for k_:=0 upto TIME_[i_]num:
for l_:=if i_=j_: k_ else: 0 fi upto TIME_[j_]num:
if distance(point TIME_[i_]tim[k_] of PATH_[i_],
point TIME_[j_]tim[l_] of PATH_[j_])<epsil.dist:
if if multi_path_case: not is_tangent(i_,j_,k_,l_) else: true fi:
TIME_[i_]ntp[k_]:=1; TIME_[j_]ntp[l_]:=1;
if unknown TIME_[i_]nod[k_]:
NODE_.num:=NODE_.num+1; TIME_[i_]nod[k_]:=NODE_.num;
NODE_.pth[NODE_.num]:=i_; NODE_.tim[NODE_.num]:=k_;
NODE_.nod[NODE_.num]num:=0;
fi
if unknown TIME_[j_]nod[l_]:
NODE_.num:=NODE_.num+1; TIME_[j_]nod[l_]:=NODE_.num;
NODE_.pth[NODE_.num]:=j_; NODE_.tim[NODE_.num]:=l_;
NODE_.nod[NODE_.num]num:=0;
fi
Tik_:=TIME_[i_]nod[k_]; Tjl_:=TIME_[j_]nod[l_];
NODE_.nod[Tik_][incr NODE_.nod[Tik_]num]:=Tjl_;
if (i_<>j_) or (k_<>l_):
NODE_.nod[Tjl_][incr NODE_.nod[Tjl_]num]:=Tik_;
fi
fi
fi
endfor
endfor
fi
endfor
endfor
% BUG TRAP:
for i_:=1 upto PATH_.num:
n_:=0;
for j_:=0 upto TIME_[i_]num: if known TIME_[i_]ntp[j_]: n_:=n_+1; fi endfor
if n_=1:
err_helpless;
errmessage "RO ERROR: Number of non-tangent points must not be 1 (path "
& decimal(i_) & ")";
fi
endfor
endgroup
enddef;
% ---
def identify_close_nodes =
begingroup
% It is assumed that `close points' and `coinciding points' means the same,
% hence we make a transitive closure of the relation of `being close'
% (in ``normal'' cases the relation is transitive, although from
% a mathematical point of view it is obviously not):
forever:
% Is this loop really needed? I (BJ) could not devise a case where
% more than two turns would be necessary and where the algorithm
% would still work properly
save changed_;
for i_:=1 upto NODE_.num:
save v_;
for j_:=1 upto NODE_.nod[i_]num: v_[NODE_.nod[i_][j_]]:=0; endfor
for j_:=1 upto NODE_.nod[i_]num:
k_:=NODE_.nod[i_][j_];
for l_:=1 upto NODE_.nod[k_]num:
if NODE_.nod[k_][l_]<>i_:
if unknown v_[NODE_.nod[k_][l_]]:
NODE_.nod[i_][incr NODE_.nod[i_]num]:=NODE_.nod[k_][l_];
changed_:=v_[NODE_.nod[k_][l_]]:=0;
fi
fi
endfor
endfor
endfor
exitif unknown changed_;
endfor
endgroup
enddef;
% ---
def build_edge_structure =
begingroup
numeric min_sec_[\\],min_sec_.tmp;
% |min_sec_[i]| is a minimal secant for |i|-th path, |i=1|, |2|, ..., |PATH_.num|
save i_,j_,k_;
EDGE_.num:=0;
if NODE_.num>0:
for i_:=1 upto PATH_.num:
for j_:=0 upto TIME_[i_]num:
if known TIME_[i_]ntp[j_]:
EDGE_.num:=EDGE_.num+1; EDGE_.pth[EDGE_.num]=i_;
EDGE_.pth[-EDGE_.num]=i_; EDGE_.fnd[EDGE_.num]:=TIME_[i_]nod[j_];
% each path should contain at least two non-tangent nodes
k_:=j_+1;
forever: exitif known TIME_[i_]ntp[k_ mod (TIME_[i_]num+1)];
k_:=k_+1;
endfor;
EDGE_.lnd[EDGE_.num]:=TIME_[i_]nod[k_ mod (TIME_[i_]num+1)];
min_sec_.tmp:=
distance(point first_time(EDGE_.num) of edge_path(EDGE_.num),
point last_time(EDGE_.num) of edge_path(EDGE_.num));
if if unknown min_sec_[i_]: true else: min_sec_[i_]>min_sec_.tmp fi:
min_sec_[i_]:=min_sec_.tmp;
fi
EDGE_.fnd[-EDGE_.num]:=EDGE_.lnd[EDGE_.num];
EDGE_.lnd[-EDGE_.num]:=EDGE_.fnd[EDGE_.num];
fi
endfor
endfor
for i_:=-EDGE_.num upto EDGE_.num:
if i_>0: NODE_.ped[EDGE_.fnd[i_]]:=i_;
elseif i_<0: NODE_.ned[EDGE_.fnd[i_]]:=i_;
fi
endfor
else:
info_ro "RO WARNING: no intersections detected.";
fi
endgroup
enddef;
% ---
def find_leftmost_edges =
% a simple method is used: a tiny circle is drawn in a node and its
% intersection points with all edges leaving the node are examined
begingroup
save ei_,ej_,i_,j_,k_,leftmost_; path ei_,ej_; numeric min_sec_.loc;
for i_:=-EDGE_.num upto EDGE_.num: if i_<>0:
if tracingleftmost>0:
message "@@@ " & decimal(i_) & "/" & decimal(EDGE_.pth[i_])
& " (" & decimal(EDGE_.fnd[i_]) & "," & decimal(EDGE_.lnd[i_]) & "):";
fi
numeric leftmost_.edg,leftmost_.tim,leftmost_.tmp;
min_sec_.loc:=min_sec_[EDGE_.pth[i_]];
for k_:=1 upto NODE_.nod[EDGE_.lnd[i_]]num:
forsuffixes $:=ped,ned:
j_:=NODE_$[NODE_.nod[EDGE_.lnd[i_]][k_]];
min_sec_.loc:=min(min_sec_.loc,min_sec_[EDGE_.pth[j_]]);
endfor
endfor
% BUG TRAP 1: (should not happen, see |find_minimal_secant|);
if min_sec_.loc<epsil.dist:
err_extra_info(i_,whatever); showvariable min_sec_; err_helpless;
errmessage "RO ERROR: Cannot continue searching for the leftmost edge";
fi
ei_:=enc.pth scaled (1/2[epsil.dist,min_sec_.loc])
shifted point infinity of the_edge(i_);
save tei_,tt_; (tei_,tt_)=ei_ intersectiontimes the_edge(i_);
for k_:=1 upto NODE_.nod[EDGE_.lnd[i_]]num:
forsuffixes $:=ped,ned:
j_:=NODE_$[NODE_.nod[EDGE_.lnd[i_]][k_]];
ej_:=enc.pth scaled (1/2[epsil.dist,min_sec_.loc])
shifted point 0 of the_edge(j_);
if tracingleftmost>0:
message " " & decimal(j_) & "/" & decimal(EDGE_.pth[j_])
& " (" & decimal(EDGE_.fnd[j_]) & "," & decimal(EDGE_.lnd[j_]) & "):";
fi
save tej_,tt_; (tej_,tt_)=ej_ intersectiontimes the_edge(j_);
% BUG TRAP 2:
if (tei_<0) or (tej_<0):
err_extra_info(i_,j_); showvariable min_sec_;
message "Times: " & decimal(tei_) & " " & decimal(tej_);
err_helpless;
errmessage "RO ERROR: Unsuccesful search for the leftmost edge";
fi
% it happens that |i_=j_| if |multi_path_case=false|
leftmost_.tmp:=if (i_=-j_): 0 else: (tej_-tei_) mod enc.len fi;
if tracingleftmost>0:
message " " & decimal(leftmost_.tmp) & " " & dec_pair((tei_,tej_));
fi
if if unknown leftmost_.tim: true else: leftmost_.tmp>leftmost_.tim fi:
leftmost_.edg:=j_; leftmost_.tim:=leftmost_.tmp;
fi
endfor
endfor
EDGE_.out[i_]:=leftmost_.edg;
if tracingleftmost>0: j_:=EDGE_.out[i_];
message ">>> " & decimal(j_) & "/" & decimal(EDGE_.pth[j_])
& " (" & decimal(EDGE_.fnd[j_]) & "," & decimal(EDGE_.lnd[j_]) & "):";
fi
fi endfor
endgroup
enddef;
% ---
def build_area_structure =
begingroup
save i_,j_,v_;
AREA_.num:=0;
for i_:=1 upto EDGE_.num: % \MF's linear equation solver employed
EDGE_.col[i_]-PATH_.wei[EDGE_.pth[i_]]=EDGE_.col[-i_];
endfor
% split to areas (edges surrounding the same area are assigned the same colour):
for i_:=-EDGE_.num upto EDGE_.num:
if (i_<>0) and (unknown EDGE_.are[i_]):
AREA_[incr AREA_.num]:=i_;
save v_; j_:=i_; v_[j_]:=0; EDGE_.are[j_]:=AREA_.num;
forever: j_:=EDGE_.out[j_]; exitif (j_=i_) or (known v_.emerg);
% BUG TRAP 1:
if j_=-i_:
err_extra_info(i_,whatever); show_area(i_); err_helpless;
errmessage "RO ERROR: strange area";
fi
% BUG TRAP 2:
if known v_[j_]:
err_extra_info(i_,j_); show_area(i_); err_helpless;
errmessage "RO ERROR: Edge " & decimal(j_) & " revisited";
v_.emerg:=0;
fi
v_[j_]:=0; EDGE_.are[j_]:=AREA_.num;
if known (EDGE_.col[i_]-EDGE_.col[j_]):
% BUG TRAP 3:
if (EDGE_.col[i_]-EDGE_.col[j_])<>0:
err_extra_info(i_,j_); show_area(i_); err_helpless;
errmessage "RO ERROR: Edges " & decimal(i_) & " and " & decimal(j_)
& " have inconsistent colors";
fi
else: EDGE_.col[i_]=EDGE_.col[j_]; fi
endfor
fi
endfor
endgroup
enddef;
% ---
def build_spot_structure =
begingroup
save i_,j_;
% areas having a common edge belong to the same spot (\MF's linear
% equation solver employed):
for i_:=1 upto EDGE_.num: if (i_<>0):
if unknown (AREA_.spt[EDGE_.are[i_]]-AREA_.spt[EDGE_.are[-i_]]):
AREA_.spt[EDGE_.are[i_]]=AREA_.spt[EDGE_.are[-i_]];
fi
fi endfor
% count different spots:
SPOT_.num:=0;
for i_:=1 upto AREA_.num:
if unknown AREA_.spt[i_]: AREA_.spt[i_]=incr SPOT_.num; fi
endfor;
% sort areas wrt spot numbers:
quicksort AREA_(1,AREA_.num)(spt)();
% define |SPOT_[s]|, |s=1|, |2|, ..., |SPOT_.num|, such that
% |AREA_[SPOT_[s-1]+1]| thru |AREA_[SPOT_[s]]| are areas having the
% same spot number |s|:
SPOT_0=0; for i_:=1 upto AREA_.num: SPOT_[AREA_.spt[i_]]:=i_; endfor
% identify paths for which |check_turn=-1| (such areas are boundaries and
% should be unique for each spot):
i_:=0;
for j_:=1 upto AREA_.num:
if check_turn(make_area(AREA_[j_]))<=0:
i_:=i_+1;
EDGE_.bar[i_]:=j_; EDGE_.bed[i_]:=AREA_[j_];
EDGE_.bpa[i_]:=make_area(AREA_[j_]);
fi
endfor
% BUG TRAP 4:
if i_<>SPOT_.num:
message "Number of spots=" & decimal(SPOT_.num) &
", number of boundaries=" & decimal(i_);
err_helpless;
errmessage "RO ERROR: Inconsistent number of spots and boundaries";
fi
endgroup
enddef;
% ---
def update_tree_levels(expr n) =
% update levels above the inserted leaf (|n|):
begingroup
save i_,j_;
i_:=TREE_.emb[n]; j_:=TREE_.lev[n];
forever:
exitif i_=0;
j_:=TREE_.lev[i_]:=max(j_+1,TREE_.lev[i_]); i_:=TREE_.emb[i_];
endfor
endgroup
enddef;
% ---
vardef embedding_pair(expr p,n) =
% returns a pair of numbers, |(out_,in_)|, such that |out_| is either a tree
% address of an area surrounded |p| or zero if not found, and |in_| is a
% tree address of an area surrounding |p| or zero if not found; one branch
% is searched, starting from a zero level leaf, |n|.
save in_,out_,q_; path q_; in_:=out_:=0; n_:=n;
forever:
q_:=if TREE_.pth[n_]<0: LONE_[-TREE_.pth[n_]]
else: make_area(AREA_[TREE_.pth[n_]]) fi;
check_embedding(p_,q_,r_);
if r_=1: % |p_| $\subset$ |q_|
if in_=0: in_:=n_; fi % ``minimal'' surrounding path is to be found
elseif r_=2: % |q_| $\subset$ |p_|
out_:=n_; % ``maximal'' surrounded path is to be found
fi
exitif TREE_.emb[n_]=0;
n_:=TREE_.emb[n_];
endfor
(out_,in_)
enddef;
% ---
def add_to_queue (expr p,q) =
% updates a queue, i.e., adds to a queue an area belonging to the spot
% of a boundary area, i.e., |AREA_[q]|, surrounding a path described by
% a tree address |p|.
begingroup
save p_,r_,s_,found_; path p_; boolean found_;
% |AREA_[q]| is a boundary, i.e., it is negatively oriented,
p_:=if TREE_.pth[p]<0: LONE_[-TREE_.pth[p]]
else: make_area(AREA_[TREE_.pth[p]]) fi;
% there must be a unique positively oriented area containing |p_|, belonging
% to the ``spot'' of the boundary |AREA_[q]|.
found_:=false; s_:=SPOT_[AREA_.spt[q]-1];
% |s_| is the last area from a previous spot, |s_+1| will be the first
% area of the current spot
forever: s_:=s_+1;
if s_<>q:
check_embedding(make_area(AREA_[s_]),p_,r_);
found_:=(r_=2); % |r_=2| implies |p_| $\subset$ |make_area(AREA_[s_])|
fi
if found_:
if unknown LVQ_.inq[s_]: LVQ_[incr LVQ_.num]:=s_; LVQ_.inq[s_]:=1; fi
elseif s_=SPOT_[AREA_.spt[q]]:
% the list of candidates has been exhausted without a success, hence
% BUG TRAP:
err_helpless;
errmessage "RO ERROR: cannot build embedding tree (boundary " &
decimal(q) & ")";
found_:=true;
fi
exitif found_;
endfor;
endgroup
enddef;
% ---
def add_to_tree (expr leaf) =
begingroup
save boundary_,found_,N_,p_; path p_;
TREE_.num:=TREE_.num+1;
N_:=TREE_.num; % abbreviation
TREE_.pth[N_]:=leaf; TREE_.emb[N_]:=0; TREE_.lev[N_]:=0;
p_:=if leaf<0: LONE_[-leaf] else: make_area(AREA_[leaf]) fi;
if (leaf>0) and (check_turn(p_)<0): boundary_:=1; fi
if N_>1:
for l_:=1 upto LVZ_.num: % climbing up from level zero
save out_,in_; (out_,in_)=embedding_pair(p_,LVZ_[l_]);
if (out_<>0) or (in_<>0): % a feasible branch found
if (out_=0) and (in_<>0): % to be added at the bottom, certain
TREE_.emb[N_]:=in_;
if in_=LVZ_[l_]: LVZ_[l_]:=N_; % replace bottom leaf
else: LVZ_[incr LVZ_.num]:=N_; fi % add new bottom leaf
elseif (out_<>0) and (in_=0): % to be added at the top, optional
if TREE_.emb[out_]<>N_: % we weren't here, add
% invariant: |TREE_.emb[out_]=0|
TREE_.emb[out_]:=N_;
TREE_.lev[N_]:=max(TREE_.lev[N_],TREE_.lev[out_]+1);
if known boundary_: add_to_queue(out_,leaf); fi
fi
else: % to be added in the midst, optional
if TREE_.emb[out_]<>N_: % we weren't here, add
% invariant: |TREE_.emb[out_]=in_|
TREE_.emb[out_]:=N_; TREE_.emb[N_]:=in_;
TREE_.lev[N_]:=max(TREE_.lev[N_],TREE_.lev[out_]+1);
if known boundary_: add_to_queue(out_,leaf); fi
fi
fi
found_:=1; update_tree_levels(N_);
fi
endfor;
fi
if unknown found_: LVZ_[incr LVZ_.num]:=N_; fi % a ``separate'' leaf appeared
endgroup
enddef;
% ---
def build_embedding_tree =
begingroup
save LVZ_,QUE_;
% |LVZ_1|, |LVZ_2|, ..., |LVZ_[LVZ_.num]| is the list of zero-level leaves,
% (a temporary data structure, used during building a tree), |LVQ_1|, |LVQ_2|,
% ..., |LVQ_[LVQ_.num]| is the list of leaves waiting in a queue (also
% a temporary data structure); if |LVQ_.inq[i]| is known, |i=1|, |2|, ...,
% |AREA_.num|, area |i| is already in a queue.
TREE_.num:=0; LONE_.num:=0; LVZ_.num:=0; LVQ_.num:=0;
% identify lone paths:
for i_:=1 upto PATH_.num:
if true for j_:=0 upto TIME_[i_]num: and (unknown TIME_[i_]ntp[j_]) endfor:
LONE_[incr LONE_.num]:=PATH_[i_]; LONE_.wei[LONE_.num]:=PATH_.wei[i_];
fi
endfor
% build the tree:
for i_:=1 upto LONE_.num: add_to_tree(-i_); endfor
for i_:=1 upto SPOT_.num: add_to_tree(EDGE_.bar[i_]); endfor
for i_:=1 upto LVQ_.num: add_to_tree(LVQ_[i_]); endfor
endgroup
enddef;
% ---
def color_paths = % \MF's linear equation solver heavily exploited
begingroup
save i_,j_;
for i_:=1 upto TREE_.num:
if TREE_.emb[i_]=0: % outer path
if TREE_.pth[i_]<0: LONE_.col[-TREE_.pth[i_]]=background_color;
else: EDGE_.col[AREA_[TREE_.pth[i_]]]=background_color; fi
else: % inner path, inherits color from the surrounding path
j_:=TREE_.emb[i_];
if TREE_.pth[i_]<0:
if TREE_.pth[j_]<0:
LONE_.col[-TREE_.pth[i_]]=LONE_.col[-TREE_.pth[j_]]
+LONE_.wei[-TREE_.pth[j_]]*check_turn(LONE_[-TREE_.pth[j_]]);
else:
LONE_.col[-TREE_.pth[i_]]=EDGE_.col[AREA_[TREE_.pth[j_]]];
fi
else:
if TREE_.pth[j_]<0:
EDGE_.col[AREA_[TREE_.pth[i_]]]=LONE_.col[-TREE_.pth[j_]]
+LONE_.wei[-TREE_.pth[j_]]*check_turn(LONE_[-TREE_.pth[j_]]);
else:
if AREA_.spt[TREE_.pth[i_]]<>AREA_.spt[TREE_.pth[j_]]:
EDGE_.col[AREA_[TREE_.pth[i_]]]=EDGE_.col[AREA_[TREE_.pth[j_]]];
fi
fi
fi
fi
endfor;
endgroup
enddef;
% ---
def recombine_edges(suffix R) =
% this routine can be used several times (after completing the process
% of finding the structure of paths after intersecting) with various
% definitions of |good_color| function in order to select various
% sets of areas
if not path R0: numeric R.num; path R[\\]; fi
if (unknown R.num) or (unknown append_results): R.num:=0; fi
% |R|: resulting data structure, namely, |R.num| is the number of output
% paths, |R1|, |R2|, ..., |R[R.num]| are the resulting paths
begingroup
save i_,j_,out_,in_;
for i_:=1 upto LONE_.num:
out_:=LONE_.col[i_]; in_:=out_+LONE_.wei[i_]*check_turn(LONE_[i_]);
if good_colors(in_,out_) or good_colors(out_,in_):
R[incr R.num]:=LONE_[i_];
R[R.num]:=if good_colors(in_,out_): pos_turn else: neg_turn fi \\ R[R.num];
fi
endfor
for i_:=-EDGE_.num upto EDGE_.num: if i_<>0:
EDGE_.aux[i_]:=whatever;
fi endfor
for i_:=-EDGE_.num upto EDGE_.num: if i_<>0:
% BUG TRAP 1:
if unknown EDGE_.col[i_]:
err_extra_info(i_,whatever); err_helpless;
errmessage "RO ERROR: Edge " & decimal(j_) & " not colored";
fi
if good_colors(EDGE_.col[i_],EDGE_.col[-i_]) and (unknown EDGE_.aux[i_]):
save v_;
R.num:=R.num+1; j_:=i_; v_[j_]:=0;
EDGE_.aux[j_]:=0; R[R.num]:=the_edge(j_);
forever: j_:=EDGE_.out[j_]; exitif (j_=i_) or (known v_.emerg);
% BUG TRAP 2:
if known v_[j_]:
err_extra_info(i_,j_); err_helpless;
errmessage "RO ERROR: Edge " & decimal(j_) & " revisited";
v_.emerg:=0;
fi
v_[j_]:=0;
if good_colors(EDGE_.col[j_],EDGE_.col[-j_]):
EDGE_.aux[j_]:=0; R[R.num]:=R[R.num] && the_edge(j_);
else: j_:=-j_;
fi
endfor
R[R.num]:=clean_path(clean_path(make_cycle(R[R.num])));
fi
fi endfor
endgroup
enddef;
% ---
def remove_overlap (text P)(text W) suffix R =
begingroup interim autorounding:=0;
% |P|: list of paths to be processed (non-cyclic paths are ignored);
% |W|: list of weights given as pairs: (index, value)
% |R|: resulting data structure, i.e., |R.num| is the number of output paths,
% |R1|, |R2|, ..., |R[R.num]| are the resulting paths
info_ro "initialise_removing_overlaps"; initialise_removing_overlaps;
info_ro "prepare_input_data"; prepare_input_data(P)(W);
info_ro "intersect_all_paths"; intersect_all_paths;
info_ro "find_minimal_secant"; find_minimal_secant;
info_ro "build_node_structure"; build_node_structure;
info_ro "identify_close_nodes"; identify_close_nodes;
info_ro "build_edge_structure"; build_edge_structure;
info_ro "find_leftmost_edges"; find_leftmost_edges;
info_ro "build_area_structure"; build_area_structure;
info_ro "build_spot_structure"; build_spot_structure;
info_ro "build_embedding_tree"; build_embedding_tree;
info_ro "color_paths"; color_paths;
info_ro "recombine_edges"; recombine_edges(R);
endgroup
enddef;
% ---
% E-S MACROS:
% ---
vardef make_join@#(expr pa,pb)=
save kind_; string kind_; kind_:=str @#; if kind_="": kind_:="0" fi;
if (kind_<>"0") and (kind_<>"1"):
errhelp "Will use default.";
errmessage "ES ERROR: don't know how to join";
kind_:="0";
fi
if distance(point length(pa) of pa,point 0 of pb)<epsil.dist:
if (point length(pa) of pa)<>(point 0 of pb):
info_es "Points " & dec_pair(point length(pa) of pa) &
" and " & dec_pair(point 0 of pb) & " joined";
if (tracingexpanding>0) and (proofing>0):
makelabel.lft.nodot("joined",point length(pa) of pa);
fi
fi
pa && pb
elseif kind_="0":
if miter_size<=0: % a special case, isn't it?
pa--pb
else:
save ta_,tb_,za_,da_,zb_,db_,zc_,zd_,ze_,zf_;
pair za_,da_,zb_,db_,zc_,zd_,ze_,zf_;
za_=point length(pa) of pa;
da_=direction length(pa) of pa;
zb_=point 0 of pb;
db_=direction 0 of pb;
zc_=whatever[za_,za_+da_]=whatever[ze_,ze_+(zb_-za_)];
zd_=whatever[zb_,zb_+db_]=whatever[ze_,ze_+(zb_-za_)];
ze_=.5[za_,zb_]+miter_size*(unitvector(da_-db_));
% we used to check |turningnumber(za_--zc_--zd_--zb_--cycle)|, but it was
% not sufficiently robust
(ta_,tb_)=(za_--zc_) intersectiontimes (zd_--zb_);
if ta_<0: % |miter_size| in force:
pa
if distance(point length(pa) of pa,zc_)>=epsil.dist: --zc_ fi
if (distance(zc_,zd_)>=epsil.dist)
and (distance(point 0 of pb,zd_)>=epsil.dist): --zd_ fi
--pb
else:
zf_:=point ta_ of (za_--zc_);
if abs(zf_-.5[za_,zb_])>abs(ze_-.5[za_,zb_]): % |miter_size| in force:
pa
if distance(point length(pa) of pa,zc_)>=epsil.dist: --zc_ fi
if (distance(zc_,zd_)>=epsil.dist)
and (distance(point 0 of pb,zd_)>=epsil.dist): --zd_ fi
--pb
else:
pa
if (distance(point length(pa) of pa,zf_)>=epsil.dist)
and (distance(point 0 of pb,zf_)>=epsil.dist): --zf_ fi
--pb
fi
fi
fi
elseif kind_="1":
pa{direction length(pa) of pa}..{direction 0 of pb}pb
fi
enddef;
% ---
vardef make_cyclic_join@#(expr p)=
save kind_; string kind_; kind_:=str @#; if kind_="": kind_:="0" fi;
if (kind_<>"0") and (kind_<>"1"):
errhelp "Will use default.";
errmessage "ES ERROR: don't know how to join";
kind_:="0";
fi
if distance(point length(p) of p,point 0 of p)<epsil.dist:
if (point length(p) of p)<>(point 0 of p):
info_es "Points " & dec_pair(point length(p) of p) &
" and " & dec_pair(point 0 of p) & " joined (cycle)";
if (tracingexpanding>0) and (proofing>0):
makelabel.lft.nodot("joined (cycle)",point length(p) of p);
fi
fi
make_cycle(p)
elseif kind_="0":
if miter_size<=0: % a special case, isn't it?
p--cycle
else:
save ta_,tb_,za_,da_,zb_,db_,zc_,zd_,ze_,zf_; pair za_,da_,zb_,db_,zc_,zd_,ze_,zf_;
za_=point length(p) of p; da_=direction length(p) of p;
zb_=point 0 of p; db_=direction 0 of p;
zc_=whatever[za_,za_+da_]=whatever[ze_,ze_+(zb_-za_)];
zd_=whatever[zb_,zb_+db_]=whatever[ze_,ze_+(zb_-za_)];
ze_=.5[za_,zb_]+miter_size*(unitvector(da_-db_));
% we used to check |turningnumber(za_--zc_--zd_--zb_--cycle)|, but it was
% not sufficiently robust
(ta_,tb_)=(za_--zc_) intersectiontimes (zd_--zb_);
if ta_<0: % |miter_size| in force:
p
if distance(point length(p) of p,zc_)>=epsil.dist: --zc_ fi
if (distance(zc_,zd_)>=epsil.dist)
and (length((point 0 of p)-zd_)>=epsil.dist): --zd_ fi
--cycle
else:
zf_:=point ta_ of (za_--zc_);
if abs(zf_-.5[za_,zb_])>abs(ze_-.5[za_,zb_]): % |miter_size| in force:
p
if distance(point length(p) of p,zc_)>=epsil.dist: --zc_ fi
if (distance(zc_,zd_)>=epsil.dist)
and (distance(point 0 of p,zd_)>=epsil.dist): --zd_ fi
--cycle
else:
p
if (distance(point length(p) of p,zf_)>=epsil.dist)
and (distance(point 0 of p,zf_)>=epsil.dist): --zf_ fi
--cycle
fi
fi
fi
elseif kind_="1":
p{direction length(p) of p}..{direction 0 of p}cycle
fi
enddef;
% ---
vardef make_end@#(expr pr,pl) =
save kind_; string kind_; kind_:=str @#; if kind_="": kind_:="0" fi;
if (kind_<>"0") and (kind_<>"1"):
errhelp "Will use default.";
errmessage "ES ERROR: don't know how to end";
kind_:="0";
fi
if kind_="0": pr--pl--cycle
elseif kind_="1":
save za_,zb_; pair za_,zb_;
za_=1/2[point length(pr) of pr,point 0 of pl]
+(1/2((point length(pr) of pr)-(point 0 of pl)) rotated 90);
zb_=1/2[point length(pl) of pl,point length 0 of pr]
+(1/2((point length(pl) of pl)-(point 0 of pr)) rotated 90);
pr{direction length(pr) of pr}..za_..{direction 0 of pl}pl
{direction length(pl) of pl}..zb_..{direction 0 of pr}cycle
fi
enddef;
% ---
vardef opt_tensions(expr p,b) =
% for a given B\'ezier segment |p| and a distance |b|, an optimal pair of
% `tensions' $(\alpha,\beta)$ is found using least square method such that
% |bez_edge|$(p,b,\alpha,\beta)$ (see below) approximates the edge of
% a circular pen of diameter |b| traversing |p| (more on the employed
% method be found in the article of B. Jackowski and M. Ry\'cko:
% ``Labyrinth of \MF paths in outline,'' proceedings of the 8th European
% \TeX Conference, Sept. 26--30, 1994, Gda\'nsk, Poland)
%
save alpha_,beta_,gx_,gy_,n_,t_,ta_,tb_,tc_,td_,u_,v_,nu_,nv_,x_,y_;
numeric alpha_,beta_,n_,ta_,tb_,tc_,td_,
gx_[\\],gy_[\\],gx_.alpha[\\],gy_.alpha[\\],gx_.beta[\\],gy_.beta[\\],
u_.x,u_.y,v_.x,v_.y,nu_.x,nu_.y,nv_.x,nv_.y,
x_[\\],y_[\\];
n_:=5; % perhaps for |n_|$=\infty$ algebraic formulas can be derived, but...
(u_.x,u_.y)=(postcontrol 0 of p)-(point 0 of p);
(v_.x,v_.y)=(precontrol 1 of p)-(point 1 of p);
(nu_.x,nu_.y)=unitvector(u_.x,u_.y); (nv_.x,nv_.y)=unitvector(v_.x,v_.y);
for t_:=0 upto n_:
(x_[t_],y_[t_])=(point t_/n_ of p)+b*((udir t_/n_ of p) rotated -90);
endfor
for t_:=1 upto n_-1:
td_:=t_/n_; ta_:=1-td_; tb_:=3ta_*ta_*td_; tc_:=3ta_*td_*td_;
ta_:=ta_*ta_*ta_; td_:=td_*td_*td_;
gx_[t_]=ta_*x_0+tb_*(x_0+alpha_*u_.x)+tc_*(x_[n_]+beta_*v_.x)+td_*x_[n_];
gx_.alpha[t_]=tb_*nu_.x; gx_.beta[t_]=tc_*nv_.x;
gy_[t_]=ta_*y_0+tb_*(y_0+alpha_*u_.y)+tc_*(y_[n_]+beta_*v_.y)+td_*y_[n_];
gy_.alpha[t_]=tb_*nu_.y; gy_.beta[t_]=tc_*nv_.y;
endfor
0=0 for t_:=1 upto n_-1:
+((gx_[t_]-x_[t_])*gx_.alpha[t_]+(gy_[t_]-y_[t_])*gy_.alpha[t_])/n_
endfor;
0=0 for t_:=1 upto n_-1:
+((gx_[t_]-x_[t_])*gx_.beta[t_]+(gy_[t_]-y_[t_])*gy_.beta[t_])/n_
endfor;
%| (u_.x,u_.y)=(postcontrol 0 of p)-(point 0 of p);|
%| (v_.x,v_.y)=(precontrol 1 of p)-(point 1 of p);|
%| ta_:=1/4length((u_.x,u_.y))+1/4length((v_.x,v_.y))|
%| +1/4length((postcontrol 0 of p)-(precontrol 1 of p))|
%| +1/4length((point 0 of p)-(point 1 of p));|
%| message "accuracy=" & decimal|
%| (0+for t_:=1 upto n_-1:+(((gx_[t_]-x_[t_])++(gy_[t_]-y_[t_]))/ta_)/n_|
%| endfor);|
%| message " alpha=" & decimal(alpha_) & " beta=" & decimal(beta_);|
%| for t_:=0 upto n_: fill fullcircle scaled 3 shifted (x_[t_],y_[t_]); endfor|
%| for t_:=1 upto n_-1: makelabel("g" & decimal(t_),(gx_[t_],gy_[t_])); endfor|
(alpha_,beta_)
enddef;
% ---
vardef bez_edge(expr p,b,uv) =
save za_,zb_,u_,v_; pair za_,zb_; u_:=xpart(uv); v_:=ypart(uv);
za_=b*((udir 0 of p) rotated -90); zb_=b*((udir 1 of p) rotated -90);
((point 0 of p)+za_) .. controls (u_[point 0 of p,postcontrol 0 of p]+za_)
and (v_[point 1 of p,precontrol 1 of p]+zb_) .. ((point 1 of p)+zb_)
enddef;
% ---
def remove_global_loops(suffix E) =
begingroup
% warning: we don't trust too much in the results of ex. 14.17 from
% The \MF{}book, hence a ``par force'' approach; there still exist
% weird cases (e.g., local loops) which remain unsolved, but in practice
% the following algorithm should suffice:
save opt_,ta_,tb_; pair opt_;
opt_:=(0,length(E));
for i_:=0 upto length(E)-1:
for j_:=i_+2 upto length(E)-1:
numeric ta_,tb_;
(ta_,tb_)=(subpath (i_,i_+1) of E)
intersectiontimes (subpath (j_,j_+1) of E);
if (ta_>0) and ((ta_+i_)>xpart(opt_)) and ((tb_+j_)<ypart(opt_)):
opt_:=(ta_+i_,tb_+j_);
fi
endfor
endfor
if xpart(opt_)>0:
E:=make_cycle(subpath(xpart(opt_),ypart(opt_)) of E);
fi
endgroup
enddef;
% ---
vardef make_edge@#(expr p,b)=
save E_,e_,ta_,tb_,tc_,td_; path E_,e_[\\];
for i_:=0 upto length(p)-1:
E_:=subpath (i_,i_+1) of p; e_[i_]=bez_edge(E_,b,opt_tensions(E_,b));
endfor
E_:=e_0;
for i_:=1 upto length(p)-1:
if (length(p)=2) and (cycle p): % this is a peculiar case, indeed!
numeric ta_,tb_,tc_,td_;
(ta_,tb_)=E_ intersectiontimes e_[i_];
(1-tc_,1-td_)=reverse(E_) intersectiontimes reverse(e_[i_]);
if ta_>=0:
E_:=(subpath(min(ta_,tc_),max(ta_,tc_)) of E_)
&& (subpath(min(tb_,td_),max(tb_,td_)) of e_[i_]);
else: E_:=make_join@#(E_,e_[i_]);
fi
else:
numeric ta_,tb_;
(ta_,tb_)=(subpath(length(E_)-1,length(E_)) of E_)
intersectiontimes e_[i_];
if ta_>=0:
E_:=(subpath (0,length(E_)-1+ta_) of E_)
&& (subpath(tb_,1) of e_[i_]);
else: E_:=make_join@#(E_,e_[i_]); fi
fi
endfor
if cycle p:
remove_global_loops(E_);
if not (cycle E_): E_:=make_cyclic_join@#(E_); fi
fi
E_
enddef;
% ---
def expand_stroke(text P)(expr b) suffix R =
begingroup interim autorounding:=0;
numeric PATH_.num; path PATH_[\\];
PATH_.num:=0; for P_:=P: PATH_[incr PATH_.num]:=touch_path(P_); endfor
if not path R0: numeric R.num; path R[\\]; fi
if (unknown R.num) or (unknown append_results): R.num:=0; fi
if unknown join_kind: save join_kind; join_kind=0; fi
if unknown end_kind: save end_kind; end_kind=0; fi
for i_:=1 upto PATH_.num:
if not cycle PATH_[i_]:
R[incr R.num]:=make_end[end_kind]
(make_edge[join_kind](PATH_[i_],b),
reverse make_edge[join_kind](PATH_[i_],-b));
else:
R[incr R.num]:=make_edge[join_kind](PATH_[i_],b);
R[incr R.num]:=reverse make_edge[join_kind](PATH_[i_],-b);
fi
endfor
for i_:=1 upto R.num: R[i_]:=clean_path(clean_path(R[i_])); endfor
endgroup
enddef;
% ---
def change_weight(text P)(expr b) suffix R =
begingroup interim autorounding:=0;
numeric PATH_.num; path PATH_[\\];
PATH_.num:=0; for P_:=P: PATH_[incr PATH_.num]:=touch_path(P_); endfor
if not path R0: numeric R.num; path R[\\]; fi
if (unknown R.num) or (unknown append_results): R.num:=0; fi
if unknown join_kind: save join_kind; join_kind=0; fi
for i_:=1 upto PATH_.num:
% non-cyclic paths are ignored
if cycle PATH_[i_]: R[incr R.num]:=make_edge[join_kind](PATH_[i_],b); fi
endfor
endgroup
enddef;
% ---
def info_ro expr s = if tracingremoving>0: message s; message ""; fi enddef;
def info_es expr s = if tracingexpanding>0: message s; message ""; fi enddef;
% ---
% DEFAULTS:
% ---
def roex_default text t =
forsuffixes S_:=t:
if str S_ = "good_colors":
% the formula |good_colors(p,q) and good_colors(q,p)| must be |false|!
vardef good_colors(expr i,o) = ((i>=1) and (o<=0)) enddef;
elseif str S_ = "touch_path":
vardef touch_path(expr p) = p enddef;
elseif str S_ = "background_color": background_color:=0;
elseif str S_ = "miter_size":
miter_size:=10pixels_per_inch/72; % i.e., 10bp
% incidentally, |10bp| would convert to |10.00002| during export at |300dpi|
elseif str S_ = "epsil.ang": epsil.ang:=1/10; % in degrees
elseif str S_ = "epsil.dist": epsil.dist:=1/10pt; % ca |2/5|pxl at |300dpi|
elseif str S_ = "epsil.time": epsil.time:=1/100;
elseif str S_ = "epsil.len": epsil.len:=1/1000; % used in |turn_ang|
elseif str S_ = "max_idx": max_idx:=125;
elseif str S_ = "enc":
% |enc| is a prefix of a data structure used in checking tangent
% points and searching for the leftmost edge; |enc.pth| is in both
% cases scaled differently
vardef enc.pth = fullcircle enddef; enc.len:=length(enc.pth);
fi
endfor
enddef;
%
roex_default good_colors, touch_path, background_color, miter_size,
epsil.ang, epsil.dist, epsil.time, epsil.len, max_idx, enc;
% ---
numeric append_results; % initially unknown
newinternal tracingleftmost; tracingleftmost:=0;
newinternal tracingremoving; tracingremoving:=0;
newinternal tracingexpanding; tracingexpanding:=0;
% ---
endinput
%%\end
|