1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
|
% splineperspective.mp
% L. Nobre G. and Troy Henderson
% 2007
input featpost3Dplus2D;
prologues := 1;
% Evaluate a cubic polynomial of the "standard" Bezier form at t
vardef evalbezier(expr p,t) =
save _a,_b,_c,_d;
numeric _a,_b,_c,_d;
_a:=(1-t)**3;
_b:=3*((1-t)**2)*t;
_c:=3*(1-t)*(t**2);
_d:=t**3;
(point 0 of p)*_a + (postcontrol 0 of p)*_b + (precontrol 1 of p)*_c +
(point 1 of p)*_d
enddef;
% Evaluate the derivative of a cubic polynomial of the "standard"
% Bezier form at t
vardef evalbezierderivative(expr p,t) =
save _a,_b,_c;
pair _a,_b,_c;
_a:=3*((point 1 of p) - 3*(precontrol 1 of p) + 3*(postcontrol 0 of p)
-(point 0 of p));
_b:=6*((precontrol 1 of p) - 2*(postcontrol 0 of p) + (point 0 of p));
_c:=3*((postcontrol 0 of p) - (point 0 of p));
_a*(t**2) + _b*t + _c
enddef;
% Evaluate a rational function of the "standard" cubic NURBS form at t
vardef evalnurbs(expr p,w,t) =
save _q,_r;
path _q,_r;
_q:=((cyanpart w)*(point 0 of p))..
controls ((magentapart w)*(postcontrol 0 of p))
and ((yellowpart w)*(precontrol 1 of p)) .. ((blackpart w)*(point 1 of p));
_r:=(cyanpart w,0) ..
controls (magentapart w,0) and (yellowpart w,0) .. (blackpart w,0);
evalbezier(_q,t)/(xpart evalbezier(_r,t))
enddef;
% Evaluate the derivative of a rational function of the "standard"
% cubic NURBS form at t
vardef evalnurbsderivative(expr p,w,t) =
save _a,_b,_c,_d,_q,_r;
pair _a,_b;
numeric _c,_d;
path _q,_r;
_q:=((cyanpart w)*(point 0 of p)) ..
controls ((magentapart w)*(postcontrol 0 of p))
and ((yellowpart w)*(precontrol 1 of p)) .. ((blackpart w)*(point 1 of p));
_r:=(cyanpart w,0) ..
controls (magentapart w,0) and (yellowpart w,0) .. (blackpart w,0);
_a:=evalbezier(_q,t);
_b:=evalbezierderivative(_q,t);
_c:=xpart evalbezier(_r,t);
_d:=xpart evalbezierderivative(_r,t);
(_b*_c-_a*_d)/(_c**2)
enddef;
% Fit a cubic polynomial of the "standard" Bezier form to a
% rational function of the
% "standard" cubic NURBS form with function and derivative agreement
% at tmin and tmax
vardef nurbstobezier(expr p,w,tmin,tmax) =
save _a,_b,_c,_d,_e;
pair _a,_b,_c,_d;
numeric _e;
_e:=(tmax-tmin)/3;
_a:=evalnurbs(p,w,tmin);
_b:=_a + _e*evalnurbsderivative(p,w,tmin);
_d:=evalnurbs(p,w,tmax);
_c:=_d - _e*evalnurbsderivative(p,w,tmax);
_a .. controls _b and _c .. _d
enddef;
% Reparameterize a cubic polynomial of the "standard" Bezier form by mapping
% the interval [tmin,tmax] to [0,1]
vardef beziertobezier(expr p,tmin,tmax) =
nurbstobezier(p,(1,1,1,1),tmin,tmax)
enddef;
% Evalute the L^2[0,1] norm of a cubic polynomial of the "standard"
% Bezier form
vardef beziernorm(expr p) =
save _a,_b,_c,_d,_i,_xabs,_yabs,_A,_B,_C,_D,_I;
numeric _a,_b,_c,_d,_i,_xabs,_yabs,_A,_B,_C,_D,_I;
_xabs:=max(
abs(xpart point 0 of p),
abs(xpart postcontrol 0 of p),
abs(xpart precontrol 1 of p),
abs(xpart point 1 of p));
_yabs:=max(
abs(ypart point 0 of p),
abs(ypart postcontrol 0 of p),
abs(ypart precontrol 1 of p),
abs(ypart point 1 of p));
if (_xabs > 0):
_a:=xpart((point 1 of p) - 3*(precontrol 1 of p)
+ 3*(postcontrol 0 of p) - (point 0 of p))/_xabs;
_b:=3*xpart((precontrol 1 of p) - 2*(postcontrol 0 of p)
+ (point 0 of p))/_xabs;
_c:=3*xpart((postcontrol 0 of p) - (point 0 of p))/_xabs;
_d:=xpart(point 0 of p)/_xabs;
_i:=(_a**2)/7 + ((_b)**2 + 2*_a*_c)/5 + (_a*_b + 2*_b*_d + (_c**2))/3 + (_a*_d + _b*_c)/2 + (_c*_d + (_d**2));
else:
_i:=0;
fi;
if (_yabs > 0):
_A:=ypart((point 1 of p) - 3*(precontrol 1 of p)
+ 3*(postcontrol 0 of p) - (point 0 of p))/_yabs;
_B:=3*ypart((precontrol 1 of p) - 2*(postcontrol 0 of p)
+ (point 0 of p))/_yabs;
_C:=3*ypart((postcontrol 0 of p) - (point 0 of p))/_yabs;
_D:=ypart(point 0 of p)/_yabs;
_I:=(_A**2)/7 + ((_B)**2 + 2*_A*_C)/5
+ (_A*_B + 2*_B*_D + (_C**2))/3 + (_A*_D + _B*_C)/2 + (_C*_D + (_D**2));
else:
_I:=0;
fi;
(_xabs*sqrt(_i)) ++ (_yabs*sqrt(_I))
enddef;
% Fit a cubic Bezier spline to a rational function of the "standard"
% cubic NURBS form by iteratively refining the Bezier curve.
% p is a 4 point path containing the 4 cubic NURBS (2D) control points
% w is a cmykcolor containing the 4 cubic NURBS weights
% EPS is the tolerance to stop refining each branch of the Bezier spline
vardef fitnurbswithbezier(expr p,w,EPS) =
save _a,_b,_c,_e,_error,_k,_q;
numeric _a,_b,_c,_error,_k;
path _q,_q[],_e;
_a:=0;
_b:=1;
_k:=1/sqrt(2);
_q:=(point 0 of p);
_q[4]:=nurbstobezier(p,w,_a,_b);
forever:
exitunless(_a<1);
_q[1]:=_q[4];
_c:=_b-_k*((_b-_a)**2);
_q[2]:=beziertobezier(_q[1],_a,_c);
_q[3]:=nurbstobezier(p,w,_a,_c);
_q[4]:=_q[3];
_e:=((point 0 of _q[2])-(point 0 of _q[3])) ..
controls ((postcontrol 0 of _q[2])-(postcontrol 0 of _q[3]))
and ((precontrol 1 of _q[2])-(precontrol 1 of _q[3])) ..
((point 1 of _q[2])-(point 1 of _q[3]));
_error:=beziernorm(_e)/beziernorm(_q[3]);
% show _error;
if (_error > EPS):
_b:=_c;
else:
_q[2]:=beziertobezier(_q[1],_c,_b);
_q[3]:=nurbstobezier(p,w,_c,_b);
_e:=((point 0 of _q[2])-(point 0 of _q[3])) ..
controls ((postcontrol 0 of _q[2])-(postcontrol 0 of _q[3]))
and ((precontrol 1 of _q[2])-(precontrol 1 of _q[3])) ..
((point 1 of _q[2])-(point 1 of _q[3]));
_error:=beziernorm(_e)/beziernorm(_q[3]);
if (_error > EPS):
_q:=_q .. controls (postcontrol 0 of _q[4])
and (precontrol 1 of _q[4]) .. (point 1 of _q[4]);
_a:=_c;
_q[4]:=_q[3];
else:
_q:=_q .. controls (postcontrol 0 of _q[1])
and (precontrol 1 of _q[1]) .. (point 1 of _q[1]);
_a:=_b;
_q[4]:=nurbstobezier(p,w,_a,1);
fi;
_b:=1;
fi;
endfor;
_q
enddef;
% This macro is used to provide a path to draw the NURBS
% It returns a path of length N passing through N+1 equally spaced
% (in time) points along the NURBS connected by line segments
vardef samplednurbs(expr p,w,N) =
save _a,_b,_c,_d,_n,_t,_q;
numeric _a,_b,_c,_d,_n,_t;
path _q;
_q:=(point 0 of p);
for _n=1 upto N:
_t:=_n/N;
_a:=(cyanpart w)*((1-_t)**3);
_b:=3*(magentapart w)*((1-_t)**2)*_t;
_c:=3*(yellowpart w)*(1-_t)*(_t**2);
_d:=(blackpart w)*(_t**3);
_q:=_q .. ((_a*(point 0 of p)+_b*(postcontrol 0 of p)
+_c*(precontrol 1 of p)+_d*(point 1 of p))/(_a+_b+_c+_d));
endfor;
( _q )
enddef;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Here's where the fun begins %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
beginfig(4);
% p contains the 4 control points of the rational function of the
% "standard" cubic NURBS form
path p;
p:=(297.63725,297.63725) .. controls (132.98871,286.67885) and (180.62535,152.16249) .. (429.54399,226.31157);
% w contains the 4 weights for the rational function of the
% "standard" cubic NURBS form
cmykcolor w;
w:=(2.15756,1.6709,0.8598,1.34647);
% EPS represents the minimum "acceptable error" to stop refining any
% given branch of the Bezier
Err:=0.040;
% q represents the Bezier spline fit to the rational function of the
% "standard" cubic NURBS form
path q;
q:=fitnurbswithbezier(p,w,Err);
% q:=fitnurbswithbezier(reverse p,(blackpart w,yellowpart w,magentapart w,cyanpart w),Err);
% draw the NURBS by sampling it at many points and connecting the
% samples via line segments
draw samplednurbs(p,w,20) withcolor red withpen pencircle scaled 2bp;
% draw the Bezier spline and its knots
draw q;
for n=0 upto length q:
draw fullcircle scaled 2 shifted point n of q withcolor blue;
endfor;
endfig;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
def casteljau( expr Za, Zb, Zc, Zd, Pt ) = %%%%%%%%%%%%%%%%%%% 2D or 3D
begingroup
save A, B, C, D;
numeric A, B, C, D;
A = (1-Pt)**3;
B = 3*((1-Pt)**2)*Pt;
C = 3*(1-Pt)*(Pt**2);
D = Pt**3;
( (A*Za+B*Zb+C*Zc+D*Zd) )
endgroup
enddef;
def twothr( expr Z ) = ( xpart Z, ypart Z, 0 ) enddef;
def twotwo( expr Z ) = rp( twothr( Z ) ) enddef;
def xoy( expr Z ) = rp( ( X(Z), Y(Z), 0 ) ) enddef;
def yoz( expr W ) = rp( ( 0, Y(W), Z(W) ) ) enddef;
def xoz( expr W ) = rp( ( X(W), 0, Z(W) ) ) enddef;
f := 0.35*(3,5,2);
Spread := 160;
def nextthirty( expr Za, Zb, Zc, Zd, Pt ) = %%% input 3D and return 2D
begingroup
save A, B, C, D, Tot, P;
numeric A, B, C, D, Tot;
color P;
P = N( f - viewcentr );
A = ((1-Pt)**3)*cdotprod( P, f-Za );
B = 3*((1-Pt)**2)*Pt*cdotprod( P, f-Zb );
C = 3*(1-Pt)*(Pt**2)*cdotprod( P, f-Zc );
D = (Pt**3)*cdotprod( P, f-Zd );
Tot = A+B+C+D;
( (A*rp(Za)+B*rp(Zb)+C*rp(Zc)+D*rp(Zd))/Tot )
endgroup
enddef;
vardef nurbstobezierold (expr p,w) =
save _a,_b,_c,_d,_j,_n,_r,_s,_t,_A,_B,_Aold,_Bold,_C,_D,_EPS,_J,_N;
_EPS:=0.00001;
_J:=10;
_Aold:=0;
_Bold:=0;
_A:=1;
_B:=1;
_s:=((_A-_Aold)++(_B-_Bold))/(_A++_B);
_j:=1; _r:=0;
forever:
exitunless((_s>_EPS) and (_j<_J));
_j:=_j+1;
_N:=2**_j;
_Aold:=_A;
_Bold:=_B;
_D:=_N+1/_N-21/_N/_N/_N-1/_N/_N/_N/_N/_N+20/_N/_N/_N/_N/_N/_N/_N;
_C:=120*(2+2/_N/_N-5/_N/_N/_N/_N)/_D;
_D:=60*(3+3/_N/_N+10/_N/_N/_N/_N)/_D;
_c:=5/_N/_N/_N/_N;
_a:=2+2/_N/_N-_c;
_b:=2-3/_N/_N+_c;
_c:=1+6/_N/_N+_c;
_A:=(-2*(cyanpart p)*_a+(blackpart p)*_b)/_c;
_B:=((cyanpart p)*_b-2*(blackpart p)*_a)/_c;
for _n=0 upto _N:
_t:=_n/_N;
_a:=(1-_t)**3;
_b:=((1-_t)**2)*_t;
_c:=(1-_t)*(_t**2);
_d:=_t**3;
_r:=((cyanpart w)*(cyanpart p)*_a + 3*(magentapart
w)*(magentapart p)*_b + 3*(yellowpart w)*(yellowpart p)*_c +
(blackpart w)*(blackpart p)*_d)/((cyanpart w)*_a + 3*(magentapart
w)*_b + 3*(yellowpart w)*_c + (blackpart w)*_d);
_A:=_A+(_C*_b-_D*_c)*_r;
_B:=_B+(_C*_c-_D*_b)*_r;
endfor;
_s:=((_A-_Aold)++(_B-_Bold))/(_A++_B);
endfor;
(_A,_B)/3
enddef;
def nurbsapprox( expr Pa, Pb, Pc, Pd ) =
begingroup
color Pn;
numeric wa, wb, wc, wd;
path returnpath;
pair xpair, ypair, ba, bb, bc, bd;
cmykcolor xcontrols, ycontrols;
Pn = N( f - viewcentr );
wa = cdotprod( Pn, f-Pa );
wb = cdotprod( Pn, f-Pb );
wc = cdotprod( Pn, f-Pc );
wd = cdotprod( Pn, f-Pd );
xcontrols = (xpart rp(Pa),xpart rp(Pb),xpart rp(Pc),xpart rp(Pd));
ycontrols = (ypart rp(Pa),ypart rp(Pb),ypart rp(Pc),ypart rp(Pd));
xpair = nurbstobezierold( xcontrols, (wa,wb,wc,wd) );
ypair = nurbstobezierold( ycontrols, (wa,wb,wc,wd) );
ba = rp( Pa );
bb = (xpart xpair, xpart ypair);
bc = (ypart xpair, ypart ypair);
bd = rp( Pd );
%show ba;
%show bb;
%show bc;
%show bd;
%show wa;
%show wb;
%show wc;
%show wd;
returnpath = ba..controls bb and bc..bd;
(returnpath)
endgroup
enddef;
def fitthreednurbswithtwodbezier( expr pa, pb, pc, pd, EPS ) =
begingroup
save _a,_b,_c,_e,_error,_k,_q,w,wa,wb,wc,wd,pn,za, zb, zc, zd;
numeric _a,_b,_c,_error,_k,wa,wb,wc,wd;
path p,_q,_q[],_e;
color pn;
pair za, zb, zc, zd;
cmykcolor w;
za = rp(pa); show za;
zb = rp(pb); show zb;
zc = rp(pc); show zc;
zd = rp(pd); show zd;
p = za .. controls zb and zc .. zd;
pn = N( f - viewcentr );
wa = cdotprod( pn, f-pa ); show wa;
wb = cdotprod( pn, f-pb ); show wb;
wc = cdotprod( pn, f-pc ); show wc;
wd = cdotprod( pn, f-pd ); show wd;
w = ( wa, wb, wc, wd );
_a:=0;
_b:=1;
_k:=1/sqrt(2);
_q:=(point 0 of p);
_q[4]:=nurbstobezier(p,w,_a,_b);
forever:
exitunless(_a<1);
_q[1]:=_q[4];
_c:=_b-_k*((_b-_a)**2);
_q[2]:=beziertobezier(_q[1],_a,_c);
_q[3]:=nurbstobezier(p,w,_a,_c);
_q[4]:=_q[3];
_e:=((point 0 of _q[2])-(point 0 of _q[3])) ..
controls ((postcontrol 0 of _q[2])-(postcontrol 0 of _q[3]))
and ((precontrol 1 of _q[2])-(precontrol 1 of _q[3])) ..
((point 1 of _q[2])-(point 1 of _q[3]));
_error:=beziernorm(_e)/beziernorm(_q[3]);
if (_error > EPS):
_b:=_c;
else:
_q[2]:=beziertobezier(_q[1],_c,_b);
_q[3]:=nurbstobezier(p,w,_c,_b);
_e:=((point 0 of _q[2])-(point 0 of _q[3])) ..
controls ((postcontrol 0 of _q[2])-(postcontrol 0 of _q[3]))
and ((precontrol 1 of _q[2])-(precontrol 1 of _q[3])) ..
((point 1 of _q[2])-(point 1 of _q[3]));
_error:=beziernorm(_e)/beziernorm(_q[3]);
if (_error > EPS):
_q:=_q .. controls (postcontrol 0 of _q[4])
and (precontrol 1 of _q[4]) .. (point 1 of _q[4]);
_a:=_c;
_q[4]:=_q[3];
else:
_q:=_q .. controls (postcontrol 0 of _q[1])
and (precontrol 1 of _q[1]) .. (point 1 of _q[1]);
_a:=_b;
_q[4]:=nurbstobezier(p,w,_a,1);
fi;
_b:=1;
fi;
endfor;
( _q )
endgroup
enddef;
beginfig(1);
numeric tu, num, i, fac;
pen pencontrol, penspline, penalytic;
color colcontrol, colspline, colorytic, colormark;
color w[];
pencontrol = pencircle scaled 4pt;
penspline = pencircle scaled 2pt;
penalytic = pencircle scaled 1pt;
colcontrol = black;
colspline = red;
colorytic = blue+green;
colormark = (0.8,0.8,0.1);
tu = 6cm;
num = 50;
fac = 1.2;
transform T;
T = identity scaled tu;
z21 = origin;
z22 = (1,0);
z23 = (1,1);
z24 = (0,1);
z1 = z21 transformed T;
z2 = z22 transformed T;
z3 = z23 transformed T;
z4 = z24 transformed T;
z6 = (fac,0) transformed T;
z8 = (0,fac) transformed T;
drawarrow z1--z6;
drawarrow z1--z8;
label.lrt( "x", z6 );
label.ulft( "y", z8 );
dotlabels.urt(1,2,3,4);
z11 = twotwo( z21 );
z12 = twotwo( z22 );
z13 = twotwo( z23 );
z14 = twotwo( z24 );
w1 = twothr( z21 );
w2 = twothr( z22 );
w3 = twothr( z23 );
w4 = twothr( z24 );
cartaxes( fac, fac, 0.3*fac );
draw z12--z13--z14 dashed evenly;
draw z2--z3--z4 dashed evenly;
% 1) Next line: MetaPost intrinsic path.
draw z1..controls z2 and z3..z4 withpen penspline withcolor colspline;
% 2) Next line: my implementation of the MetaPost intrinsic path.
draw z1 for i=1 upto num: ..casteljau(z1,z2,z3,z4,i/num) endfor
withpen penalytic withcolor colorytic;
% 5) Next line: hopefully, how it should be done. Yeah! Way to go!
draw z11 for i=1 upto num: ..nextthirty(w1,w2,w3,w4,i/num) endfor
withpen pencontrol withcolor colcontrol;
% 4) Next line: MetaPost intrinsic path of perspectived control points.
draw z11..controls z12 and z13..z14
withpen penspline withcolor colspline;
% 3) Next line: what should be drawn in perspective.
draw z11 for i=1 upto num: ..rp(casteljau(w1,w2,w3,w4,i/num)) endfor
withpen penalytic withcolor colorytic;
% 6) Next line: Troy's approximation
draw nurbsapprox(w1,w2,w3,w4) withcolor colormark;
endfig;
f := 1.05*(3,5,2);
Spread := 160;
beginfig(2);
color w[];
w1 = (1,0,0);
w2 = (0,0,1);
w3 = (0,1,0);
w4 = (1,1,1);
w5 = (1,1,0);
w6 = (1,0,1);
w7 = (0,1,1);
cartaxes( fac, fac, fac );
draw rp(w1)--rp(w2)--rp(w3)--rp(w4)--rp(w5)--rp(w1)--rp(w6)--
rp(w2)--rp(w7)--rp(w3)--rp(w5) dashed withdots;
draw rp(w6)--rp(w4)--rp(w7) dashed withdots;
draw xoy(w1) for i=1 upto num:
..xoy(casteljau(w1,w3,black,w5,i/num))
endfor withcolor colormark;
draw xoy(w1) for i=1 upto num: ..xoy(casteljau(w1,w2,w3,w4,i/num)) endfor;
draw xoz(w1) for i=1 upto num: ..xoz(casteljau(w1,w2,w3,w4,i/num)) endfor;
draw rp(w1) for i=1 upto num: ..nextthirty(w1,w2,w3,w4,i/num) endfor
withpen pencontrol withcolor colcontrol;
draw rp(w1) for i=1 upto num: ..rp(casteljau(w1,w2,w3,w4,i/num)) endfor
withpen penalytic withcolor colorytic;
draw nextthirty(w1,w2,w3,w4,0.5) withpen pencontrol withcolor red;
endfig;
beginfig(5);
color w[];
for i=1 upto 4:
w[i]=(uniformdeviate(1),uniformdeviate(1),uniformdeviate(1));
draw rp(w[i]) withpen pencontrol;
draw xoy(w[i]) withpen penspline;
draw xoz(w[i]) withpen penspline;
draw yoz(w[i]) withpen penspline;
endfor;
cartaxes( fac, fac, fac );
draw rp(w1)--rp(w2)--rp(w3)--rp(w4) withpen penspline dashed evenly;
draw xoy(w1)--xoy(w2)--xoy(w3)--xoy(w4) withpen penalytic dashed evenly;
draw xoz(w1)--xoz(w2)--xoz(w3)--xoz(w4) withpen penalytic dashed evenly;
draw yoz(w1)--yoz(w2)--yoz(w3)--yoz(w4) withpen penalytic dashed evenly;
draw xoy(w1) for i=1 upto num: ..xoy(casteljau(w1,w2,w3,w4,i/num)) endfor;
draw xoz(w1) for i=1 upto num: ..xoz(casteljau(w1,w2,w3,w4,i/num)) endfor;
draw yoz(w1) for i=1 upto num: ..yoz(casteljau(w1,w2,w3,w4,i/num)) endfor;
draw rp(w1) for i=1 upto num: ..nextthirty(w1,w2,w3,w4,i/num) endfor
withpen pencontrol withcolor colcontrol;
draw fitthreednurbswithtwodbezier(w1,w2,w3,w4,0.005)
withpen penalytic withcolor red;
endfig;
beginfig(3);
path xyp, xzp;
xyp = origin..tension 2 and 0.75..right...(right+up+right+up);
xzp = origin..tension 2 and 0.75..(right+up)...(right+up+right);
z1 = postcontrol 0 of xyp;
z2 = postcontrol 0 of xzp;
z3 = precontrol 1 of xyp;
z4 = precontrol 1 of xzp;
% show (xpart z1);
% show (xpart z2);
% show (xpart z3);
% show (xpart z4);
draw xyp;
draw xzp;
endfig;
end.
|