1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
|
\documentclass[fleqn]{article}
\usepackage[T1]{fontenc}
\newcommand{\OMEGA}{$\Omega$}
\newcommand{\LAMBDA}{$\Lambda$}
\newcommand{\OTP}{\OMEGA TP}
\newcommand{\OCP}{\OMEGA CP}
\newcommand{\mymathtt}[1]{\mbox{\texttt{#1}}}
\newcommand{\mymathit}[1]{\mbox{\emph{#1}}}
\newcommand{\myit}[1]{\mbox{\emph{#1}}}
\newcommand{\OFM}{\OMEGA FM}
\newcommand{\TFM}{TFM}
\newcommand{\PL}{PL}
\newcommand{\VF}{VF}
\newcommand{\VP}{VP}
\newcommand{\OPL}{\OMEGA PL}
\newcommand{\OVF}{\OMEGA VF}
\newcommand{\OVP}{\OMEGA VP}
\newcommand{\bits}[1]{\langle\mbox{\emph{#1-bit number}}\rangle}
\newcommand{\showfile}{\langle\mbox{\emph{file}}\rangle}
\newcommand{\showmode}{\langle\mbox{\emph{mode}}\rangle}
\newcommand{\showdir}{\langle\mbox{\emph{direction}}\rangle}
\newcommand{\showcs}{\langle\mbox{\emph{control-sequence}}\rangle}
\newcommand{\showtext}{\langle\mbox{\emph{typeset-material}}\rangle}
\newcommand{\showpenalty}{\langle\mbox{\emph{penalty}}\rangle}
\newcommand{\showtno}{\langle\mbox{\emph{table-no}}\rangle}
\newcommand{\showeno}{\langle\mbox{\emph{entry-no}}\rangle}
\newcommand{\showtable}{\langle\mbox{\emph{table-definition}}\rangle}
\newcommand{\showrule}{\langle\mbox{\emph{rule-definition}}\rangle}
\newcommand{\showglue}{\langle\mbox{\emph{glue-definition}}\rangle}
\newcommand{\showivalue}{\langle\mbox{\emph{ivalue-definition}}\rangle}
\newcommand{\showfvalue}{\langle\mbox{\emph{fvalue-definition}}\rangle}
\newcommand{\showmvalue}{\langle\mbox{\emph{mvalue-definition}}\rangle}
\newcommand{\showpenaltydef}{\langle\mbox{\emph{penalty-definition}}\rangle}
\newcommand{\showinteger}{\langle\mbox{\emph{integer}}\rangle}
\newcommand{\showfixword}{\langle\mbox{\emph{real}}\rangle}
\newcommand{\showorder}{\langle\mbox{\emph{order}}\rangle}
\newcommand{\showkind}{\langle\mbox{\emph{kind}}\rangle}
\newcommand{\showchardefn}{\langle\mbox{\emph{character-definition}}\rangle}
\newcommand{\showligocp}{\langle\mbox{\emph{ocp-file-name}}\rangle}
\begin{document}
\title{Draft documentation for the \OMEGA\ system}
\author{John Plaice\thanks{School of Computer Science
and Engineering, University of New South Wales,
Sydney 2052, Australia. \texttt{plaice@cse.unsw.edu.au}}
\and Yannis Haralambous\thanks{Atelier Fluxus Virus,
187,~rue Nationale, F-59800 Lille, France.
\texttt{yannis@fluxus-virus.com}}}
\date{March 1999}
\maketitle
\section{Introduction}
The \OMEGA\ (Omega) typesetting system, an extension of Donald Knuth's \TeX,
is designed for the typesetting of all the world's languages. It
normally uses the Unicode character encoding standard
as internal representation, although it can
accept any other character set for input or output. Since it allows
one to dynamically define finite state automata to translate from
one encoding to another, it is possible to define complex contextual
analysis for ligature choice, character cluster building or diacritic
placement, as required for scripts such as Arabic, Devanagari,
Hebrew or Khmer. It also allows any number of transliterations,
allowing anyone to type texts for any script, using any other script.
\OMEGA\ currently supports multidirectional writing, therefore
allowing typesetting of Hebrew, Arabic, Chinese, Japanese, Mongolian
and many other scripts.
A Unicode-based font is also being designed for the alphabetic
scripts. This font is made up of four subfonts: (1)~Latin, Greek,
Cyrillic, Armenian, Georgian, punctuation; (2)~Hebrew, Arabic, Syriac;
(3)~Dingbats and non-letterlike symbols; (4)~Indic and South-East
Asian scripts. This font consists of all the glyphs required to
properly typeset each of the scripts, which means much more than
designing one glyph for each Unicode position.
This document is the draft documentation for the \OMEGA\ typesetting
system, designed and developed by the authors. This draft document
accompanies the 1.8~release of~\OMEGA, which is available~at:
\begin{verbatim}
ftp://ftp.cse.unsw.edu.au/users/plaice/Omega
\end{verbatim}
or at any of the CTAN sites.
This documentation should be considered cursory.
In particular, it only describes the drivers that
have been developed for typesetting and viewing,
and only presents the tools that are
based on \texttt{web2c}.
For more information, see our Web page, currently~at:
\begin{verbatim}
http://www.ens.fr/omega
\end{verbatim}
\section{Implementation}
The canonical \OMEGA\ implementation is based on the standard
\texttt{web2c} \TeX\ distribution. Currently, \OMEGA\ is based
on \texttt{web2c-7.3}. This means that the following standard
distributions automatically include~\OMEGA:
\begin{itemize}
\item
Thomas Esser's Te\TeX\ (Unix).\\
Look up \verb|http://www.tug.org/tetex/|\\
or \verb|mailto:te@informatik.uni-hannover.de|~.
\item
Fabrice Popineau's \TeX Win32 (Windows95/NT).\\
Look up \verb|ftp://ftp.ese-metz.fr/pub/TeX/win32|\\
or \verb|mailto:popineau@esemetz.ese-metz.fr|~.
\item
Sebastian Rahtz's \TeX Live (CD-ROM).\\
Look up \verb|http://www.tug.org/texlive.html|\\
or \verb|mailto:s.rahtz@elsevier.co.uk|~.
\end{itemize}
In addition, there are currently two other prepackaged
\TeX\ environments that support~\OMEGA:
\begin{itemize}
\item
Tom Kiffe's CMac\OMEGA\ (MacIntosh).\\
Look up \verb|http://www.kiffe.com/cmacomega.html|\\
or \verb|mailto:tom@kiffe.com|~.
\item
Christian Schenk's MiK\TeX\ (Windows95/NT).\\
Look up \verb|http://www.inx.de/~cschenk/miktex|\\
or \verb|mailto:cschenk@snafu.de|~.
\end{itemize}
The three files distributed with the \OMEGA\ implementation are
\begin{verbatim}
web2c-7.3-omega-1.8.tar.gz
omegalib-1.8.tar.gz
omegadoc-1.8.tar.gz
\end{verbatim}
To install \OMEGA, you will require the standard \TeX\ distribution
as well. These files include
\begin{verbatim}
web-7.3.tar.gz
web2c-7.3.tar.gz
\end{verbatim}
as well as a standard \texttt{texmf} tree.
In addition to these files, the following drivers are needed:
\begin{verbatim}
dvipsk.tar.gz
odvipsk.tar.gz
gsftopk.tar.gz
xdvik.tar.gz
oxdvik.tar.gz
libwww.tar.gz
\end{verbatim}
These files are all made available in the above \texttt{ftp} sites.
The installation procedure is described below. Assume that
\begin{itemize}
\item \verb|/usr/local/ftp| contains your downloaded files;
\item \verb|/usr/local/src| is where you place source files; and
\item \verb|/usr/local/share| is where the \texttt{texmf} tree is
to be placed;
\end{itemize}
\begin{verbatim}
FTP=/usr/local/ftp
SHARE=/usr/local/share
SRC=/usr/local/src
cd $SHARE
tar xzf $FTP/texmflib.tar.gz
tar xzf $FTP/omegalib-1.8.tar.gz
cd $SRC
tar xzf $FTP/web-7.3.tar.gz
tar xzf $FTP/web2c-7.3.tar.gz
tar xzf $FTP/web2c-7.3-omega-1.8.tar.gz
cd web2c-7.3
tar xzf $FTP/dvipsk.tar.gz
tar xzf $FTP/odvipsk.tar.gz
tar xzf $FTP/gsftopk.tar.gz
tar xzf $FTP/xdvik.tar.gz
tar xzf $FTP/oxdvik.tar.gz
tar xzf $FTP/libwww.tar.gz
configure
make
\end{verbatim}
You will have to choose whether your call to \texttt{configure}
needs any arguments. Note that the files may not look exactly
like this, but you should be able to figure out what is happening.
\section{What does \OMEGA\ offer?}
The \OMEGA\ system is a derivative of Donald Knuth's \TeX. As such,
all of the \TeX\ file types can be used by \OMEGA\ as well. In
addition there are six new file types. They are:
\vspace*{.2cm}
\begin{tabular}{lll}
Suffix & Replaces & Description\\
\hline
\texttt{.opl} & \texttt{.pl} & Font property list (text)\\
\texttt{.ofm} & \texttt{.tfm} & Font metric (binary)\\
\texttt{.ovp} & \texttt{.vpl} & Virtual property list (text)\\
\texttt{.ovf} & \texttt{.vf} & Virtual font (binary)\\
\texttt{.otp} & ------ & \OMEGA\ Translation Process (text)\\
\texttt{.ocp} & ------ & \OMEGA\ Compiled Process (binary)\\
\end{tabular}
\vspace*{.2cm}
\noindent These different file types are described in future sections.
\noindent
The \OMEGA\ distribution contains several binaries, described below:
\vspace*{.2cm}
\begin{tabular}{lll}
Binary & Replaces & Description\\
\hline
\texttt{omega} (\OMEGA) & \TeX & Typesetting engine
($\texttt{.tex} \rightarrow \texttt{.dvi}$) \\
\texttt{lambda} (\LAMBDA) & \LaTeX & For structured documents
($\texttt{.tex} \rightarrow \texttt{.dvi}$) \\
\texttt{odvips} & \texttt{dvips} & PostScript driver
($\texttt{.dvi} \rightarrow \texttt{.ps}$) \\
\texttt{oxdvi} & \texttt{xdvi} & Screen previewer for \texttt{.dvi}
($\texttt{.dvi} \rightarrow \textrm{screen}$) \\
\texttt{odvicopy} & \texttt{dvicopy} & De-virtualizes \texttt{.dvi}
($\texttt{.dvi} \rightarrow \texttt{.dvi}$) \\
\texttt{odvitype} & \texttt{dvitype} & Debugging for \texttt{.dvi}
($\texttt{.dvi} \rightarrow \textrm{text}$) \\
\texttt{opl2ofm} & \texttt{pltotf} & Build font metric
($\texttt{.opl} \rightarrow \texttt{.ofm}$) \\
\texttt{ofm2opl} & \texttt{tftopl} & Debugging for \texttt{.ofm}
($\texttt{.ofm} \rightarrow \texttt{.opl}$) \\
\texttt{ovp2ovf} & \texttt{vptovf} & Build virtual font
($\texttt{.ovp} \rightarrow \texttt{.ofm}\times\texttt{.ovf}$) \\
\texttt{ovf2ovp} & \texttt{vftovp} & Debugging for \texttt{.ovf}
($\texttt{.ofm}\times\texttt{.ovf} \rightarrow \texttt{.ovp}$) \\
\texttt{otp2ocp} & ------ & Compile \OTP{}
($\texttt{.otp} \rightarrow \texttt{.ocp}$) \\
\texttt{outocp} & ------ & Debugging for \texttt{.ocp}
($\texttt{.ocp} \rightarrow \textrm{text}$)\\
\texttt{mkofm} & \texttt{mktextfm} & Generate \texttt{.ofm} file if needed\\
\texttt{mkocp} & ------ & Generate \texttt{.ocp} file if needed\\
\end{tabular}
\section{Sixteen-bit fonts, registers, etc.}
One of the fundamental limitations of \TeX3 is that most quantities can
only range between 0~and~255. Fonts are limited to~256 characters each,
only 256 fonts are allowed simultaneously, only 256 of any given kind of
can be used simultaneously, etc. \OMEGA\ loosens these restrictions,
allowing 65~536 (0--65~535) of each of these entities.
\subsection{Characters}
Each font can allow up to 65~536 characters, ranging between
0~and~65~535. Unless other means are provided, using \OMEGA\
Translation Processes (see section~\ref{lab:otps}), the input
and output mechanisms for characters between 256 (hex~100)
and 65~535 (hex~ffff) use four circumflexes. For example,
\verb|^^^^cab0| means hex value \verb|cab0| and \verb|^^^^0020|
is the space character.
\subsection{Fonts}
Up to 65~536 fonts may be used. This is handled automatically,
and space is allocated as needed.
\subsection{Registers}
Up to 65~536 registers of each kind may be used. The only case to
be noted is that \verb|\box255| remains the box used by the output
routine.
\subsection{Math codes}
\TeX\ allows the use of 16 ($2^4$) font families, each font
of 256 ($2^8$) characters.
To access the characters in the math fonts, and to define how
they are to be used, there are several basic primitives:
\begin{itemize}
\item \verb|\mathcode| $\bits{8}=\bits{15}$:\\
Defines 15-bit math code for character;
\item \verb|\mathcode| $\bits{8}$:\\
Outputs 15-bit math code associated with character;
\item \verb|\mathchar| $\bits{15}$:\\
Generates a math character with 15-bit math code;
\item \verb|\mathaccent| $\bits{15}$:\\
Generates a math accent with 15-bit math code;
\item \verb|\mathchardef| $\showcs=\bits{15}$:\\
Defines a control sequence with a 15-bit math code;
\item \verb|\delcode| $\bits{8}=\bits{27}$:\\
Defines 27-bit delimiter code for character;
\item \verb|\delcode| $\bits{8}$:\\
Outputs 27-bit delimiter code associated with character;
\item \verb|\delimiter| $\bits{27}$:\\
Generates a math delimiter with 27-bit delimiter code;
\item \verb|\radical| $\bits{27}$:\\
Generates a math radical with 27-bit delimiter code;
\end{itemize}
where
\begin{itemize}
\item $\bits{8}$ refers to an 8-bit character;
\item $\bits{15}$ refers to value \texttt{0x8000} or a triple
\begin{itemize}
\item 3 bits for math category,
\item 4 bits for font family,
\item 8 bits for character in font,
\end{itemize}
called a \emph{math code};
\item $\bits{27}$ refers to a negative number or a quintuple
\begin{itemize}
\item 3 bits for math category,
\item 4 bits for first font family,
\item 8 bits for first character in font,
\item 4 bits for second font family,
\item 8 bits for second character in font,
\end{itemize}
called a \emph{delimiter code}.
\end{itemize}
\OMEGA, on the other hand, allows 256 ($2^8$)
font families, each font of 65~536 ($2^{16}$) characters.
So, in addition to the \TeX\ math font primitives, which continue to work,
there are 16-bit versions:
\begin{itemize}
\item \verb|\omathcode| $\bits{16}=\bits{27}$:\\
Defines 27-bit math code for character;
\item \verb|\omathcode| $\bits{16}$:\\
Outputs 27-bit math code associated with character;
\item \verb|\omathchar| $\bits{27}$:\\
Generates a math character with 27-bit math code;
\item \verb|\omathaccent| $\bits{27}$:\\
Generates a math accent with 27-bit math code;
\item \verb|\omathchardef| $\showcs=\bits{27}$:\\
Defines a control sequence with a 27-bit math code;
\item \verb|\odelcode| $\bits{16}=\bits{51}$:\\
Defines 51-bit delimiter code for character;
\item \verb|\odelcode| $\bits{16}$:\\
Outputs 51-bit delimiter code associated with character;
\item \verb|\odelimiter| $\bits{51}$:\\
Generates a math delimiter with 51-bit delimiter code;
\item \verb|\oradical| $\bits{51}$:\\
Generates a math radical with 51-bit delimiter code;
\end{itemize}
where
\begin{itemize}
\item $\bits{16}$ refers to a 16-bit character;
\item $\bits{27}$ refers to value \texttt{0x8000000} or a triple
\begin{itemize}
\item 3 bits for math category,
\item 8 bits for font family,
\item 16 bits for character in font,
\end{itemize}
called a \emph{math code};
\item $\bits{51}$ refers to a pair of numbers, either both negative
or arranged as $\bits{27}\;\bits{24}$, with the first number being:
\begin{itemize}
\item 3 bits for math category,
\item 8 bits for first font family,
\item 16 bits for first character in font,
\end{itemize}
and the second number being:
\begin{itemize}
\item 8 bits for second font family,
\item 16 bits for second character in font,
\end{itemize}
called a \emph{delimiter code}.
\end{itemize}
Since \OMEGA\ is upwardly compatible with \TeX, the older primitives
still continue to function as expected. Internally, math codes are
27-bit numbers and delimiter codes are 51-bit numbers. However,
if \verb|\mathcode|$\bits{15}$ appears in text mode, it
continues to generate a 15-bit number, to remain upwardly compatible
with \TeX: Donald Knuth defines several numerical constants through
\verb|\mathcode|.
\section{New typesetting routines}
Most of the development in \OMEGA\ has dealt with different means
for manipulating character streams. Nevertheless, there are new
typesetting routines.
\subsection{New infinity level}
A new infinity level \texttt{fi} has been added. It is smaller than
\texttt{fil} but bigger than any finite quantity. Its original intention
was for inter-letter stretching: either \emph{filling-in-the-black},
as is done for calligraphic scripts such as Arabic; or for emphasis,
as in Russian; all this without having to rewrite existing macro packages.
There is therefore a new keyword, \texttt{fi}, and two new primitives,
\verb|\hfi| and~\verb|\vfi|.
\subsection{Local paragraph parametrization}
The \OMEGA\ system allows the finetuning of layout, using
\emph{local} paragraph primitives. The first two,
\verb|\localinterlinepenalty| and \verb|\localbrokenpenalty|, are
generalizations of \verb|\interlinepenalty| and \verb|\brokenpenalty|.
When, say, \verb|\localinterlinepenalty=200| appears, a \emph{whatsit} node
is deposited into the token list for the current paragraph. If the
value is changed again, another whatsit node is deposited. When
\OMEGA\ cuts the paragraph into lines, it will add the current value
of the local penalty to the penalty node that is placed after every line
in the vertical list. Similarly for \verb|\localbrokenpenalty| when a
discretionary hyphen is placed at the end of a line. With these primitives,
it becomes possible to discourage or encourage page breaks at more
specific parts of a paragraph.
This same local approach is taken for a completely different task: placing
fixed-width typeset material at the beginning (or the end) of every
line in a paragraph.
{<<~\localleftbox{<<~}The original problem to be solved
was for fine French typesetting, in which guillemets
are placed running down the left side of a paragraph,
as in this paragraph, so long as material is being
quoted.~>>} Since \TeX\ breaks paragraphs in arbitrary
places, it was impossible to develop a robust macro
package that could, in a single pass, place the
guillemets in the right positions.
The original text for the previous paragraph was:
\begin{verbatim}
{<<~\localleftbox{<<~}The original problem to be solved
was for fine French typesetting, in which guillemets
are placed running down the left side of a paragraph,
as in this paragraph, so long as material is being
quoted.~>>} Since \TeX\ breaks paragraphs in arbitrary
places, it was impossible to develop a robust macro
package that could, in a single pass, place the
guillemets in the right positions.
\end{verbatim}
There are currently four local primitives:
\begin{itemize}
\item \verb|\localleftbox{|$\showtext$\verb|}|:\\
Until this primitive is redefined, then the typeset material
will be placed at the beginning of every line that follows
the occurrence of this primitive in the text.
\item \verb|\localrightbox{|$\showtext$\verb|}|:\\
Until this primitive is redefined, then the typeset material
will be placed at the end of every line that follows
the occurrence of this primitive in the text.
\item \verb|\localinterlinepenalty|$\;=\showpenalty$:\\
Until this primitive is redefined, then the given penalty
value will be added to the penalty node placed between
successive lines in a paragraph.
\item \verb|\localbrokenpenalty|$\;=\showpenalty$:\\
Until this primitive is redefined, then each time that a
line ends with a discretionary node, then the given penalty
value will be added to the penalty node following that line.
\end{itemize}
Grouping is respected by all of the local paragraph primitives.
\section{Multiple directions}
Below is what is available in the experimental versions of~\OMEGA.
Unfortunately we did not consider it to be sufficiently stable
for it to be released generally. Therefore, \OMEGA\ continues
to support the bidirectionality functions of \verb|TeX--XeT|.
In addition, with the \verb|\pagedirHR| and \verb|\pagedirHL|,
primitives, it is possible to transform the entire page into
a right-to-left page or a left-to-right page. Similarly,
\verb|\pardirHR| and \verb|\pardirHL| allow the paragraph
direction to change. The page direction changes should occur
in empty pages, and the paragraph direction changes should
occur outside of horizontal mode. To ensure that tables
are used properly, there is a primitive \verb|nextfakemath|,
which, put in front of math mode, ignores that the mathematics
is supposed to be typeset from left-to-right. This is used
in~\LAMBDA, which goes into math mode to do \verb|tabular|
environments.
\bigskip
{\em
Since \TeX\ was originally designed for English, it only supports
left-to-right typesetting. This situation was improved somewhat
with Knuth and MacKay's \verb|TeX-XeT|, modified into Breitenlohner's
\verb|TeX--XeT|. However, these modifications to \TeX\ only
allow the use of right-to-left typesetting, and even then, only
within a particular paragraph. In other words, these systems do
not support the typesetting of a full text in the different writing
directions.
The \OMEGA\ system distinguishes sixteen different directions,
which are designated by three parameters:
\begin{enumerate}
\item The \emph{beginning of the page} is one of \texttt{T}~(top),
\texttt{L}~(left), \texttt{R}~(right) or~\texttt{B}~(bottom).
For English and Arabic, the beginning of the page is~\texttt{T};
for Japanese it is~\texttt{R}; for Mongolian it is~\texttt{L}.
\item The \emph{beginning of the line} defines where each line begins.
For English, it is~\texttt{L}; for Arabic, it is~\texttt{R}; for Japanese
and Mongolian, it is~\texttt{T}.
\item The \emph{top of the line} corresponds to the notion
of `up' within a line. Normally, this will be the same as for the
beginning of the page, as in \texttt{TLT} for English, \texttt{TRT}
for Arabic, \texttt{RTR} for Japanese, or \texttt{LTL} for Mongolian.
However, for English included in Mongolian text, successive lines
move `up' the page, which gives direction~\texttt{LTR}.
\end{enumerate}
The \OMEGA\ system distinguishes three levels of different writing
direction: page (\verb|\pagedir|), text (\verb|\textdir|) and
mathematics (\verb|\mathdir|). Each of these primitives takes
as primitive one of the above sixteen writing directions.
\begin{itemize}
\item \verb|\pagedir| $\showdir$:\quad
The page direction can only be changed if the current vlist
is empty. This decision avoids ambiguous situations.
\item \verb|\textdir| $\showdir$:\quad
This primitive can appear anywhere in a text, and \OMEGA\ will
allow for the moment only mixed horizontal combinations.
Future versions will allow many different combinations, with
parametrization.
Grouping is respected, so it is possible to have inserts
within a paragraph: these are implemented using the local paragraph
mechanism described in the previous section.
\item \verb|\mathdir| $\showdir$:\quad
Normally mathematics is done in the same direction as English,
namely~\texttt{TLT}. There have been situations where it has been
written~\texttt{TRT}. \OMEGA\ allows only eight directions for
mathematics, namely those in which
the first and third direction parameters are identical.
\end{itemize}
In addition, \OMEGA\ allows one to designate the direction of a box.
For example \verb|\hbox dir TRT{...}| creates a horizontal box,
and uses direction~\texttt{TRT} while building that box.
Finally, fonts can be stored either naturally or not. In the unnatural
situation, called with primitive \verb|\unnaturaldir|, it is understood
that glyphs in the current font will always appear to the right of the
current point, above the baseline. In the natural situation, called
with \verb|\naturaldir|, glyphs appear in the `correct' direction. So a
natural Arabic font would have the glyphs appear to the left of the
current point, and a natural Japanese font would make the glyphs appear
below the current point.
}
\section{Fonts for \OMEGA}
The \TeX\ system takes the following approach to fonts. The \TeX\ driver
reads \TeX\ documents and generates \texttt{.dvi} files. The driver
uses font metric files (suffix \texttt{.tfm}, text version \texttt{.pl})
to determine how to lay out boxes on a pages. The screen
driver or printer driver transforms the \texttt{.dvi} file in the
appropriate format, using bitmap fonts (\texttt{.pk}), scaled fonts
(\texttt{.pfa} or \texttt{.pfb}), or virtual fonts (\texttt{.vf},
text version \texttt{.vp}).
In the \OMEGA\ system, we make no attempt, for the moment, to change the
definition of bitmaps or scaled fonts. We have focused on the font
metrics (\texttt{.ofm}, text version \texttt{.opl}), and the
virtual fonts (\texttt{.ovf}, text version \texttt{.ovp}).
Currently, these new font file formats come in two versions. The first,
called level~0, corresponds to the 16-bit version of \TFM\ files, with
no new functionality. Level~1 fonts are more ambitious, and provide
for more powerful features, including compression methods and additional
parameters.
\subsection{Level-0 \OFM\ files}
The level-0 \OFM\ files are simply 16-bit versions of \TFM\ files, and have
corresponding entries.
Below is a description of the first 14 words of a level-0 \OFM\ file.
Each entry is a 32-bit integer, non-negative and less than~$2^{31}$:
\begin{eqnarray*}
\myit{ofm-level} & = & 0; \\
\myit{lf} & = & \mbox{length of the file, in words}; \\
\myit{lh} & = & \mbox{length of the header data, in words}; \\
\myit{bc} & = & \mbox{smallest character code in the font}; \\
\myit{ec} & = & \mbox{largest character code in the font}; \\
\myit{nw} & = & \mbox{number of entries in the width table}; \\
\myit{nh} & = & \mbox{number of entries in the height table}; \\
\myit{nd} & = & \mbox{number of entries in the depth table}; \\
\myit{ni} & = & \mbox{number of entries in the italic correction table}; \\
\myit{nl} & = & \mbox{number of entries in the lig-kern table}; \\
\myit{nk} & = & \mbox{number of entries in the kern table}; \\
\myit{ne} & = & \mbox{number of entries in the extensible character table}; \\
\myit{np} & = & \mbox{number of font parameter words}; \\
\myit{font-dir} & = & \mbox{direction of font}.
\end{eqnarray*}
We must have that $\myit{bc}-1\leq \myit{ec}\leq 65535$.
Furthermore, the following identity must hold:
\begin{eqnarray*}
\myit{lf} & = &
14 + \myit{lh} + 2*(\myit{ec}-\myit{bc}+1) +
\myit{nw} + \myit{nh} + \myit{nd} + \myit{ni} +\\
& & 2*\myit{nl} + \myit{nk} + 2*\myit{ne} + \myit{np}.
\end{eqnarray*}
Note that a font may contain as many as 65536 characters (if $\myit{bc}=0$
and $\myit{ec}=65535$), and as few as 0~characters
(if $\myit{bc}=\myit{ec}-1$).
As with \TFM\ files, if two or more octexts are combined to form an integer
of 16~or more bits, the most significant octets appear first in the file.
This is called BigEndian order.
Also as with \TFM\ files, the rest of the file is a sequence of ten data arrays having the informal specification
\begin{eqnarray*}
\myit{header} & : &
\mathbf{array}\;[0..\myit{lh}-1]\;\mathbf{of}\;\myit{stuff}\\
\myit{char-info} & : &
\mathbf{array}\;[\myit{bc}..\myit{ec}]\;\mathbf{of}\;
\myit{char-info-word}\\
\myit{width} & : &
\mathbf{array}\;[0..\myit{nw}-1]\;\mathbf{of}\;\myit{fix-word}\\
\myit{height} & : &
\mathbf{array}\;[0..\myit{nh}-1]\;\mathbf{of}\;\myit{fix-word}\\
\myit{depth} & : &
\mathbf{array}\;[0..\myit{nd}-1]\;\mathbf{of}\;\myit{fix-word}\\
\myit{italic} & : &
\mathbf{array}\;[0..\myit{ni}-1]\;\mathbf{of}\;\myit{fix-word}\\
\myit{lig-kern} & : &
\mathbf{array}\;[0..\myit{nl}-1]\;\mathbf{of}\;
\myit{lig-kern-command}\\
\myit{kern} & : &
\mathbf{array}\;[0..\myit{nk}-1]\;\mathbf{of}\;\myit{fix-word}\\
\myit{exten} & : &
\mathbf{array}\;[0..\myit{ne}-1]\;\mathbf{of}\;
\myit{extensible-recipe}\\
\myit{param} & : &
\mathbf{array}\;[1..\myit{np}]\;\mathbf{of}\;\myit{fix-word}
\end{eqnarray*}
There is no need to describe the entire file, only those parts that differ
from \TFM\ files: $\myit{char-info-word}$,
$\myit{lig-kern-command}$ and $\myit{extensible-recipe}$.
Here is a summary of those differences.
\begin{itemize}
\item $\myit{char-info-word}$ (8 octets):
\begin{tabular}{lr}
$\myit{width}$ & 16 bits\\
$\myit{height}$ & 8 bits\\
$\myit{depth}$ & 8 bits\\
$\myit{italic}$ & 8 bits\\
$\myit{RFU}$ & 6 bits\\
$\myit{tag}$ & 2 bits\\
$\myit{remainder}$ & 16 bits\\
\end{tabular}
The meaning is as in \TFM\ files, so there are 65536 possible widths,
256 possible widths, 256 possible heights and 256 possible italic corrections.
\item $\myit{lig-kern-command}$ (8 octets):
\begin{tabular}{lr}
$\myit{skip-byte}$ & 16 bits\\
$\myit{next-char}$ & 16 bits\\
$\myit{op-byte}$ & 16 bits\\
$\myit{remainder}$ & 16 bits\\
\end{tabular}
The meaning is as in \TFM\ files, with every entry doubling in size.
\item $\myit{extensible-recipe}$ (8 octets):
\begin{tabular}{lr}
$\myit{ext-top}$ & 16 bits\\
$\myit{ext-mid}$ & 16 bits\\
$\myit{ext-bot}$ & 16 bits\\
$\myit{ext-rep}$ & 16 bits\\
\end{tabular}
Once again, the meaning is as in \TFM\ files, but every entry has
been doubled.
\end{itemize}
\subsection{Level-0 \OPL\ files}
The level-0 \OPL\ files are the same as \PL\ files, with the exception
that values restricted to 8~bits can now be 16~bits.
\subsection{Level-0 \OVF\ files}
The \OVF\ files are indistinguishable from \VF\ files,
except for the file suffix. They exist only because
the vast majority of drivers balk when they see
characters that are not 8~bits.
\subsection{Level-0 \OVP\ files}
The level-0 \OVP\ files are the same as \VP\ files, with the exception
that values restricted to 8~bits can now be 16~bits.
\subsection{Level-1 \OFM\ files}
The level-1 fonts take a different approach to level-0 fonts. They do
not make the assumption that typesetting means simply placing
placing glyphs on the baseline, one after another. Example
applications include the automatic placement of glue between characters
in East Asian scripts, the building of consonental clusters for
South-Asian and South-East-Asian scripts, as well as the placing of
diacritics in Arabic and Hebrew.
Level-1 fonts are different from level-0 fonts at three levels. First, they
allow the definition of six new kinds of table:
\begin{itemize}
\item \textsc{ivalue} tables contain integers.
\item \textsc{fvalue} tables contain fixword values that do not grow with
magnification.
\item \textsc{mvalue} tables contain fixword values that do grow with
magnification.
\item \textsc{rule} tables contain \TeX\ rule definitions.
\item \textsc{glue} tables contain \TeX\ glue definitions.
\item \textsc{penalty} tables contain \TeX\ penalty definitions.
\end{itemize}
There can be several copies of each kind of table, but for the moment,
there is a maximum of 32~new tables in all.
These new tables can be used as global tables, or can be indexed
on a character-by-character basis in the $\myit{char-info-word}$ entries,
which define character parameters. So, in addition to the standard
parameters of width, height, depth and italic correction, additional
parameters (of the six kinds outlined above) can be given for the
characters.
To allow these new tables to be used, changes have also been made
to the lig-kern table.
\begin{itemize}
\item Characters can be put into equivalence classes, where all
characters in the same class will act the same in the lig-kern table;
\item Glue nodes, rule nodes and penalty nodes can be inserted
automatically into the stream, exactly as for kern nodes in~\TeX.
\item The lig-kern program can be completely replaced by an \OTP\ (see
section~\ref{lab:otps}).
\end{itemize}
Now we begin with the first part of the header of a level-1 \OFM\ file.
Here are the first 17~words of a level-1 \OFM\ file.
Each entry below is a 32-bit integer, non-negative and less
than~$2^{31}$.
\begin{eqnarray*}
\myit{ofm-level} & = & 1; \\
\myit{lf} & = & \mbox{length of the file, in words}; \\
\myit{lh} & = & \mbox{length of the header data, in words}; \\
\myit{bc} & = & \mbox{smallest character code in the font}; \\
\myit{ec} & = & \mbox{largest character code in the font}; \\
\myit{nw} & = & \mbox{number of entries in the width table}; \\
\myit{nh} & = & \mbox{number of entries in the height table}; \\
\myit{nd} & = & \mbox{number of entries in the depth table}; \\
\myit{ni} & = & \mbox{number of entries in the italic correction table}; \\
\myit{nl} & = & \mbox{number of entries in the lig-kern table}; \\
\myit{nk} & = & \mbox{number of entries in the kern table}; \\
\myit{ne} & = & \mbox{number of entries in the extensible character table}; \\
\myit{np} & = & \mbox{number of font parameter words}; \\
\myit{font-dir} & = & \mbox{direction of font}; \\
\myit{nco} & = & \mbox{offset of the character entries, in words}; \\
\myit{ncw} & = & \mbox{number of character info words}; \\
\myit{npc} & = & \mbox{number of parameters per character}.
\end{eqnarray*}
Most of the entries in the first part are as for level-0 fonts. The new
entries pertain to how the $\myit{char-info-word}$ entries are stored.
\begin{itemize}
\item $\myit{nco}$:\quad This value gives the offset into the file
for the first word of the $\myit{char-info-word}$ table. The
$\myit{nco}$ value is required by output drivers, which need quick
access to the characters, even if the total length
of the tables preceding them is not easily computed,.
\item $\myit{ncw}$:\quad Since many large fonts have large numbers
of consecutive characters with identical metrics. These are compressed
in level-1 fonts, and so the number of $\myit{char-info-word}$
entries is not simply $\myit{ec}-\myit{bc}+1$. The $\myit{ncw}$
value gives the number of words used for character information,
not the number of entries.
\item $\myit{npc}$:\quad This is the number of extra parameters per character.
\item $\myit{real-lf}$:\quad This would be the length of
the file, were there no compression.
\end{itemize}
The next twelve entries come in pairs.
For each kind of parameter (\textsc{ivalue}, \textsc{fvalue},
\textsc{mvalue}, \textsc{rule}, \textsc{glue}, \textsc{penalty}),
the first entry states how many tables of that kind there are,
and the second states how many words these tables require.
\begin{eqnarray*}
\myit{nki} & = & \mbox{number of \textsc{ivalue} tables}; \\
\myit{nwi} & = & \mbox{number of words for \textsc{ivalue} tables}; \\
\myit{nkf} & = & \mbox{number of \textsc{fvalue} tables}; \\
\myit{nwf} & = & \mbox{number of words for \textsc{fvalue} tables}; \\
\myit{nkm} & = & \mbox{number of \textsc{mvalue} tables}; \\
\myit{nwm} & = & \mbox{number of words for \textsc{mvalue} tables}; \\
\myit{nkr} & = & \mbox{number of \textsc{rule} tables}; \\
\myit{nwr} & = & \mbox{number of words for \textsc{rule} tables}; \\
\myit{nkg} & = & \mbox{number of \textsc{glue} tables}; \\
\myit{nwg} & = & \mbox{number of words for \textsc{glue} tables}; \\
\myit{nkp} & = & \mbox{number of \textsc{penalty} tables}; \\
\myit{nwp} & = & \mbox{number of words for \textsc{penalty} tables}.
\end{eqnarray*}
We must have that $\myit{bc}-1\leq \myit{ec}\leq 65535$.
Furthermore, the following identity must hold:
\begin{eqnarray*}
\myit{lf} & = &
29 + \myit{lh} + \myit{ncw} +
\myit{nw} + \myit{nh} + \myit{nd} + \myit{ni} +\\
& & 2*\myit{nl} + \myit{nk} + 2*\myit{ne} + \myit{np} +\\
& & \myit{nki} + \myit{nwi} +
\myit{nkf} + \myit{nwf} +
\myit{nkm} + \myit{nwm} +\\
& & \myit{nkr} + \myit{nwr} +
\myit{nkg} + \myit{nwg} +
\myit{nkp} + \myit{nwp}.
\end{eqnarray*}
Finally, the sum
$\myit{nki}+ \myit{nkf}+ \myit{nkm}+
\myit{nkr}+ \myit{nkg}+ \myit{nkp}$
must be less than 32.
The rest of the file is composed of a number of arrays. The new parameter
tables are placed before the standard dimension tables, as it is difficult
to estimate space requirements without having read the new tables.
Furthermore, the character parameter indices in the $\myit{char-info-word}$
entries are relative and must be translated into an absolute reference
into the tables.
\begin{eqnarray*}
\myit{header} & : &
\mathbf{array}\;[0..\myit{lh}-1]\;\mathbf{of}\;\myit{stuff}\\
\myit{ivalue-no} & : &
\mathbf{array}\;[0..\myit{nki}-1]\;\mathbf{of}\;\myit{integer}\\
\myit{fvalue-no} & : &
\mathbf{array}\;[0..\myit{nkf}-1]\;\mathbf{of}\;\myit{integer}\\
\myit{mvalue-no} & : &
\mathbf{array}\;[0..\myit{nkm}-1]\;\mathbf{of}\;\myit{integer}\\
\myit{rule-no} & : &
\mathbf{array}\;[0..\myit{nkr}-1]\;\mathbf{of}\;\myit{integer}\\
\myit{glue-no} & : &
\mathbf{array}\;[0..\myit{nkg}-1]\;\mathbf{of}\;\myit{integer}\\
\myit{pen-no} & : &
\mathbf{array}\;[0..\myit{nkp}-1]\;\mathbf{of}\;\myit{integer}\\
\myit{ivalue-table}[0] & : &
\mathbf{array}\;[0..\myit{ivalue-no}[0]-1]\;
\mathbf{of}\;\myit{integer}\\
& \vdots\\
\myit{ivalue-table}[\myit{nki}-1] & : &
\mathbf{array}\;[0..\myit{ivalue-no}[\myit{nki}-1]-1]\;
\mathbf{of}\;\myit{integer}\\
\myit{fvalue-table}[0] & : &
\mathbf{array}\;[0..\myit{fvalue-no}[0]-1]\;
\mathbf{of}\;\myit{fix-word}\\
& \vdots\\
\myit{fvalue-table}[\textit{nkf}-1] & : &
\mathbf{array}\;[0..\myit{fvalue-no}[\textit{nkf}-1]-1]\;
\mathbf{of}\;\myit{fix-word}\\
\myit{mvalue-table}[0] & : &
\mathbf{array}\;[0..\myit{mvalue-no}[0]-1]\;
\mathbf{of}\;\myit{fix-word}\\
& \vdots\\
\myit{mvalue-table}[\textit{nkm}-1] & : &
\mathbf{array}\;[0..\myit{mvalue-no}[\textit{nkm}-1]-1]\;
\mathbf{of}\;\myit{fix-word}\\
\myit{rule-table}[0] & : &
\mathbf{array}\;[0..\myit{rule-no}[0]-1]\;
\mathbf{of}\;\myit{rule-entry}\\
& \vdots\\
\myit{rule-table}[\textit{nkr}-1] & : &
\mathbf{array}\;[0..\myit{rule-no}[\textit{nkr}-1]-1]\;
\mathbf{of}\;\myit{rule-entry}\\
\myit{glue-table}[0] & : &
\mathbf{array}\;[0..\myit{glue-no}[0]-1]\;
\mathbf{of}\;\myit{glue-entry}\\
& \vdots\\
\myit{glue-table}[\textit{nkg}-1] & : &
\mathbf{array}\;[0..\myit{glue-no}[\textit{nkg}-1]-1]\;
\mathbf{of}\;\myit{glue-entry}\\
\myit{pen-table}[0] & : &
\mathbf{array}\;[0..\myit{pen-no}[0]-1]\;
\mathbf{of}\;\myit{integer}\\
& \vdots\\
\myit{pen-table}[\textit{nkp}-1] & : &
\mathbf{array}\;[0..\myit{pen-no}[\textit{nkp}-1]-1]\;
\mathbf{of}\;\myit{integer}\\
\myit{char-info} & : &
\mathbf{array}\;[0..\myit{ncw}-1]\;\mathbf{of}\;
\myit{char-info-word}\\
\myit{width} & : &
\mathbf{array}\;[0..\myit{nw}-1]\;\mathbf{of}\;\myit{fix-word}\\
\myit{height} & : &
\mathbf{array}\;[0..\myit{nh}-1]\;\mathbf{of}\;\myit{fix-word}\\
\myit{depth} & : &
\mathbf{array}\;[0..\myit{nd}-1]\;\mathbf{of}\;\myit{fix-word}\\
\myit{italic} & : &
\mathbf{array}\;[0..\myit{ni}-1]\;\mathbf{of}\;\myit{fix-word}\\
\myit{lig-kern} & : &
\mathbf{array}\;[0..\myit{nl}-1]\;\mathbf{of}\;
\myit{lig-kern-command}\\
\myit{kern} & : &
\mathbf{array}\;[0..\myit{nk}-1]\;\mathbf{of}\;\myit{fix-word}\\
\myit{exten} & : &
\mathbf{array}\;[0..\myit{ne}-1]\;\mathbf{of}\;
\myit{extensible-recipe}\\
\myit{param} & : &
\mathbf{array}\;[1..\myit{np}]\;\mathbf{of}\;\myit{fix-word}
\end{eqnarray*}
So, for parameter $x$, there is a table $\myit{x-no}$, of
length~$\myit{nkx}$, giving the size of each table.
In addition, there are $\myit{nkx}$ tables
containing the actual entries, where the $i$-th table is of
length~$\myit{x-no}[i]$.
The only parameter entries with an unclear structure are
$\myit{rule-entry}$ and $\myit{glue-entry}$.
\begin{itemize}
\item
Each $\myit{rule-entry}$ uses three words (12~octets):
\vspace*{.1cm}
\begin{tabular}{llrl}
1st word & $\myit{width}$ & 32 bits & fixword\\
2nd word & $\myit{height}$ & 32 bits & fixword\\
3rd word & $\myit{depth}$ & 32 bits & fixword\\
\end{tabular}
\vspace*{.1cm}
The interpretation of the values should be clear. If one of the
three values is~0, then it can stretch in the appropriate direction,
as is standard in~\TeX.
\item
Each $\myit{glue-entry}$ uses four words (16~octets):
\vspace*{.1cm}
\begin{tabular}{llrl}
1st word & $\myit{subtype}$ & 4 bits & (0--3)\\
& $\myit{argument-kind}$ & 4 bits & (0--2)\\
& $\myit{stretch-order}$ & 4 bits & (0--4)\\
& $\myit{shrink-order}$ & 4 bits & (0--4)\\
& $\myit{char-rule}$ & 16 bits\\
2nd word & $\myit{width}$ & 32 bits & fixword\\
3rd word & $\myit{stretch}$ & 32 bits & fixword\\
4th word & $\myit{shrink}$ & 32 bits & fixword\\
\end{tabular}
\vspace*{.1cm}
\begin{itemize}
\item$\myit{subtype}$ is one of
\vspace*{.1cm}
\begin{tabular}{ll}
0 & $\myit{normal}$\\
1 & $\myit{a-leaders}$\\
2 & $\myit{c-leaders}$\\
3 & $\myit{x-leaders}$\\
\end{tabular}
\vspace*{.1cm}
\item $\myit{argument-kind}$ is one of
\vspace*{.1cm}
\begin{tabular}{ll}
0 & $\myit{space}$\\
1 & $\myit{rule}$ ($\myit{subtype}$ must be leader)\\
2 & $\myit{character}$ ($\myit{subtype}$ must be leader)\\
\end{tabular}
\vspace*{.1cm}
\item $\myit{stretch-order}$ and $\myit{shrink-order}$
are one of
\vspace*{.1cm}
\begin{tabular}{ll}
0 & $\myit{normal}$\\
1 & $\myit{fi}$\\
2 & $\myit{fil}$\\
3 & $\myit{fill}$\\
4 & $\myit{filll}$\\
\end{tabular}
\vspace*{.1cm}
\item $n=\myit{char-rule}$ depends on the value of
$\myit{argument-kind}$:
\begin{enumerate}
\item[0.] 0;
\item[1.] $n$-th rule in rule table~0;
\item[2.] $n$-character in font.
\end{enumerate}
\end{itemize}
The explanation here only really makes sense if the reader has a clear
understanding of how glue nodes are built in~\TeX. More detailed
documentation is forthcoming.
\end{itemize}
The new $\myit{char-info-word}$ array is of great interest. Its length
is not directly computable from the number of characters in the font. Each
$\myit{char-info-word}$ entry contains a minimum of 12 octets, and is in
any case a multiple of four octets. Each entry is as follows:
\vspace*{.1cm}
\begin{tabular}{llrl}
1st word & $\myit{width}$ & 16 bits\\
& $\myit{height}$ & 8 bits\\
& $\myit{depth}$ & 8 bits\\
\hline
2nd word & $\myit{italic}$ & 8 bits\\
& $\myit{RFU}$ & 5 bits\\
& $\myit{ext-tag}$ & 1 bit\\
& $\myit{tag}$ & 2 bits\\
& $\myit{remainder}$ & 16 bits\\
\hline
& $\myit{no-repeats}$ & 16 bits\\
& $\myit{param}_0$ & 16 bits\\
& \ldots\\
& $\myit{param}_{\it npc-1}$ & 16 bits\\
& $\myit{padding}$ & 16 bits & if necessary\\
\end{tabular}
\vspace*{.1cm}
\noindent
where $\myit{npc}$ is the number of characters per parameter.
The $\myit{repeat}$ entry allows one to state that the following
\texttt{no-repeats} characters have identical attributes, thereby
allowing the \OFM\ file to be much smaller. This attribute is essential
for Chinese, Japanese and korean ideogram fonts. In other words, this
$\myit{char-info-word}$ entry is relevant to $(\myit{no-repeats}+1)$
characters.
If the $\myit{ext-tag}$ bit is on, then the lig-kern entry pointed to
by $\myit{remainder}$ is shared with all the other characters in its
\emph{equivalence class}, which corresponds to $\myit{param}_0$
if there exists an \textsc{ivalue} table.
We are now ready for the changed lig-kern table. There are four
new instructions, which can be distinguished by the fact that
the 0-th 16-bit entry ($\myit{skip-byte}$) is exactly~256.
In that case, then the 1st 16-bit entry ($\myit{next-char}$)
defines an equivalence class. If the next character is of that
equivalence class, then the 2nd 16-bit entry
(the $\myit{op-byte}$) is interpreted as follows:
\begin{enumerate}
\item[17.] Add the glue node defined by entry $\myit{remainder}$
in the 0-th glue table.
\item[18.] Add the penalty node defined by entry $\myit{remainder}$
in the 0-th penalty table.
\item[19.] Add the penalty node defined by entry
$\myit{remainder}/256$ in the 0-th penalty table, then
add the glue node defined by entry
$\myit{remainder}\;\textrm{mode}\;256$ in the 0-th glue table.
\item[20.] Add the kern node defined by entry $\myit{remainder}$
in the 0-th mvalue table.
\end{enumerate}
\subsection{Level-1 \OPL\ files}
The level-1 \OPL\ files are the text versions of level-1 \OFM\ files.
Hence, level-1 \OPL\ files contain six kinds of new tables:
integer (\textsc{ivalue}), fixed (\textsc{fvalue}),
magnifiable fixed (\textsc{mvalue}), rule (\textsc{rule}),
glue (\textsc{glue}) and \textsc{penalty}) tables.
In addition, the character entries can include new parameters,
which can then be used in the extended lig-kern table.
We begin with the new tables.
These extra tables are numbered within each class, from 0 to $n-1$,
where $n$ is the number of tables in that class. To define, say,
the fifth \textsc{ivalue} table, one begins as follows:
\[
\bigl(\texttt{FONTIVALUE H 5 } \showtable\bigr)
\]
The instructions for defining tables are
\[
\begin{array}{lll}
\bigl(\texttt{FONTIVALUE} & \showtno & \showtable\bigr)\\
\bigl(\texttt{FONTFVALUE} & \showtno & \showtable\bigr)\\
\bigl(\texttt{FONTMVALUE} & \showtno & \showtable\bigr)\\
\bigl(\texttt{FONTRULE} & \showtno & \showtable\bigr)\\
\bigl(\texttt{FONTGLUE} & \showtno & \showtable\bigr)\\
\bigl(\texttt{FONTPENALTY}& \showtno & \showtable\bigr)\\
\end{array}
\]
The property lists for these tables contain as many entries as there are
slots in the table. So the fourth entry, starting from~0, in a glue
table would begin as follows:
\[
\bigl(\texttt{GLUE H 4 } \showglue\bigr)
\]
The instructions for defining entries are:
\[
\begin{array}{lll}
\bigl(\texttt{IVALUE} & \showeno & \showivalue\bigr)\\
\bigl(\texttt{FVALUE} & \showeno & \showfvalue\bigr)\\
\bigl(\texttt{MVALUE} & \showeno & \showmvalue\bigr)\\
\bigl(\texttt{RULE} & \showeno & \showrule\bigr)\\
\bigl(\texttt{GLUE} & \showeno & \showglue\bigr)\\
\bigl(\texttt{PENALTY}& \showeno & \showpenaltydef\bigr)\\
\end{array}
\]
Now we come to the definitions of the individual entries.
The four simple ones are for \textsc{ivalue}, \textsc{fvalue},
\textsc{mvalue} and \textsc{penalty}, which are as follows:
The instructions for defining entries are:
\[
\begin{array}{ll}
\bigl(\texttt{IVALUEVAL} & \showinteger\bigr)\\
\bigl(\texttt{FVALUEVAL} & \showfixword\bigr)\\
\bigl(\texttt{MVALUEVAL} & \showfixword\bigr)\\
\bigl(\texttt{PENALTYVAL}& \showinteger\bigr)\\
\end{array}
\]
with some examples:
\begin{verbatim}
(IVALUEVAL H 42)
(PENALTYVAL D 1000)
(FVALUEVAL R 42.0)
(MVALUEVAL R 42.0)
\end{verbatim}
which define an integer value of hex-42, a penalty value of 1000,
a fix-word value of 42.0, and a magnifiable fix-word value of
42.0.
A $\showrule$ contains three components, each defaulting to~0:
\[
\begin{array}{ll}
\bigl(\texttt{RULEWD} & \showfixword\bigr)\\
\bigl(\texttt{RULEHT} & \showfixword\bigr)\\
\bigl(\texttt{RULEDP} & \showfixword\bigr)\\
\end{array}
\]
The most complex entries are for glue, which can take several
instructions. The first few instructions should be clear:
\[
\begin{array}{ll}
\bigl(\texttt{GLUEWD} & \showfixword\bigr)\\
\bigl(\texttt{GLUESTRETCH} & \showfixword\bigr)\\
\bigl(\texttt{GLUESHRINK} & \showfixword\bigr)\\
\bigl(\texttt{GLUESTRETCHORDER} & \showorder\bigr)\\
\bigl(\texttt{GLUESHRINKORDER} & \showorder\bigr)\\
\end{array}
\]
where $\showorder$ is one of \texttt{UNIT}, \texttt{FI}, \texttt{FIL},
\texttt{FILL}, \texttt{FILLL}.
Now, glue can either be blank, or consist of a leader:
\[
\begin{array}{ll}
\bigl(\texttt{GLUETYPE} & \showkind\bigr)\\
\end{array}
\]
where $\showkind$ is one of \texttt{NORMAL}, \texttt{ALEADERS},
\texttt{CLEADERS}, \texttt{XLEADERS}. If a leader is chosen,
then one of the following alternatives can be given:
\[
\begin{array}{ll}
\bigl(\texttt{GLUERULE} & \showinteger\bigr)\\
\bigl(\texttt{GLUECHAR} & \showinteger\bigr)\\
\end{array}
\]
We give below the tables for an initial test with East Asian fonts:
\begin{verbatim}
(FONTIVALUE H 0
(IVALUE H 0
(IVALUEVAL H 0)
)
(IVALUE H 1
(IVALUEVAL H 1)
)
(IVALUE H 2
(IVALUEVAL H 2)
)
(IVALUE H 3
(IVALUEVAL H 3)
)
)
(FONTGLUE H 0
(GLUE H 0
(GLUETYPE H 0)
(GLUESTRETCHORDER NORMAL)
(GLUESHRINKORDER NORMAL)
(GLUEWD R 0.0)
(GLUESTRETCH R 0.0)
(GLUESCHRINK R 0.0)
)
(GLUE H 1
(GLUETYPE H 0)
(GLUESTRETCHORDER NORMAL)
(GLUESHRINKORDER NORMAL)
(GLUEWD R 1.2333
(GLUESTRETCH R 4.5555)
(GLUESCHRINK R 2.3444)
)
(FONTPENALTY H 0
(PENALTY H 0
(PENALTYVAL H 0)
)
(PENALTY H 1
(PENALTYVAL H 122A)
)
)
\end{verbatim}
The extra tables can appear in any order, but they must all appear
\emph{before} the first character entry has appeared, since the
character parameters can refer to these tables.
When defining the character entries, the standard entries (width,
height, depth and italic correction) all exist. One can also add
parameters to the characters by referring to the above
tables. The syntax for an entry resembles
\begin{verbatim}
(CHARIVALUE H 0 H 2)
\end{verbatim}
For this character, it is entry 2 in \textsc{ivalue} table 0 that is
relevant. All entries are similar:
\[
\begin{array}{lll}
\bigl(\texttt{CHARIVALUE} & \showinteger & \showinteger\bigr)\\
\bigl(\texttt{CHARFVALUE} & \showinteger & \showinteger\bigr)\\
\bigl(\texttt{CHARMVALUE} & \showinteger & \showinteger\bigr)\\
\bigl(\texttt{CHARRULE} & \showinteger & \showinteger\bigr)\\
\bigl(\texttt{CHARGLUE} & \showinteger & \showinteger\bigr)\\
\bigl(\texttt{CHARPENALTY} & \showinteger & \showinteger\bigr)\\
\end{array}
\]
There is a special use for the 0-th integer table, which defines
the equivalence class of the character for the lig-kern table:
\[
\begin{array}{ll}
\bigl(\texttt{CHARIVALUE H 0} & \showinteger\bigr)
\end{array}
\]
The idea is that characters that act similarly with respect to
their neighboring characters should have the same lig-kern
entry, allowing for the dramatic reduction in size of the
lig-kern table. More later.
Also to save space, it is possible to state that several characters use the
same information. This is done with the \textsc{charrepeat}
instruction:
\[
\begin{array}{ll}
\bigl(\texttt{CHARREPEAT H 34 H 42 } \showchardefn\bigr)
\end{array}
\]
states that characters \texttt{0x34} through to \texttt{0x76}
(\texttt{0x34}+\texttt{0x42}) all use the same information.
This clustering is done automatically by the \texttt{ovp2ovf} program.
The lig-kern table uses four new instructions for the automatic
insertion of kern, glue and penalties between characters. For example,
\begin{verbatim}
(CKRN H 3 H 2)
\end{verbatim}
states that if we encounter this instruction, and the next character
has 3~in its 0-th \textsc{ivalue} table, then the 2-nd entry in the 0-th
\textsc{mvalue} table is inserted into the stream.
Similarly,
\begin{verbatim}
(CGLUE H 3 H 2)
\end{verbatim}
states that if we encounter this instruction, and the next character
has 3~in its 0-th \textsc{ivalue} table, then the 2-nd entry in the 0-th
\textsc{glue} table is inserted into the stream.
Once again,
\begin{verbatim}
(CPENALTY H 3 H 2)
\end{verbatim}
does the same thing, except that it inserts the 2-nd entry in the 0-th
\textsc{penalty} table into the stream. The other one is
\begin{verbatim}
(CPENGLUE H 3 H 2 H 4)
\end{verbatim}
which inserts the 2-nd entry in the 0-th \textsc{penalty} table, then
the 4-th entry in the 0-th \textsc{glue} table.
The \textsc{label} instruction used in \PL\ files has a variant called
\textsc{clabel}, which means that several characters are using the same
lig-kern entry. It is this technique that allows \texttt{ovp2ovf}
to cluster the characters with similar properties, otherwise each would
point to a different lig-kern entry.
Our example shows how East Asian fonts might be coded. The
equivalence class of a character has three possible values: 1~for
`left' characters (opening parenthesis, opening quote, etc.),
2~for `middle' or ordinary characters,
and 3~for `right' characters
(closing parenthesis, closing quote, period, etc.).
Here is the lig-kern table.
\begin{verbatim}
(LIGTABLE
(CLABEL H 1)
(CPENGLUE H 1 H 0 H 0)
(CPENGLUE H 2 H 0 H 0)
(CPENGLUE H 3 H 0 H 0)
(STOP)
(CLABEL H 2)
(CGLUE H 1 H 0)
(CGLUE H 2 H 0)
(CPENGLUE H 3 H 0 H 0)
(STOP)
(CLABEL H 2)
(CGLUE H 1 H 0)
(CGLUE H 2 H 0)
(CPENGLUE H 3 H 0 H 0)
(STOP)
\end{verbatim}
Glue is inserted between all pairs of characters that are of category 1,
2, or~3. In addition, a penalty is added in front of characters of
category 3 (`right' characters), preventing a linebreak just prior to
such characters. At the same time, a penalty is added after all
occurrences of characters of category~1 (`left' characters).
Another possibility is to completely replace the lig-kern table,
with the instruction
\[
\begin{array}{ll}
\bigl(\texttt{LIGTABLEOCP} & \showligocp\bigr)\\
\end{array}
\]
Here the \OCP\ $\showligocp$ will be used instead of the lig-kern
table.
\subsection{Level-1 \OVF\ files}
The level-1 \OVF\ files are indistinguishable from level-0
\OVF\ files.
\subsection{Level-1 \OVP\ files}
The level-1 \OVP\ files are similar to level-1 \OPL\ files for
the description of the tables. For the actual character layout
stuff, there is no difference with level-0 \OVP\ files.
\section{\OMEGA\ Translation Processes}
\label{lab:otps}
The changes described above are very useful, and allow the resolution
of several problems. However, they do not radically alter the
structure of \TeX. This is not the case for the \OMEGA\ Translation
Processes, which allow text to be passed through any number of finite
state automata, in order to impose the required effects.
These processes are necessary for translating one character set to
another. They are also used to choose the various forms of letters in
Arabic, or to create consonental clusters in Khmer, or to rearrange
letter order in Indic scripts. They could also offer alternative
means of changing texts to upper or lower case or to hyphenate texts.
Each translation process is placed in a file with the suffix \verb|.otp|.
Its syntax is similar but not identical to a \texttt{lex} or
\texttt{flex} file on Unix. Examples of translation processes can
be found in the \texttt{texmf/omega/otp} directory.
An \verb|.otp| file defines a finite state automaton that transforms
an input character stream into an output character stream.
It consists of six parts:
\begin{tabular}{l}
\emph{Input}\\
\emph{Output}\\
\emph{Tables}\\
\emph{States}\\
\emph{Aliases}\\
\emph{Expressions}\\
\end{tabular}
\noindent
where the \emph{Expressions} actually state what translations take
place and in what situation.
In what follows, $n$ refers to a positive integer between 0~and
$2^{24}-1$. It can be given in decimal form, octal form (preceded by
\texttt{@'}) or hexadecimal form (preceded by \texttt{@"}).
Hexadecimal numbers can use both minuscule and majuscule letters
to express the digits~\emph{a--f}. Numbers can also be given in
character form: a printable \textsc{ascii} character, when placed
inside a pair of quotes, generates the \textsc{ascii} code for that
character. For example, \verb|`a'| is equivalent to~\verb|@"61|.
The \emph{Input} part states how many octets are in each input character.
If the section is empty, then the default value is~2, since we hope
that Unicode will become the standard means of communication in the future.
If the section is not empty, it must be of the form
\[ \mymathtt{input:}\;\mymathit{in}\mymathtt{;} \]
where \emph{in} states how many octets are in each input character.
The \emph{Output} part states how many octets are in each output character.
If the section is empty, then the default value is~2, since we hope
that Unicode will become the standard means of communication in the future.
If the section is not empty, it must be of the form
\[ \mymathtt{output:}\;\mymathit{out}\mymathtt{;} \]
where \emph{out} states how many octets are in each output character.
The \emph{Tables} part is used for defining tables that will be
referred to later in the expressions. Often, translations from one
character set to another are most efficiently presented through table
lookup. This section can be empty, in which case no tables have been
defined. If it is not empty, it is of the form
\[ \mymathtt{tables:}\; \mymathit{table}^+ \]
where each \emph{table} is of the form
\[ \mymathit{id}\mymathtt{[}n\mymathtt{]}\;\mymathtt{=}\;
\mymathtt{\char'173}n^+\mymathtt{\char'175}\mymathtt{;} \]
where the numbers in $n^+$ are comma-separated.
The \emph{States} part is used to separate out the expressions. Not
all expressions will necessarily be applicable in all situations.
To do this, the user can name states and identify expressions with
state names, in order to express what expressions apply when.
This section can be empty, in which case there is only one state. If
it is not empty, it is of the form
\[ \mymathtt{states:}\; \mymathit{id}^+\mymathtt{;} \]
where the identifiers in $\mymathit{id}^+$ are comma-separated.
The \emph{Aliases} part is used to simplify the definition of the left
hand sides of the expressions. Each expression consists of a
left-hand side, in the form of a simplified regular expression, and of a
right-hand side, which states what should be done with a recognized
string. To simplify the definitions of the left-hand sides,
aliases can be used. This section can be empty, in which case there
are no aliases. If it is not empty, it is of the form
\[ \mymathtt{aliases:}\; \mymathit{alias}^+ \]
where each \emph{alias} is of the form
\[ \mymathit{id}\;\mymathtt{=}\;\mymathit{left}\mymathtt{;}\]
and \emph{left} is defined below.
The \emph{Expressions} part is the very reason for an \verb|.otp|
file. It states what translations must take place, and when. It
cannot be empty, and its syntax is
\[ \mymathtt{expressions:}\; \mymathit{expr}^+ \]
Each \emph{expr} is of the form
\[
\mymathit{leftState}\; \mymathit{totalLeft}\;
\mymathit{right} \; \mymathit{pushBack} \; \mymathit{rightState} \mymathtt{;}
\]
where \emph{leftState} defines the state for which this expression is
applicable, \emph{totalLeft} defines the left-hand-side regular
expression, \emph{right} defines the characters to be output,
\emph{pushBack} states what characters must be added to the input
stream and \emph{rightState} gives the new state.
Intuitively, if the automaton is in macro-state \emph{leftState} and
the regular expression \emph{totalLeft} corresponds to a prefix of the current
input stream, then (1)~the input stream is advanced to the end of the recognized
prefix, (2)~the characters generated by the \emph{right}
expression are put onto the output stream, (3)~the characters
generated by the \emph{pushBack} stream are placed at the beginning
of the input stream and (4)~the system changes to the macro-state
defined by \emph{rightState}.
The \emph{leftState} field can be empty. If it is not, its syntax is
\[ \mymathtt{<} \mymathit{id} \mymathtt{>} \]
The syntax for \emph{totalLeft} is
\[ \mymathtt{beg:}? \; \mymathit{left}^+ \; \mymathtt{end:}? \]
The \texttt{beg:}, if present, will only match the string if it is
at the beginning of the input. The \texttt{end:}, if present, will
only match the string if it is at the end of the input.
The syntax for \emph{left} is given by
\begin{eqnarray*}
\mymathit{left} & ::= & n\\
& \mid & n\mymathtt{-}n\\
& \mid & \mymathtt{.}\\
& \mid & \mymathtt{(}\mymathit{left}^+\mymathtt{)}\\
& \mid & \mymathtt{\char94(}\mymathit{left}^+\mymathtt{)}\\
& \mid & \{\mymathit{id}\}\\
& \mid & \mymathit{left}\;\mymathtt{<}n\mymathtt{,}n?\mymathtt{>}\\
\end{eqnarray*}
where the $\mymathit{left}^+$ means a series of \emph{left} separated
by vertical bars. Therefore, $n$ means a single number, $n\mymathtt{-}n$ is a
range, $\mymathtt{.}$~is a wildcard character,
$\mymathtt{(}\mymathit{left}^+\mymathtt{)}$ is a choice,
$\mymathtt{\char94(}\mymathit{left}^+\mymathtt{)}$ is the negation of a choice,
$\mymathtt{\char'173}\mymathit{id}\mymathtt{\char'175}$
is the use of an alias and
$\mymathit{left}\mymathtt{<}n\mymathtt{,}n?\mymathtt{>}$
means between $n$~and $n'$~occurrences of \emph{left}. Should there
be no~$n'$, then the expression means at least $n$~occurrences.
The syntax for \emph{right} is
\[ \mymathtt{=>}\; \mymathit{stringExpr}^+ \]
while that for \emph{pushBack}, if it is not empty, is
\[ \mymathtt{<=}\; \mymathit{stringExpr}^+ \]
The \emph{right} expression corresponds to the characters that are to
be output. The \emph{pushBack} expression corresponds to the
characters that are put back onto the input stream.
A \emph{stringExpr} defines a string of characters, using the
characters in the recognized input stream as arguments. It is of the form
\begin{tabular}{ll}
& $s$\\
$\mid$ & $n$\\
$\mid$ & \verb|\|$n$\\
$\mid$ & \verb|\$|\\
$\mid$ & \verb|\($-|$n$\verb|)|\\
$\mid$ & \verb|\*|\\
$\mid$ & \verb|\(*-|$n$\verb|)|\\
$\mid$ & \verb|\(*+|$n$\verb|)|\\
$\mid$ & \verb|\(*+|$n$\verb|-|$n'$\verb|)|\\
$\mid$ & \verb|#|\emph{arithExpr}\\
\end{tabular}
\noindent
where $s$~is an \textsc{ascii} character string enclosed in double
quotation marks.
The \verb|\|$n$ means the $n$-th character (starting from 1)
in the recognized prefix; the \verb|\$| means the last character in the
prefix; \verb|\($-|$n$\verb|)| the $n$-th, counting from the end.
The \verb|\*| means the entire recognized prefix;
\verb|\(*-|$n$\verb|)| the prefix without the last $n$~characters;
\verb|\(*+|$n$\verb|)| without the first $n$~characters;
\verb|\(*+|$n$\verb|-|$n'$\verb|)| removes the first~$n$ and last~$n'$
characters.
For example, Indic scripts are encoded with vowels at the end of a
syllable, but the vowel is actually printed first on the page. Up
to six consonants can precede a vowel, yielding the following
transliteration:
\begin{verbatim}
{consonant}<1,6> {vowel} => \$ \(*-1);
\end{verbatim}
The \emph{arithExpr} entry allows for calculations to actually be
effected on the characters in the prefix. Their syntax is as follows:
\begin{tabular}{ll}
& $n$\\
$\mid$ & \verb|\|$n$\\
$\mid$ & \verb|\$|\\
$\mid$ & \verb|\($-|$n$\verb|)|\\
$\mid$ & \emph{arithExpr}\verb| + |\emph{arithExpr}\\
$\mid$ & \emph{arithExpr}\verb| - |\emph{arithExpr}\\
$\mid$ & \emph{arithExpr}\verb| * |\emph{arithExpr}\\
$\mid$ & \emph{arithExpr}\verb| div: |\emph{arithExpr}\\
$\mid$ & \emph{arithExpr}\verb| mod: |\emph{arithExpr}\\
$\mid$ & \emph{id}\verb|[|\emph{arithExpr}\verb|]|\\
$\mid$ & \verb|(|\emph{arithExpr}\verb|)|\\
\end{tabular}
\noindent
where \emph{id}\verb|[|\emph{arithExpr}\verb|]| means a table lookup:
the \emph{id} must be a table defined in the \emph{Tables} section.
The other operations should be clear.
The following example shows the use of tables.
\label{gb:unicode}
\begin{verbatim}
% File inbig5.otp
% Conversion to Unicode from Chinese Big 5 (HKU)
% Copyright (c) 1995 John Plaice and Yannis Haralambous
% This file is part of the Omega project.
%
% This file was derived from data in the tcs program
% ftp://plan9.att.com/plan9/unixsrc/tcs.shar.Z, 16 November 1994
%
input: 1;
output: 2;
tables:
in_big5_a1[@"9d] = {
@"20, @"2c, @"2ce, @"2e, @"2219, @"2219, @"3b, @"3a,
...
@"2199, @"2198, @"2225, @"2223, @"2215
};
in_big5[@"3695] = {
@"3000, @"ff0c, @"3001, @"3002, @"ff0e, @"30fb, @"ff1b, @"ff1a,
...
@"fffd, @"fffd, @"fffd, @"fffd, @"fffd
};
expressions:
@"1a => @"0a;
@"00-@"a0 => \1;
@"a1(@"40-@"7e) => #(in_big5_a1[\2-@"40]);
@"a1(@"a1-@"fe) => #(in_big5_a1[\2-@"62]);
(@"a2-@"fe)(@"40-@"7e) => #(in_big5[(\1-@"a2)*@"9d + \2-@"40]);
(@"a2-@"fe)(@"a1-@"fe) => #(in_big5[(\1-@"a2)*@"9d + \2-@"62]);
. . => @"fffd;
\end{verbatim}
In the future, more operations may well be added. Research is still
under way for such things as providing means for defining functions,
local variables, error handling and other functionality.
The \emph{pushBack} part, which serves to put characters back onto the
input stream, uses the same syntax as the \emph{right} part. When
characters are placed back onto the input stream, they will be looked
at upon the next iteration of the automaton.
Finally, the \emph{rightState} can be empty or one of the following
three forms:
\begin{tabular}{ll}
& \verb|<|\emph{id}\verb|>|\\
$\mid$ & \verb|<push: |\emph{id}\verb|>|\\
$\mid$ & \verb|<pop:>|\\
\end{tabular}
\noindent
If it is empty, the automaton stays in the same state.
If it is of the form \verb|<|\emph{id}\verb|>|, then the automaton
changes to state~\emph{id}. The \verb|<push: |\emph{id}\verb|>|
means change to state~\emph{id}, but remembering the current state.
The \verb|<pop:>| means return to the previously saved state.
Several \texttt{.otp} files are in the
\texttt{omega/texmf/otp} directory.
The \texttt{char2uni} directory contains \OTP s that
convert national character sets to Unicode, while the
\texttt{omega} directory contains \OTP s designed to work
with the \OMEGA\ fonts.
\section{Compiled Translation Processes}
\OMEGA\ does not know anything about \OMEGA\ Translation Processes.
It actually reads a compiled form of these filters, known as
Compiled Translation Processes (file suffix \texttt{.ocp}).
Essentially, the \OCP s can be considered to be portable assembler
programs, and \OMEGA\ includes an interpreter for the generated
instructions.
The command for reading in a \OCP\ file is similar to a font
declaration. The example
\begin{verbatim}
\ocp\TexUni=TeXArabicToUnicode
\end{verbatim}
means that the file \verb|TeXArabicToUnicode.ocp| is read
in by~\OMEGA\ and that internally the translation process is
referred to as \verb|\TeXUni|.
The \OCP s consist of a sequence of 4-octet words. The first seven
words have the following form:
\begin{tabular}{ll}
\emph{lf}&length of the entire file, in words;\\
\emph{in}&number of octets in an input character;\\
\emph{ot}&number of octets in an output character;\\
\emph{nt}&number of tables;\\
\emph{lt}&number of words allocated for tables;\\
\emph{ns}&number of states;\\
\emph{ls}&number of words allocated for states;\\
\end{tabular}
\noindent
The header words are followed by four arrays:
\begin{eqnarray*}
\mathit{table\_length} & : &
\mathbf{array} \; [0..\mathit{nt}-1] \; \mathbf{of} \; \mathit{word}\\
\mathit{tables} & : &
\mathbf{array} \; [0..\mathit{lt}-1] \; \mathbf{of} \; \mathit{word}\\
\mathit{state\_length} & : &
\mathbf{array} \; [0..\mathit{ns}-1] \; \mathbf{of} \; \mathit{word}\\
\mathit{tables} & : &
\mathbf{array} \; [0..\mathit{ls}-1] \; \mathbf{of} \; \mathit{word}
\end{eqnarray*}
The \emph{table\_length} array states how many words are used for each
of the tables in the~\OCP. For the GB~$\rightarrow$~Unicode example on
page~\pageref{gb:unicode}, the \emph{table\_length} would have two
entries: hex values \texttt{9d} and~\texttt{3695}.
The \emph{tables} array is simply the concatenation of the tables in
the \OTP\ file.
The \emph{state\_length} array states how many words are used for each
of the states in the~\OCP. For the GB~$\rightarrow$~Unicode example on
page~\pageref{gb:unicode}, the \emph{state\_length} would have one
entry.
The \emph{states} array is simply the concatenation of the sequence of
instructions for each state in the \OTP\ file. Each instruction takes
one or two 4-octet words. Zero- and one-argument instructions use
one word. If the instruction consists of one word,
then the actual instruction is in the first two octets and the
argument is in the last two octets. If the instruction consists of
two words, then the actual instruction is in the first two octets,
the first argument is in the next two octets and the last argument is
in the last two octets. The instructions are as follows:
\begin{tabbing}
\makebox[1cm][r]{99} \= \quad \verb|OTP_GOTO_NO_ADVANCE| \= \quad 2 arguments\kill
\makebox[1cm][r]{1} \> \quad \verb|OTP_RIGHT_OUTPUT| \> \quad 0 arguments\\
\makebox[1cm][r]{2} \> \quad \verb|OTP_RIGHT_NUM| \> \quad 1 argument\\
\makebox[1cm][r]{3} \> \quad \verb|OTP_RIGHT_CHAR| \> \quad 1 argument\\
\makebox[1cm][r]{4} \> \quad \verb|OTP_RIGHT_LCHAR| \> \quad 1 argument\\
\makebox[1cm][r]{5} \> \quad \verb|OTP_RIGHT_SOME| \> \quad 2 arguments\\
\\
\makebox[1cm][r]{6} \> \quad \verb|OTP_PBACK_OUTPUT| \> \quad 0 arguments\\
\makebox[1cm][r]{7} \> \quad \verb|OTP_PBACK_NUM| \> \quad 1 argument\\
\makebox[1cm][r]{8} \> \quad \verb|OTP_PBACK_CHAR| \> \quad 1 argument\\
\makebox[1cm][r]{9} \> \quad \verb|OTP_PBACK_LCHAR| \> \quad 1 argument\\
\makebox[1cm][r]{10} \> \quad \verb|OTP_PBACK_SOME| \> \quad 2 arguments\\
\\
\makebox[1cm][r]{11} \> \quad \verb|OTP_ADD| \> \quad 0 arguments\\
\makebox[1cm][r]{12} \> \quad \verb|OTP_SUB| \> \quad 0 arguments\\
\makebox[1cm][r]{13} \> \quad \verb|OTP_MULT| \> \quad 0 arguments\\
\makebox[1cm][r]{14} \> \quad \verb|OTP_DIV| \> \quad 0 arguments\\
\makebox[1cm][r]{15} \> \quad \verb|OTP_MOD| \> \quad 0 arguments\\
\makebox[1cm][r]{16} \> \quad \verb|OTP_LOOKUP| \> \quad 0 arguments\\
\makebox[1cm][r]{17} \> \quad \verb|OTP_PUSH_NUM| \> \quad 1 argument\\
\makebox[1cm][r]{18} \> \quad \verb|OTP_PUSH_CHAR| \> \quad 1 argument\\
\makebox[1cm][r]{19} \> \quad \verb|OTP_PUSH_LCHAR| \> \quad 1 argument\\
\\
\makebox[1cm][r]{20} \> \quad \verb|OTP_STATE_CHANGE| \> \quad 1 argument\\
\makebox[1cm][r]{21} \> \quad \verb|OTP_STATE_PUSH| \> \quad 1 argument\\
\makebox[1cm][r]{22} \> \quad \verb|OTP_STATE_POP| \> \quad 1 argument\\
\\
\makebox[1cm][r]{23} \> \quad \verb|OTP_LEFT_START| \> \quad 0 arguments\\
\makebox[1cm][r]{24} \> \quad \verb|OTP_LEFT_RETURN| \> \quad 0 arguments\\
\makebox[1cm][r]{25} \> \quad \verb|OTP_LEFT_BACKUP| \> \quad 0 arguments\\
\\
\makebox[1cm][r]{26} \> \quad \verb|OTP_GOTO| \> \quad 1 argument\\
\makebox[1cm][r]{27} \> \quad \verb|OTP_GOTO_NE| \> \quad 2 arguments\\
\makebox[1cm][r]{28} \> \quad \verb|OTP_GOTO_EQ| \> \quad 2 arguments\\
\makebox[1cm][r]{29} \> \quad \verb|OTP_GOTO_LT| \> \quad 2 arguments\\
\makebox[1cm][r]{30} \> \quad \verb|OTP_GOTO_LE| \> \quad 2 arguments\\
\makebox[1cm][r]{31} \> \quad \verb|OTP_GOTO_GT| \> \quad 2 arguments\\
\makebox[1cm][r]{32} \> \quad \verb|OTP_GOTO_GE| \> \quad 2 arguments\\
\makebox[1cm][r]{33} \> \quad \verb|OTP_GOTO_NO_ADVANCE| \> \quad 1 argument\\
\makebox[1cm][r]{34} \> \quad \verb|OTP_GOTO_BEG| \> \quad 1 argument\\
\makebox[1cm][r]{35} \> \quad \verb|OTP_GOTO_END| \> \quad 1 argument\\
\makebox[1cm][r]{36} \> \quad \verb|OTP_STOP| \> \quad 0 arguments\\
\end{tabbing}
The \verb|OTP_LEFT|, \verb|OTP_GOTO| and \verb|OTP_STOP| instructions
are used for recognizing prefixes in an input stream. The \verb|OTP_RIGHT|
instructions place characters on the output stream, while the
\verb|OTP_PBACK| instructions place characters back onto the input
stream. The instructions \verb|OTP_ADD| through to
\verb|OTP_PUSH_LCHAR| are used for internal computations in preparation
for \verb|OTP_RIGHT| or \verb|OTP_PBACK| instructions. Finally, the
\verb|OTP_STATE| instructions are for changing macro-states.
The system that reads from the input stream uses two pointers, which
we will call \emph{first} and \emph{last}. The \emph{first} value
points to the beginning of the input prefix that is currently being
identified. The \emph{last} value points to the end of the input
prefix that has been read. When a prefix has been recognized, then
\emph{first} points to~\verb|\1| and \emph{last} points to~\verb|\$|.
The \verb|OTP_LEFT_START| instruction, called at the beginning of
the parsing of a prefix, advances \emph{first} to $\emph{last}+1$;
\verb|OTP_LEFT_RETURN| resets the \emph{last} value to
$\emph{first}-1$ (it is called when a particular \emph{left} pattern
does not correspond to the prefix); \verb|OTP_LEFT_BACKUP| backs up
the \emph{last} pointer by~1.
Internally, a \OCP\ program uses a program counter (PC), which is simply an
index into the appropriate state array. Like for all assembler
programs, this counter is normally incremented by 1 or~2, depending on
the size of the instruction, but it can be abruptly changed through
an \verb|OTP_GOTO| instruction.
The argument in single-argument \verb|OTP_GOTO| instructions is the
new~PC. For the two-argument instructions, the first is the comparand
and the second is the new~PC should the test succeed. The
\verb|OTP_GOTO| instruction itself is an unconditional branch;
\verb|OTP_GOTO_NO_ADVANCE| advances \emph{last} by~1, and branches if
has reached the end of input; \verb|OTP_GOTO_BEG| branches at the
beginning of input and \verb|OTP_GOTO_END| branches at the end of
input. As for \verb|OTP_GOTO_|\emph{cond}, it succeeds if the
character pointed to by \emph{last} (we'll call it
\verb|*|\emph{last}) satisfies the test
\emph{cond}(\verb|*|\emph{last}, \emph{firstArg}).
The \verb|OTP_STOP| instruction stops processing of the currently
recognized prefix. Normally the automaton will be restarted with an
\verb|OTP_LEFT_START| instruction.
When computations are undertaken for the \verb|OTP_RIGHT| and
\verb|OTP_PBACK| instructions, a computation stack is used.
This stack is accessed through instructions \verb|OTP_ADD| through
to \verb|OTP_PUSH_LCHAR|, as well as through the instructions
\verb|OTP_RIGHT_OUTPUT| and \verb|OTP_PBACK_OUTPUT|.
Since the \verb|OTP_RIGHT| and \verb|OTP_PBACK| instructions are
analogous, only the former are described.
The \verb|OTP_RIGHT_OUTPUT| instruction pops a value of the top of the
stack and outputs it; \verb|OTP_RIGHT_NUM|$(n$) simply places $n$
on the output stream; \verb|OTP_RIGHT_CHAR|$(n)$ places the $n$-th input
character on the output stream; \verb|OTP_RIGHT_LCHAR| does the same,
but from the back; finally, \verb|OTP_RIGHT_SOME| places a substring
onto the output stream.
Three instructions are used for placing values on the stack:
\verb|OTP_PUSH_NUM|$(n)$ pushes $n$ onto the stack,
\verb|OTP_PUSH_CHAR|$(n)$ pushes the $n$-th character and
\verb|OTP_PUSH_LCHAR|$(n)$ does the same from the end.
The arithmetic operations of the form \verb|OTP_|\emph{op} apply the
operation
\begin{eqnarray*}
\mathit{stack}[\mathit{top}-1] & := &
\mathit{stack}[\mathit{top}-1] \; \mathit{op} \;
\mathit{stack}[\mathit{top}]
\end{eqnarray*}
where \emph{top} is the stack pointer, and then decrement the stack
pointer. Finally, the \verb|OTP_LOOKUP| instruction applies the
operation
\begin{eqnarray*}
\mathit{stack}[\mathit{top}-1] & := &
\mathit{stack}[\mathit{top}-1][\mathit{stack}[\mathit{top}]]
\end{eqnarray*}
and then decrements the pointer.
Last, but not least, are the \verb|OTP_STATE| instructions, which
manipulate a stack of macro-states. The initial state is always~0.
The \verb|OTP_STATE_CHANGE|$(n)$ changes the current state
state~$n$; \verb|OTP_STATE_PUSH|$(n)$ pushes the current state onto
the state stack before changing the current state;
\verb|OTP_STATE_POP| pops the state at the top of the state stack into
the current state.
\section{Translation process lists}
Translation processes can be used for a number of different purposes.
Since not all uses can be foreseen, we have decided to offer a means
to dynamically reconfigure the set of translation processes that are
passing over the input text. This is done using stacks of translation
process lists.
For any single purpose, for example to process a given language,
several \OCP s might be required. If one makes a context switch,
such as processing a different language, then one would to be able
to quickly replace \emph{all} of the \OCP s that are currently being
used. This is done using \OCP\ lists.
A \OCP\ list is actually a list of pairs. Each pair consists of a
positive scaled value and a doubly ended queue of \OCP s. For
example,
\begin{verbatim}
\ocplist\ArabicOCP=[(1.0 : \TexUni,\UniUniTwo,\UniTwoFont)]
\end{verbatim}
the output from \OMEGA\ once the \OCP\ list \verb|\ArabicOCP| has
been typed, shows that that list has one element, namely the pair
with the scaled value~1.0 and the doubly ended queue with three
\OCP s, \verb|\TexUni|, \verb|\UniUniTwo| and \verb|\UniTwoFont|.
\OCP\ lists are built up using the five operators \verb|\nullctlist|,
\verb|\addbefore|\-\verb|ocp|\-\verb|list|, \verb|\addafterocplist|,
\verb|\removebeforeocplist| and \verb|\removeafter|\-\verb|ocp|\-\verb|list|.
For example, the above output was generated by the following
sequence of \OMEGA\ statements:
\begin{verbatim}
\ocp\TexUni=TeXArabicToUnicode
\ocp\UniUniTwo=UnicodeToContUnicode
\ocp\UniTwoFont=ContUnicodeToTeXArabicOut
\ocplist\ArabicOCP=
\addbeforeocplist 1 \TexUni
\addbeforeocplist 1 \UniUniTwo
\addbeforeocplist 1 \UniTwoFont
\nullocplist
\end{verbatim}
The \verb|\ocplist| command is similar to the \verb|\ocp| command:\\
\verb|\ocplist|~\emph{listName}~\verb|=|~\emph{ocpListExpr}.
All \emph{ocpListExpr} are built up from either the empty \OCP\ list,
\verb|\nullocplist|, or from an already existing \OCP\ list. In the
latter case, the list is completely copied, to ensure that the named
list is not itself modified. Given a list~$l$, the instruction
\verb|\addbeforeocplist|~$n$~\emph{ocp}~$l$ states that the
\OCP\ \emph{ocp} is added at the head of the doubly ended queue for
value~$n$ in list~$l$. If that queue does not exist, it is created
and inserted in the list so that the scaled values are all in
increasing order. The instruction
\verb|\addafterocplist|~$n$~\emph{ocp}~$l$ does the same, except the
addition takes place at the tail of the doubly ended queue. The
instruction
\verb|\removebeforeocplist|~$n$~$l$ removes the \OCP\ at the head of the
doubly ended queue numbered~$n$. The instruction
\verb|\removeafterocplist|~$n$~$l$ does the same at the tail of the
doubly ended queue. See the next section for more examples.
\section{Input Filters}
Here we come to the crucial parts of \OMEGA. What happens to the
input stream as it passes through translation processes? What is
the interaction between \TeX's macro-expansion and \OMEGA's translation
processes?
When \OMEGA\ is in horizontal mode and it encounters a
token of the form
\emph{letter}, \emph{other\_char}, \emph{char\_given} or
\emph{char\_num}, that character and all the successive
characters in those categories are read into a buffer.
The currently active \OCP\ is applied to the buffer, and
the result is placed back onto the input, to be reread
by the standard \TeX\ input routines, including macro
expansion.
The currently active \OCP\ is designated by a pair $(v,i)$,
where $v$~is a scaled value and $i$~is an integer. If all the
enabled \OCP s are in a \OCP\ list, then the~$v$ designates the index into
the \OCP\ list and the~$i$ designates which element in the $v$-queue is
currently active.
Once a \OCP\ has been used, the~$i$ is incremented; if it points to the
end of the current queue, then $v$~is set to the next queue, and
$i$~is reset to~1.
When the last enabled \OCP\ has been used, then the standard techniques
for treating letters and other characters are used, namely generating
paragraphs, etc.
What this means is that it is now possible to apply a filter on the
\emph{text} of a file without macro-expansion, generate a new text,
possibly with macros to be expanded, macro-expand, re-apply filters,
etc. All this without active characters, and without breaking macro
packages.
How are \OCP\ lists enabled? \OCP\ lists are placed on a stack, each
numbered queue in a given list masking the queues with the same number
for the lists below that one on the stack.
There are three commands, which all respect the grouping mechanism.
The \verb|\clearocplists| command disables all \OCP\ lists.
The \verb|\pushocplist|~\emph{OCPlist} command pushes \emph{OCPlist}
onto the stack. The \verb|\popocplist| command pops the last list
from the stack.
For example, consider the following purely hypothetical situations:
\begin{verbatim}
\ocplist\FrenchOCP = \addbeforeocplist 1 \ocpA
\addbeforeocplist 2 \ocpB
\addbeforeocplist 3 \ocpC
\nullocplist
\end{verbatim}
\begin{verbatim}
\ocplist\GermanOCP = \addbeforeocplist 1 \ocpD
\addbeforeocplist 2 \ocpE
\addbeforeocplist 3 \ocpF
\nullocplist
\end{verbatim}
\begin{verbatim}
\ocplist\ArabicOCP = \addbeforeocplist 1 \ocpG
\addbeforeocplist 2 \ocpH
\addbeforeocplist 2 \ocpI
\addbeforeocplist 3 \ocpJ
\nullocplist
\end{verbatim}
\begin{verbatim}
\ocplist\SpecialArabicOCP =
\addafterocplist 3 \ocpK
\ArabicOCP
\end{verbatim}
\begin{verbatim}
\ocplist\UpperCaseOCP =
\addbeforeocplist 2.5 \ocpL
\nullocplist
\end{verbatim}
There are now 5 \OCP\ lists \emph{defined}, but none of them are
\emph{enabled}. The defined lists are:
\begin{verbatim}
\ocplist\FrenchOCP =
[(1.0:\ocpA), (2.0:\ocpB), (3.0:\ocpC)]
\ocplist\GermanOCP =
[(1.0:\ocpD), (2.0:\ocpE), (3.0:\ocpF)]
\ocplist\ArabicOCP =
[(1.0:\ocpG), (2.0:\ocpH,\ocpI), (3.0:\ocpJ)]
\ocplist\SpecialArabicOCP =
[(1.0:\ocpG), (2.0:\ocpH,\ocpI), (3.0:\ocpJ,\ocpK)]
\ocplist\UpperCaseOCP =
[(2.5:\ocpL)]
\end{verbatim}
Consider now the sequence of instructions
\begin{verbatim}
\clearocplists
\pushocplist\FrenchOCP
\pushocplist\UpperCaseOCP
\pushocplist\GermanOCP
\popocplist
\popocplist
\pushocplist\ArabicOCP
\pushocplist\SpecialArabicOCP
\pushocplist\GermanOCP
\end{verbatim}
The effective enabled \OCP\ list is, in turn:
\begin{verbatim}
[]
[(1.0:\ocpA), (2.0:\ocpB), (3.0:\ocpC)]
[(1.0:\ocpA), (2.0:\ocpB), (2.5:\ocpL), (3.0:\ocpC)]
[(1.0:\ocpD), (2.0:\ocpE), (2.5:\ocpL), (3.0:\ocpF)]
[(1.0:\ocpA), (2.0:\ocpB), (2.5:\ocpL), (3.0:\ocpC)]
[(1.0:\ocpA), (2.0:\ocpB), (3.0:\ocpC)]
[(1.0:\ocpG), (2.0:\ocpH,\ocpI), (3.0:\ocpJ)]
[(1.0:\ocpG), (2.0:\ocpH,\ocpI), (3.0:\ocpJ,\ocpK)]
[(1.0:\ocpD), (2.0:\ocpE), (3.0:\ocpF)]
\end{verbatim}
The first test of the \OCP\ lists was for Arabic. The text was typed
in \textsc{ascii}, using a Latin transliteration. This text was first
transformed into Unicode, the official 16-bit encoding for the
world's character sets. These letters were then translated into
their appropriate visual forms (isolated, initial, medial or final)
and then the text was translated into the font encoding. During the
second translation, inter-letter black spacing is inserted, since Arabic
typesetting calls for word expansion to fill out a line. Here is the
input:
\begin{verbatim}
\font\ARfont=oar10 scaled 1728 offset 256 %% an X-font
\def\keshideh{%
\begingroup\penalty10000%
\clearocplists\xleaders\hbox{\char'767}\hskip0ptplus1fi%
\endgroup}
\ocp\TexUni=TeXArabicToUnicode
\ocp\UniUniTwo=UnicodeToContUnicode
\ocp\UniTwoFont=ContUnicodeToTeXArabicOut
\ocplist\ArabicOCP=%
\addbeforeocplist 1 \TexUni
\addbeforeocplist 1 \UniUniTwo
\addbeforeocplist 1 \UniTwoFont
\nullocplist
\def\AR#1{\begingroup\noindent\pushocplist \ArabicOCP%
\ARfont\language=255\textdir TRT #1\endgroup}
\end{verbatim}
Notice that the \verb|\keshideh|, which is dynamically inserted
between letters by the \verb|\UniUniTwo| \OCP, uses the \verb|fi|
infinity. It also disables all of the \OCP s, within a group.
\section{Input and output character sets}
In a multilingual, heterogeneous environment, it it inevitable that
different files will be written using different character sets. It
is even possible that the same file might have different parts that
use different character sets. How is it possible to tag
these files internally so that \OMEGA\ can read and write differently
encoded files in a meaningful manner.
After looking at a lot of character sets, we have decided that the
vast majority of the world's character sets --- unfortunately not
all --- can be categorized into one of the following groups:
\begin{itemize}
\item \texttt{onebyte} includes all those character sets that include
the basic Roman letters, backslash and percent in the same positions
as does \textsc{ascii} (\textsc{iso-646}). Hence all the \textsc{iso-8859}
character sets, as well as many of the shifted East-Asian sets,
such as Shift-\textsc{jis}, are included.
\item \texttt{ebcdic} includes all those character sets that include
the basic Roman letters, backslash and percent in the same positions
as does \textsc{ebcdic-us}. Once again there are shifted character
sets that fall into this category.
\item \texttt{twobyte} includes all those character sets that include
the basic Roman letters, backslash and percent in the same positions
as does \textsc{unicode} (\textsc{iso-10646}).
\item \texttt{twobyteLE} is the same as \texttt{twobyte}, but in Little
Endian order, for ``Microsoft \textsc{unicode}''.
\end{itemize}
These categories are called \emph{modes}.
In \OMEGA, it is assumed that every textual input source and textual output
sink has a mode, as well as two translations: one from the character set to
the internal encoding, and one from the internal encoding to the character
set in question. Normally the internal encoding will be \textsc{unicode},
which means that linguistic information such as hyphenation will only need
to be defined once. There are situations in which extra characters will
be needed, if the characters or their scripts are not included in
\textsc{unicode}, but this will not be the norm.
\OMEGA\ has two basic style of input: the old \TeX\ style, or the
automatic \OMEGA\ style.
In the automatic style, upon opening a file, \OMEGA\ reads the first
two octets, and draws the following conclusions:
\begin{itemize}
\item Hex \texttt{0025} (\textsc{unicode} \verb|%|)
or \texttt{005c} (\textsc{unicode} \verb|\|): the mode is \texttt{twobyte}.
\item Hex \texttt{2500} (\textsc{unicode} \verb|%|)
or \texttt{5c00} (\textsc{unicode} \verb|\|): the mode is \texttt{twobyteLE}.
\item Hex \texttt{25} (\textsc{ascii} \verb|%|)
or \texttt{5c} (\textsc{ascii} \verb|\|): the mode is \texttt{onebyte}.
\item Hex \texttt{6c} (\textsc{ebcdic-us} \verb|%|)
or \texttt{e0} (\textsc{ebcdic-us} \verb|\|): the mode is \texttt{ebcdic}.
\item If none of these four situations
occurs, then the default input mode is assumed.
\end{itemize}
%
Here are the primitives for manipulating modes:
\begin{itemize}
\item \verb|\DefaultInputMode| $\showmode$ : The default input mode is set
to $\showmode$.
\item \verb|\noDefaultInputMode| : The standard \TeX\ style of
input is restored.
\item \verb|\DefaultOutputMode| $\showmode$ : The default output mode
is set to $\showmode$.
\item \verb|\noDefaultOutputMode| : The standard \TeX\ style of
output is restored.
\item \verb|\InputMode| $\showfile$ $\showmode$ : The input mode for
file $\showfile$ is changed to $\showmode$, where $\showfile$ can be
\texttt{currentfile}, meaning the current file being \verb|\input|,
or an integer~$n$, which corresponds to \verb|\openin|~$n$.
\item \verb|\noInputMode| $\showfile$ : The input mode for
file $\showfile$ is restored to the standard \TeX\ style.
\item \verb|\OutputMode| $\showfile$ $\showmode$ : The output
mode for file $\showfile$ is changed to $\showmode$, where
$\showfile$ can be an integer~$n$, which corresponds to
\verb|\openout|~$n$.
\item \verb|\noOutputMode| $\showfile$ : The output mode for
file $\showfile$ is restored to the standard \TeX\ style.
\end{itemize}
%
Here are the primitives for manipulating translations:
\begin{itemize}
\item \verb|\DefaultInputTranslation| $\showmode$ $\showligocp$ :
The default input translation for mode $\showmode$ is $\showligocp$.
\item \verb|\noDefaultInputTranslation| $\showmode$ :
There is no longer a default input translation for mode $\showmode$.
\item \verb|\DefaultOutputTranslation| $\showmode$ $\showligocp$ :
The default output translation for mode $\showmode$ is $\showligocp$.
\item \verb|\noDefaultOutputTranslation| $\showmode$ :
There is no longer a default output translation for mode $\showmode$.
\item \verb|\InputTranslation| $\showfile$ $\showligocp$ :
The input translation for file $\showfile$ is $\showligocp$,
where $\showfile$ is \verb|currentfile| or an integer~$n$.
\item \verb|\noInputTranslation| $\showfile$ :
There is no longer an input translation for file $\showfile$.
\item \verb|\OutputTranslation| $\showfile$ $\showligocp$ :
The output translation for file $\showfile$ is $\showligocp$,
where $\showfile$ is an integer~$n$.
\item \verb|\noOutputTranslation| $\showfile$ :
There is no longer an output translation for file $\showfile$.
\end{itemize}
All of the above instructions apply only after the carriage return
ending the current line.
The default mode when the system begins is \OMEGA\ style,
assuming \texttt{onebyte}. This is sufficient for all the
\texttt{iso-8859} character sets, for the \textsc{utf-8}
encoding for \textsc{unicode}, many national character sets,
and most mixed-length character sets used in East Asia.
Once the basic family of character sets has been determined,
\OMEGA\ can read the files, and actually interpret control sequences.
It is then possible to be more specific and to specify exactly what
translation process must be applied to the entire file to convert
the input to \textsc{unicode}.
Input translations are simply single \OCP s, which
differ from input filters in that they apply to \emph{all} characters
in a file, not simply the letters and other characters in horizontal
mode. For each kind of mode, there can be a default input
translation.
Upon startup, there is no default translation for the
\texttt{onebyte}, \texttt{twobyte} or \texttt{twobyteLE} modes,
but there is one for \texttt{ebcdic}, namely
\begin{verbatim}
\ocp\OCPebcdic=ebcdic
\DefaultInputTranslation ebcdic \OCPebcdic
\end{verbatim}
\section{Further work}
The \OMEGA\ project is far from finished. Currently much of the current
work is geared towards font development. Nevertheless, new
functionality is to be added in the future. In particular, more
general methods for hyphenation, as well as for text output, using
\OTP s, are envisaged.
\end{document}
The \verb|.tfm| files used by \TeX3 only allow 256~characters each.
Like \TeX, \OMEGA\ uses \verb|.tfm| files, but it also uses
\emph{extended font metric} (\verb|.ofm|) files, which are
generalizations of \verb|.tfm| files for fonts of up to
65~536~characters each.
The description below focuses on the differences between \verb|.tfm|
files and \verb|.ofm| files. The standard definition of \verb|.tfm|
files is in the second volume of Knuth's \emph{Computers and
Typesetting} series.
The first 52 bytes (13 words) of an \verb|.ofm| file contain thirteen
32-bit integers that give the lengths of the various subsequent
portions of the file. These thirteen integers are, in order:
\begin{tabular}{ll}
$0$ &empty word to designate \verb|.ofm| file;\\
\emph{lf}&length of the entire file, in words;\\
\emph{lh}&length of the header data, in words;\\
\emph{bc}&smallest character code in the font;\\
\emph{ec}&largest character code in the font;\\
\emph{nw}&number of words in the width table;\\
\emph{nh}&number of words in the height table;\\
\emph{nd}&number of words in the depth table;\\
\emph{ni}&number of words in the italic correction table;\\
\emph{nl}&number of words in the lig-kern table;\\
\emph{nk}&number of words in the kern table;\\
\emph{ne}&number of words in the extensible character table;\\
\emph{np}&number of font parameter words.\\
\end{tabular}
The first word is~0 (future versions of
\verb|.ofm| files could have different values; what is important is that
the first two bytes be~0 to differentiate \verb|.tfm| and \verb|.ofm| files).
The next twelve integers are as above, all non-negative and less
than~$2^{31}$. The inequality $\mathit{bc}-1\leq\mathit{ec}\leq65535$
must hold, as must the equality
\[\mathit{lf}=13+
\mathit{lh}+
2(\mathit{ec}\!-\!\mathit{bc}\!+\!1)+
\mathit{nw}+
\mathit{nh}+
\mathit{nd}+
\mathit{ni}+
\mathit{nl}+
\mathit{nk}+
\mathit{ne}+
\mathit{np}.\]
Note that an \verb|.ofm| font may contain as many as 65~536 characters
(if $\mathit{bc}=0$ and $\mathit{ec}=65535$), and as few as 0~characters
(if $\mathit{bc}=\mathit{ec}+1$).
The rest of the \verb|.ofm| file is, like in \verb|.tfm| files, a
sequence of ten data arrays. Three of the arrays are different:
\emph{char\_info}, \emph{lig\_kern} and \emph{exten}.
The \emph{char\_info} array contains one \emph{char\_info\_word} entry
per character. Each \emph{char\_info\_word} in an \verb|.ofm| file
takes 2~words (8~octets), packed as follows:
\begin{description}
\item[octets 0--1:] \emph{width\_index} (16~bits);
\item[octet 2:] \emph{height\_index} (8~bits);
\item[octet 3:] \emph{depth\_index} (8~bits);
\item[octets 4--5:]
\emph{italic\_index} (14 bits) times 4, plus \emph{tag} (2~bits);
\item[octets 6--7:] \emph{remainder} (16 bits).
\end{description}
Therefore the \verb|.ofm| format imposes a limit of 256~different heights,
256~different depths, and 16~384~different italic corrections.
The \emph{lig\_kern} array consists of a sequence of
\emph{lig\_kern\_command} entries. Each \emph{lig\_kern\_command}
in an \verb|.ofm| file takes 2~words (8~octets), packed as follows:
\begin{description}
\item[octets 0--1:] \emph{skip\_byte}, indicates that this is the final
program step if the byte is 128 or more, otherwise the next step is obtained
by skipping this number of intervening steps.
\item[octets 2--3:] \emph{next\_char}, ``if \emph{next\_char}
follows the current character, then perform the operation and stop,
otherwise continue.''
\item[octets 4--5:] \emph{op\_byte}, indicates a ligature step if less
than~128, a kern step otherwise.
\item[octets 6--7:] \emph{remainder}.
\end{description}
For \verb|.tfm| files, if the very first instruction of a
character's \emph{lig\_kern} program has $\mathit{skip\_byte}>128$,
the program actually begins in location
$256*\mathit{op\_byte}+\mathit{remainder}$.
This feature allows access to large \emph{lig\_kern} arrays,
because the first instruction must otherwise appear in a location $\leq255$.
For \verb|.ofm| files, the latter value is $\leq65535$.
Extensible characters are specified by an \emph{extensible\_recipe},
which consists of four 2-octet words called \emph{top}, \emph{mid},
\emph{bot}, and \emph{rep} (in this order). These bytes are the
character codes of individual pieces used to build up a large symbol.
If \emph{top}, \emph{mid}, or \emph{bot} are zero, they are not
present in the built-up result. For example, an extensible vertical
line is like an extensible bracket, except that the top and bottom
pieces are missing.
\paragraph{Font offsets.}
When switching from one alphabet to another in Unicode, one passes
from one Unicode page to another. However, the corresponding fonts will
normally all be numbered from~0. To deal with this situation, a
new keyword, \texttt{offset}, is introduced. In the \verb|\font|
command, $\mathtt{offset}\;n$ states that character~$c$ in the
font is referred to in \OMEGA\ by $n+c$. For example,
\begin{verbatim}
\font\ARfont=oar10 scaled 1728 offset 256 %% an Omega font
\end{verbatim}
states that the font \texttt{oar10} is to be loaded, using a scaling
factor of~1728, and that character~$c$ in the font will be referred to
in \OMEGA\ as $c+256$ or, equivalently, that character~$C$ in
\OMEGA\ refers to character $C-256$ in the font.
\paragraph{Extended virtual property files.}
The \texttt{.ovp} files are the same as \texttt{.vpl} files, except that
characters are no longer limited to 8~bits, but to 16~bits.
\paragraph{Extended virtual font files.}
The \texttt{.vf} file format already supports fonts with large
numbers of characters. However, not all drivers that read
\texttt{.vf} files properly support large fonts. Therefore, the
files generated from \texttt{.ovp} files are labeled \texttt{.ovf}
rather than~\texttt{.vf}.
\section{Character dimensions}
To simplify the acrobatics necessary for diacritic placement for
certain alphabets, four new primitives (\verb|\charwd|, \verb|\chardp|,
\verb|\charht|, and \verb|\charit|) are provided. When followed by
a integer designating a character, they respectively provide the
width, the depth, the height and the italic correction of the
character. For example,
\begin{verbatim}
\charwd120
\end{verbatim}
can be considered to be an abbreviation of
\begin{verbatim}
\setbox250=\hbox{P}\wd250
\end{verbatim}
but without the side effect of creating a box and putting something inside it.
\end{document}
|