1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
|
%======================================================================
% This is
% chbase.mf
%
% Copyright (C) 1989-93 by Elmar Bartel.
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 1, or (at your option)
% any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
%
%======================================================================
% correcting the size of qs to make it a good pixelcount
if .5qs <> good.x .5qs:
qs:= qs if qs# * hppp > round(qs): - else: + fi 1;
fi
if proofing>0: input screengrid; fi;
% the center of the field
pair Center; Center = (qs/2,qs/2);
picture BlackMan, WhiteMan, NeutralMan, OuterShape;
% Some definitions for numbering the characters
% the position of the relevant character in the fonttable
% is calculated as sum of four offsets:
%
% PieceNumber + PieceColor + FieldColor + Turned
%
% This give the following table:
%
% WoW NoW BoW WoB NoB BoB
% Pawn 0 6 12 18 24 30
% Knight 1 7 13 19 25 31
% Bishop 2 8 14 20 26 32
% Rook 3 9 15 21 27 33
% Queen 4 10 16 22 28 34
% King 5 11 17 23 29 35
%
% Numbers of the pieces
Pawn = 0; Knight = 1; Bishop = 2; Rook = 3; Queen = 4; King = 5;
% Offsets for colors of the pieces
White = 0; Neutral = 6; Black = 12;
% Offsets for the background
OnWhite = 0; OnBlack = 18;
% Offsets for the turning
LeftTurned = 36; RightTurned = 72; UpSideDown = 108;
% Offsets for geometric figures
% These figures should be point symmetric
Circle = 145;
Triangle = 146
Square = 147;
geo1 = 148;
geo2 = 149;
geo3 = 150;
% Offsets for geometric figures which can only be turned left
% to get a realy other shape.
Equihopper = 180;
free1 = 181;
free2 = 182;
free3 = 183;
free4 = 184;
free5 = 185; % this is not possible, since the turned, black
% on black version is over 255: 185+36+18+12 = 256!!!!
% Makros for turning
def TurnLeft(expr p) =
p rotatedaround (Center,90);
enddef;
def TurnRight(expr p) =
p rotatedaround (Center,-90);
enddef;
def TurnUpSideDown(expr p) =
p rotatedaround (Center,180);
enddef;
%
% Macros for shorten and lengthening paths
%
% ShortenPath: The given path is shorted at both ends, with the
% real amount of pixels given
% ShortenBegin, ShortenEnd: The same as above for one end only
% LengthenPath: The path is elongated at both ends with a straight
% line, in the direction of the path at the end
% LengthenBegin, LengthenEnd: The same as above for one end only
%
def Perpend(expr d,p,real) =
begingroup
save dd; pair dd;
dd = d/length(d);
(p+100*(dd rotated 90) -- p+100*(dd rotated -90)) shifted (dd*real)
endgroup;
enddef;
def ShortenPath(expr p,real) =
begingroup
save pa,pe; path pa,pe;
pa = Perpend(direction 0 of p,point 0 of p,real);
pe = Perpend(-direction length(p) of p,point length(p) of p,real);
subpath (
xpart(p intersectiontimes pa),
xpart(p intersectiontimes pe)) of p
endgroup
enddef;
def ShortenBegin(expr p,real) =
begingroup
save pa; path pa;
pa = Perpend(direction 0 of p,point 0 of p,real);
subpath (xpart(p intersectiontimes pa),length(p)) of p
endgroup
enddef;
def ShortenEnd(expr p,real) =
begingroup
save pe; path pe;
pe = Perpend(-direction length(p) of p,point length(p) of p,real);
subpath (0, xpart(p intersectiontimes pe)) of p
endgroup
enddef;
def LengthenBegin(expr p,real) =
begingroup
save dd; pair dd;
dd= direction 0 of p; dd:= dd/length(dd);
point 0 of p - real*dd -- p
endgroup
enddef;
def LengthenEnd(expr p,real) =
begingroup
save dd; pair dd;
dd= direction length(p) of p; dd:= dd/length(dd);
p -- point length(p) of p + real*dd
endgroup
enddef;
def Lengthen(expr p,real) =
begingroup
save db; pair db;
save de; pair de;
db= direction 0 of p; db:= db/length(db);
de= direction length(p) of p; de:= de/length(de);
point 0 of p - real*db -- p -- point length(p) of p + real*de
endgroup
enddef;
%
% This macro is used by ParallelPath
%
def NewPoint(expr p,t,dist) =
{ begingroup pair Dir;
Dir= direction t of p; %show p; show t; show Dir;
Dir
endgroup }
(point t of p + (Dir rotated 90)*(dist/length(Dir)))
enddef;
def xyNewPoint(expr p,t,xdist,ydist) =
{ begingroup pair Dir;
Dir= direction t of p; %show p; show t; show Dir;
Dir
endgroup }
(point t of p + (cosd(angle(Dir)+90)*xdist, sind(angle(Dir)+90)*ydist))
enddef;
% Macro for getting a path parallel to the given path, in distance dist
%
def ParallelPath(expr p,dist) =
begingroup
save Dir; pair Dir; Dir = direction 0 of p;
((point 0 of p)+(Dir rotated 90)*(dist/length(Dir))) {Dir}
for t=.5 step .5 until length(p):
.. NewPoint(p,t,dist)
endfor
endgroup
enddef;
% Macro to get different distance in x and y direction
%
def xyParallelPath(expr p, xdist, ydist) =
begingroup
save Dir; pair Dir; Dir = direction 0 of p;
((point 0 of p)+(cosd(angle(Dir)+90)*xdist,sind(angle(Dir)+90)*ydist)) {Dir}
for t=.5 step .5 until length(p):
.. xyNewPoint(p,t,xdist,ydist)
endfor
endgroup
enddef;
def DefineFootBows(
% This macro depends on the values of qs and BottomSpace
% and uses the makro ParallelPath.
% It is used to generate the bottom bows of King, Queen and Bishop
expr BottomDist, %This is the space to BottomSpace
BowOneWidth, %This is the width of the main bow
FootHeight, %Distance from bottom of Bow0 to top of Bow3
BowTwoLoc, %Relative location of Bow2 between Bow3 and
% Bow1. 0 means position at position at Bow1,
% 1.0 means position at Bow3.
WidthToHeight, %Ratio of BowOneWidth/2 to Bowheight
BowTwoLen, %Length of Bow2 relative to Bow1
BowThreeLen %Lenght of Bow3 relative to Bow1
) =
% All parameters are in pixels when not otherwise statet.
% Points are numbered from 0 to 3 from lower to upper
% Points to the left have suffix l, right suffix r
% points without further suffix are in the center of the bows
path Bow[];
numeric BowHeight;
numeric tl,tr,l[],x[]l,x[]r,x[],y[]l,y[]r,y[];
BowHeight = BowOneWidth*WidthToHeight/2;
% We start with the first bow
rt x1r + lft x1l = qs; x1r - x1l = BowOneWidth;
y1 = BottomSpace + 2*BowHeight + BottomDist;
x1 = .5qs;
y1l = y1r = y1 - BowHeight;
Bow1 = z1l .. {right} z1 .. z1r;
z0 = z1 shifted (down*2*BowHeight);
Bow0 = z1r .. {left} z0 .. z1l;
Bow3= ParallelPath(Bow1,FootHeight-2*BowHeight);
l3 = length(Bow3);
cu:= (1-BowThreeLen)/2;
Bow3:= subpath (cu*l3,(1-cu)*l3) of Bow3;
z3l = point 0 of Bow3;
z3 = point .5*length(Bow3) of Bow3;
z3r = point infinity of Bow3;
%show point 0 of reverse Bow3;
%show z3r;
Bow2= ParallelPath(Bow1,(FootHeight-2*BowHeight)*BowTwoLoc);
l2 = length(Bow2);
cu:= (1-BowTwoLen)/2;
Bow2:= subpath (cu*l2,(1-cu)*l2) of Bow2;
z2l = point 0 of Bow2;
z2 = point .5length(Bow3) of Bow2;
z2r = point infinity of Bow2;
labels(1l,1,1r,2l,2r,3l,3r);
enddef;
%
% Macro for generation the neutral piece from two pictures
% given as Parameter
def MakeNeutral(expr White,Black) =
if unknown LeftHalft: picture LeftHalf; fi
LeftHalf:= Black;
cull LeftHalf keeping (1,infinity);
addto LeftHalf contour (unitsquare yscaled qs xscaled (qs/2));
cull LeftHalf keeping (2,2);
if unknown RightHalf: picture RightHalf; fi
RightHalf:= White;
cull RightHalf keeping (1,infinity);
addto RightHalf contour (unitsquare yscaled qs xscaled (qs/2) shifted (qs/2,0));
cull RightHalf keeping (2,2);
NeutralMan:= LeftHalf;
addto NeutralMan also RightHalf;
enddef;
%
% Makro to get a grid of real output pixels when proofing
def PixelGrid(expr PixPerInch, w) =
if proofing > 0:
begingroup
numeric d;
d = pixels_per_inch/PixPerInch;
makegrid(0,for i=d step d until w: ,i endfor)(0,for i=d step d until w: ,i endfor)
endgroup;
fi;
enddef;
|