summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/dvips/pst-func/pst-func.pro
blob: 56b43d8c605af13db96bd54643e16261ec2e7b60 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
%%
%% This is file `pst-func.pro',
%%
%% IMPORTANT NOTICE:
%%
%% Package `pst-func'
%%
%% Herbert Voss <voss _at_ pstricks.de>
%%
%% This program can be redistributed and/or modified under the terms
%% of the LaTeX Project Public License Distributed from CTAN archives
%% in directory macros/latex/base/lppl.txt.
%%
%% DESCRIPTION:
%%   `pst-func' is a PSTricks package to plot special math functions
%%
%%
%% version 0.06 / 2006-04-16  Herbert Voss <voss _at_ pstricks.de>
%
/tx@FuncDict 100 dict def
tx@FuncDict begin
%
/eps1 1.0e-05 def
/eps2 1.0e-04 def
/eps8 1.0e-08 def
/Pi2 1.57079632679489661925640 def
/CEuler 0.5772156649 def % Euler-Mascheroni constant
%
/factorial { % n on stack, returns n! 
  dup 0 eq { 1 }{ 
    dup 1 gt { dup 1 sub factorial mul } if }
  ifelse } def 
%
/MoverN { % m n on stack, returns the binomial coefficient m over n
  /n exch def /m exch def
  n 0 eq { 1 }{
    m n eq { 1 }{
      m factorial n factorial m n sub factorial mul div } ifelse } ifelse 
} def
%
/Si { % integral sin from 0 to x (arg on stack)
  /arg exch def
  /Sum arg def
  /sign -1 def
  /index 3 def
  { 
    arg index exp index div index factorial div sign mul 
    dup abs eps8 lt { pop exit } if 
    Sum add /Sum exch def
    /sign sign neg def
    /index index 2 add def
  } loop
  Sum
} def
/si { % integral sin from x to infty -> si(x)=Si(x)-pi/2
  Si Pi2 sub
} def
/Ci { % integral cosin from x to infty (arg on stack)
  abs /arg exch def
  arg 0 eq { 0 } { 
    /argExp 1 def
    /fact 1 def
    /Sum CEuler arg ln add def
    /sign -1 def
    /index 2 def
    { 
      /argExp argExp arg arg mul mul def
      /fact fact index 1 sub index mul mul def
      argExp index div fact div sign mul 
      dup abs exch Sum add /Sum exch def
      eps8 lt { exit } if
      /sign sign neg def
      /index index 2 add def
    } loop
    Sum
  } ifelse
} def
/ci { % integral cosin from x to infty -> ci(x)=-Ci(x)+ln(x)+CEuler
  dup Ci neg exch abs ln add CEuler add
} def
%
/MaxIter 255 def
/func { coeff Derivation FuncValue } def
/func' { coeff Derivation 1 add FuncValue } def
/func'' { coeff Derivation 2 add FuncValue } def
%
/NewtonMehrfach {% the start value must be on top of the stack
  /Nx exch def 
  /Iter 0 def
  {
    /Iter Iter 1 add def
    Nx func /F exch def % f(Nx)
    F abs eps2 lt { exit } if
    Nx func' /FS exch def % f'(Nx) 
    FS 0 eq { /FS 1.0e-06 def } if
    Nx func'' /F2S exch def % f''(Nx)
    1.0 1.0 F F2S mul FS dup mul div sub div /J exch def
    J F mul FS div /Diff exch def 
    /Nx Nx Diff sub def
    Diff abs eps1 lt Iter MaxIter gt or { exit } if 
  } loop 
  Nx % the returned value ist the zero point
} def

/Steffensen {% the start value must be on top of the stack
  /y0 exch def % the start value
  /Iter 0 def
  {
    y0 func /F exch def
    F abs eps2 lt { exit } if
    y0 F sub /Phi exch def
    Phi func /F2 exch def
    F2 abs eps2 le { exit }{
      Phi y0 sub dup mul Phi F2 sub 2 Phi mul sub y0 add Div /Diff exch def
      y0 Diff sub /y0 exch def
      Diff abs eps1 le { exit } if
    } ifelse
    /Iter Iter 1 add def
    Iter MaxIter gt { exit } if
  } loop
  y0 % the returned value ist the zero point
} def 
%
/Horner {% x [coeff] must be on top of the stack
  aload length
  dup 2 add -1 roll
  exch 1 sub {
    dup 4 1 roll
    mul add exch
  } repeat
  pop % the y value is on top of the stack
} def
%
/FuncValue {% x [coeff] Derivation must be on top of the stack
  {
    aload 			% a0 a1 a2 ... a(n-1) [array]
    length                      % a0 a1 a2 ... a(n-1) n
    1 sub /grad exch def        % a0 a1 a2 ... a(n-1) 
    grad -1 1 {                 % for n=grad step -1 until 1
      /n exch def               % Laufvariable speichern
      n                         % a0 a1 a2 ... a(n-1) n
      mul                       % a0 a1 a2 ... a(n-1)*n 
      grad 1 add                % a0 a1 a2 ... a(n-1)*n grad+1 
      1 roll                    % an*na0 a1 a2 ... a(n-2)
    } for
    pop                         % loesche a0
    grad array astore           % [ a1 a2 ... a(n-2)]
  } repeat
  Horner
} def
%
/FindZeros { % dxN dxZ must be on top of the stack (x0..x1 the intervall)
  /dxZ exch def /dxN exch def
  /pstZeros [] def 
  x0 dxZ x1 { % suche Nullstellen
    /xWert exch def
    xWert NewtonMehrfach 
    %xWert Steffensen 
    /xNull exch def 
    pstZeros aload length /Laenge exch def % now test if value is a new one
    Laenge 0 eq 
      { xNull 1 }
      { /newZero true def
        Laenge {
	  xNull sub abs dxN lt { /newZero false def } if
        } repeat
	pstZeros aload pop
        newZero { xNull Laenge 1 add } { Laenge } ifelse } ifelse
    array astore /pstZeros exch def
  } for
} def
%
/Simpson { % on stack must be a b M 
% /SFunc must be defined 
  /M ED /b ED /a ED
  /h b a sub M 2 mul div def
  /s1 0 def
  /s2 0 def
  1 1 M {
    /k exch def
    /x k 2 mul 1 sub h mul a add def
    /s1 s1 x SFunc add def
  } for
  1 1 M 1 sub {
    /k exch def
    /x k 2 mul h mul a add def
    /s2 s2 x SFunc add def
  } for
  /I a SFunc b SFunc add s1 4 mul add s2 2 mul add 3 div h mul def
} def

%
% subroutines for complex numbers, given as an array [a b] 
% which is a+bi = Real+i Imag
%
/cxadd {		% [a1 b1] [a2 b2] = [a1+a2 b1+b2]
  dup 0 get		% [a1 b1] [a2 b2] a2
  3 -1 roll		% [a2 b2] a2 [a1 b1]
  dup 0 get		% [a2 b2] a2 [a1 b1] a1
  3 -1 roll		% [a2 b2] [a1 b1] a1 a2
  add			% [a2 b2] [a1 b1] a1+a2
  3 1 roll		% a1+a2 [a2 b2] [a1 b1]
  1 get			% a1+a2 [a2 b2] b1
  exch 1 get		% a1+a2 b1 b2
  add 2 array astore
} def
%
/cxneg {		% [a b]
  dup 1 get		% [a b] b
  exch 0 get		% b a
  neg exch neg		% -a -b
  2 array astore
} def
%
/cxsub { cxneg cxadd } def  % same as negative addition
%
% [a1 b1][a2 b2] = [a1a2-b1b2 a1b2+b1a2] = [a3 b3]
/cxmul {		% [a1 b1] [a2 b2]
  dup 0 get		% [a1 b1] [a2 b2] a2
  exch 1 get		% [a1 b1] a2 b2
  3 -1 roll		% a2 b2 [a1 b1]
  dup 0 get		% a2 b2 [a1 b1] a1
  exch 1 get		% a2 b2 a1 b1
  dup			% a2 b2 a1 b1 b1
  5 -1 roll dup		% b2 a1 b1 b1 a2 a2
  3 1 roll mul		% b2 a1 b1 a2 b1a2
  5 -2 roll dup		% b1 a2 b1a2 b2 a1 a1
  3 -1 roll dup		% b1 a2 b1a2 a1 a1 b2 b2
  3 1 roll mul		% b1 a2 b1a2 a1 b2 a1b2
  4 -1 roll add		% b1 a2 a1 b2 b3
  4 2 roll mul		% b1 b2 b3 a1a2
  4 2 roll mul sub	% b3 a3
  exch 2 array astore
} def
%
% [a b]^2 = [a^2-b^2 2ab] = [a2 b2]
/cxsqr {		% [a b]   square root
  dup 0 get exch 1 get	% a b
  dup dup mul		% a b b^2
  3 -1 roll		% b b^2 a
  dup dup mul 		% b b^2 a a^2
  3 -1 roll sub		% b a a2
  3 1 roll mul 2 mul	% a2 b2	
  2 array astore
} def
%
/cxsqrt {		% [a b]
%  dup cxnorm sqrt /r exch def
%  cxarg 2 div RadtoDeg dup cos r mul exch sin r mul cxmake2 
  cxlog 		% log[a b]
  2 cxrdiv 		% log[a b]/2
  aload pop exch	% b a
  2.781 exch exp	% b exp(a)
  exch cxconv exch	% [Re +iIm] exp(a)
  cxrmul		%
} def
%
/cxarg { 		% [a b] 
  aload pop 		% a b
  exch atan 		% arctan b/a
  DegtoRad 		% arg(z)=atan(b/a)
} def
%
% log[a b] = [a^2-b^2 2ab] = [a2 b2]
/cxlog {		% [a b]
  dup 			% [a b][a b]
  cxnorm 		% [a b] |z|
  log 			% [a b] log|z|
  exch 			% log|z|[a b]
  cxarg 		% log|z| Theta
  cxmake2 		% [log|z| Theta]
} def
%
% square of magnitude of complex number
/cxnorm2 {		% [a b]
  dup 0 get exch 1 get	% a b
  dup mul			% a b^2
  exch dup mul add	% a^2+b^2
} def
%
/cxnorm {		% [a b]
  cxnorm2 sqrt
} def
%
/cxconj {		% conjugent complex
  dup 0 get exch 1 get	% a b
  neg 2 array astore	% [a -b]
} def
%
/cxre { 0 get } def	% real value
/cxim { 1 get } def	% imag value
%
% 1/[a b] = ([a -b]/(a^2+b^2)
/cxrecip {		% [a b]
  dup cxnorm2 exch	% n2 [a b]
  dup 0 get exch 1 get	% n2 a b
  3 -1 roll		% a b n2
  dup			% a b n2 n2
  4 -1 roll exch div	% b n2 a/n2
  3 1 roll div		% a/n2 b/n2
  neg 2 array astore
} def
%
/cxmake1 { 0 2 array astore } def % make a complex number, real given
/cxmake2 { 2 array astore } def	  % dito, both given
%
/cxdiv { cxrecip cxmul } def
%
% multiplikation by a real number
/cxrmul {		% [a b] r
  exch aload pop	% r a b
  3 -1 roll dup		% a b r r
  3 1 roll mul		% a r b*r
  3 1 roll mul		% b*r a*r
  exch 2 array astore   % [a*r b*r]
} def
%
% division by a real number
/cxrdiv {		% [a b] r
  1 exch div		% [a b] 1/r
  cxrmul
} def
%
% exp(i theta) = cos(theta)+i sin(theta) polar<->cartesian
/cxconv {		% theta
  RadtoDeg dup sin exch cos cxmake2
} def
end