1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
|
<HTML>
<HEAD>
<!-- Created by texi2html 1.56k from texdraw.texi on 10 March 2004 -->
<TITLE>TeXdraw - B. TeXdraw Toolbox</TITLE>
</HEAD>
<BODY>
Go to the <A HREF="texdraw_1.html">first</A>, <A HREF="texdraw_6.html">previous</A>, <A HREF="texdraw_8.html">next</A>, <A HREF="texdraw_11.html">last</A> section, <A HREF="texdraw_toc.html">table of contents</A>.
<P><HR><P>
<H1><A NAME="SEC31" HREF="texdraw_toc.html#TOC31">B. TeXdraw Toolbox</A></H1>
<P>
This appendix describes some of the macros supplied with TeXdraw
which can be used to define additional commands for creating drawings.
The macros described here work in the user specified coordinate system.
Some of these toolbox macros are used by the TeXdraw commands
themselves, others are supplied in an auxiliary file
<TT>`txdtools.tex'</TT>.
<UL>
<LI><A HREF="texdraw_7.html#SEC32">Coordinate parsing</A>
<LI><A HREF="texdraw_7.html#SEC33">Real arithmetic</A>
<LI><A HREF="texdraw_7.html#SEC34">Arrow curve</A>
</UL>
<H2><A NAME="SEC32" HREF="texdraw_toc.html#TOC32">B.1 Coordinate parsing</A></H2>
<P>
The coordinate parsing macro <CODE>\getpos</CODE> is useful for creating new
commands. This macro takes care of stripping leading and trailing
blanks from coordinates specified between parentheses. In addition,
symbolic coordinates are translated to the corresponding relative
coordinate using the segment offset and scaling in effect.
<P>
The macro <CODE>\currentpos</CODE> returns the relative coordinates of the
current position. The returned values are relative to the current
segment and the current scaling. The macro <CODE>\cossin</CODE> returns the
real-valued cosine and sine of the direction of the line joining two
points. The macro <CODE>\vectlen</CODE> returns the length of a vector. The
results appear as the value of user supplied macro names.
<P>
<A NAME="IDX168"></A>
<A NAME="IDX169"></A>
<A NAME="IDX170"></A>
<A NAME="IDX171"></A>
<A NAME="IDX172"></A>
<A NAME="IDX173"></A>
<A NAME="IDX174"></A>
<DL COMPACT>
<DT><CODE>\getpos (<VAR>x</VAR> <VAR>y</VAR>)\<VAR>mx</VAR>\<VAR>my</VAR></CODE>
<DD>
<A NAME="IDX175"></A>
Decode coordinate values. The coordinates specified by <CODE>(<VAR>x</VAR>
<VAR>y</VAR>)</CODE> are decoded. Symbolic coordinates are translated to the
corresponding relative coordinate using the current segment offset and
scaling. The resulting character strings representing the real-valued
coordinates are assigned to the macros specified by <CODE>\<VAR>mx</VAR></CODE> and
<CODE>\<VAR>my</VAR></CODE>.
<A NAME="IDX176"></A>
<DT><CODE>\currentpos \<VAR>mx</VAR>\<VAR>my</VAR></CODE>
<DD>
Return the coordinates of the current position. The coordinates are
relative to the current segment offset and scaling. The resulting
character strings representing the real-valued coordinates are assigned
to the macros specified by <CODE>\<VAR>mx</VAR></CODE> and <CODE>\<VAR>my</VAR></CODE>.
<A NAME="IDX177"></A>
<DT><CODE>\cossin (<VAR>x1</VAR> <VAR>y1</VAR>)(<VAR>x2</VAR> <VAR>y2</VAR>)\<VAR>cosa</VAR>\<VAR>sina</VAR></CODE>
<DD>
Return the cosine and sine of the direction of a vector joining two
points. The cosine and sine of the angle of the vector which goes from
<CODE>(<VAR>x1</VAR> <VAR>y1</VAR>)</CODE> to <CODE>(<VAR>x2</VAR> <VAR>y2</VAR>)</CODE>. The character
strings representing these real-valued quantities are assigned to the
macros specified by <CODE>\<VAR>cosa</VAR></CODE> and <CODE>\<VAR>sina</VAR></CODE>.
<A NAME="IDX178"></A>
<DT><CODE>\vectlen (<VAR>x1</VAR> <VAR>y1</VAR>)(<VAR>x2</VAR> <VAR>y2</VAR>)\<VAR>len</VAR></CODE>
<DD>
Return the length of a vector joining two points. The length of the
vector is relative to the current scaling. The character string
representing the real-valued length is assigned to the macro specified
by <CODE>\<VAR>len</VAR></CODE>.
</DL>
<H2><A NAME="SEC33" HREF="texdraw_toc.html#TOC33">B.2 Real arithmetic</A></H2>
<P>
The TeXdraw toolbox supplies macros to perform real arithmetic on
coordinate values. The result appears as the value of a user supplied
macro name.
<DL COMPACT>
<DT><CODE>\realadd {<VAR>value1</VAR>} {<VAR>value2</VAR>} \<VAR>sum</VAR></CODE>
<DD>
<A NAME="IDX179"></A>
Add two real quantities, assigning the resultant character string
representing the sum to the macro <CODE>\<VAR>sum</VAR></CODE>.
<A NAME="IDX180"></A>
<DT><CODE>\realmult {<VAR>value1</VAR>} {<VAR>value2</VAR>} \<VAR>prod</VAR></CODE>
<DD>
Multiply two real quantities, assigning the resultant character string
representing the product to the macro <CODE>\<VAR>prod</VAR></CODE>.
<A NAME="IDX181"></A>
<DT><CODE>\realdiv {<VAR>value1</VAR>} {<VAR>value2</VAR>} \<VAR>result</VAR></CODE>
<DD>
Divide two real quantities, assigning the resultant character string
representing the result of <VAR>value1</VAR>/<VAR>value2</VAR> to the macro
<CODE>\<VAR>result</VAR></CODE>.
</DL>
<H2><A NAME="SEC34" HREF="texdraw_toc.html#TOC34">B.3 Arrow curve</A></H2>
<P>
<A NAME="IDX182"></A>
<P>
This example illustrates the use of the TeXdraw toolbox routines to
do computations with the coordinates. The problem will be tackled in
two parts. First, we will produce a macro to place an arrowhead on a
Bezier curve. Then given this macro, we will produce a macro which can
draw a "wiggly" line from the current position to a given coordinate.
<P>
The first macro, <CODE>\cavec</CODE>, uses the <CODE>\cossin</CODE> command to
determine the the cosine and sine of the angle of the line joining the
second control point to the end point of the Bezier curve. Recall that
the Bezier curve is tangent to this line at the end point. After
drawing the Bezier curve, the scaling is set locally to absolute units
of 0.05 inches. We go back down the line from the end point by 0.05
inches and draw an arrow vector to the end point from there. This arrow
vector is mostly arrowhead, with little or no tail.
<PRE>
\def\cavec (#1 #2)(#3 #4)(#5 #6){
\clvec (#1 #2)(#3 #4)(#5 #6)
\cossin (#3 #4)(#5 #6)\cosa\sina
\rmove (0 0)
\bsegment
\drawdim in \setsegscale 0.05
\move ({-\cosa} -\sina) \avec (0 0)
\esegment}
</PRE>
<P>
Note the use of macros as arguments to a <CODE>\move</CODE> command. Minus
signs are put in front of the macros. However, the value of the macro
<CODE>\cosa</CODE> or <CODE>\sina</CODE> could be negative. Fortunately, TeX
accepts two minus signs in a row and interprets the result as positive.
Note that the <CODE>\rmove (0 0)</CODE> command before the beginning of the
segment ensures that the Bezier curve is stroked before the arrowhead is
drawn.
<P>
The second macro <CODE>\caw</CODE> builds on <CODE>\cavec</CODE>. The goal is to
produce a wiggly vector that can be used as a pointer in a drawing.
Consider the following symmetrical normalized Bezier curve.
<PRE>
\centertexdraw{ \move (0 0) \cavec (1.4 0.1)(-0.4 -0.1)(1 0) }
</PRE>
<P>
This curve has the appropriate wiggle. Now we want to be able to draw
this curve, appropriately scaled and rotated. The macro <CODE>\caw</CODE>
needs to do computations on the coordinates. First, <CODE>\caw</CODE> uses
the macros <CODE>\getpos</CODE> and <CODE>\currentpos</CODE> to get the positions of
the end and start of the curve. Next, the length of the vector is
calculated using the macro <CODE>\vectlen</CODE>. A local macro
<CODE>\rotatecoord</CODE> is used to rotate a coordinate pair about the
origin, using the cosine and sine of the rotation angle. The vector
length is used to scale the normalized curve. The remaining code draws
the rotated, normalized curve.
<PRE>
\def\caw (#1 #2){
\currentpos \xa\ya
\cossin ({\xa} \ya)(#1 #2)\cosa\sina
% The nominal wiggly curve is (0 0) (1+dx dy) (-dx -dy) (1 0)
% Find the rotated offset (dx dy) -> (du dv)
\rotatecoord (0.4 0.1)\cosa\sina \du\dv
% calculate the length of the vector
\vectlen ({\xa} \ya)(#1 #2)\len
% draw the curve in normalized units
\bsegment
\setsegscale {\len}
\realadd \cosa \du \tmpa \realadd \sina \dv \tmpb
\cavec ({\tmpa} \tmpb)({-\du} -\dv)({\cosa} \sina)
\esegment
\move (#1 #2)}
% rotate a coordinate (x y)
% arguments: (x y) cosa sina x' y'
% x' = cosa * x - sina * y; y' = sina * x + cosa * y
\def\rotatecoord (#1 #2)#3#4#5#6{
\getpos (#1 #2)\xarg\yarg
\realmult \xarg {#3} \tmpa \realmult \yarg {#4} \tmpb
\realadd \tmpa {-\tmpb} #5
\realmult \xarg {#4} \tmpa \realmult \yarg {#3} \tmpb
\realadd \tmpa \tmpb #6}
</PRE>
<P>
Finally, the new macro can be used as follows.
<PRE>
\centertexdraw{
\arrowheadtype t:W
\move (0 0)
\cavec (1.4 0.1)(-0.4 -0.1)(1 0)
\move (1 0) \caw (1 1) \htext{tip at \tt (1 1)}
\move (1 0) \caw (2 1) \htext{tip at \tt (2 1)}
\move (1 0) \caw (2 0) \htext{tip at \tt (2 0)}
}
</PRE>
<P>
Note that the Bezier curve in the macro <CODE>\cavec</CODE> lies below the
arrowhead. The example then draws an arrowhead of type <CODE>W</CODE> to
erase the part of the line below the arrowhead.
<P><HR><P>
Go to the <A HREF="texdraw_1.html">first</A>, <A HREF="texdraw_6.html">previous</A>, <A HREF="texdraw_8.html">next</A>, <A HREF="texdraw_11.html">last</A> section, <A HREF="texdraw_toc.html">table of contents</A>.
</BODY>
</HTML>
|