1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
|
\documentclass{article} % article is NOT the original style
\usepackage{makeidx}
\usepackage{fancyvrb}
\usepackage{ctabbing}
\RecustomVerbatimEnvironment
{verbatim}{BVerbatim}{baseline=c}
\usepackage{epsf}
\usepackage[textwidth=6in,textheight=8.75in]{geometry}
\usepackage{tocloft}
\setlength\cftbeforesecskip{1.5ex plus 0.2ex minus 0.1ex}
\makeatletter
\def\logo{\global\font\logo=logo10 at1\@ptsize\p@ \logo}
\def\logosl{\global\font\logosl=logosl10 at1\@ptsize\p@ \logosl}
\def\MF{{\ifdim \fontdimen\@ne\font >\z@ \def\logo{\logosl}\fi
{\logo META}\-{\logo FONT}}}
\makeatother
% \def\MF{{META\-FONT}} % Replacement for the above when using times.sty
\newfont\psyvii{rpsyr at 7pt}
\newcommand\reg{$^{\hbox{\psyvii\char'322}}$} % Registered trademark
\newcommand\descr[1]{{\langle\hbox{#1}\rangle}}
\newcommand\invisgap{\nobreak\hskip0pt\relax}
\newcommand\tdescr[1]{$\langle$\invisgap#1\invisgap$\rangle$}
\newcommand\pl{\dag}
\newcommand\bx{\ddag}
\newcommand\mathcenter[1]{\vcenter{\hbox{#1}}}
\renewcommand{\topfraction}{.85}
\renewcommand{\bottomfraction}{.7}
\renewcommand{\textfraction}{.15}
\renewcommand{\floatpagefraction}{.66}
\renewcommand{\dbltopfraction}{.66}
\renewcommand{\dblfloatpagefraction}{.66}
\setcounter{topnumber}{9}
\setcounter{bottomnumber}{9}
\setcounter{totalnumber}{20}
\setcounter{dbltopnumber}{9}
\makeindex
\begin{document}
\VerbatimFootnotes
\author{John D. Hobby}
\title{A User's Manual for MetaPost}
\date{}
\maketitle
\begin{abstract}
The MetaPost system implements a picture-drawing language very much like Knuth's
\MF\ except that it outputs PostScript commands instead of run-length-encoded
bitmaps. MetaPost is a powerful language for producing figures for documents
to be printed on PostScript printers. It provides easy access to all the
features of PostScript and it includes facilities for integrating text and
graphics.
This document serves as an introductory user's manual. It does not require
knowledge of \MF\ or access to {\it The \MF book}, but both are beneficial.
An appendix explains the differences between MetaPost and \MF.
\end{abstract}
\thispagestyle{empty}
\newpage
\setcounter{page}{1}
\pagestyle{plain}
\pagenumbering{roman}
\tableofcontents
\newpage
\setcounter{page}{1}
\pagestyle{headings}
\pagenumbering{arabic}
\setlength{\parskip}{1ex plus 0.5ex minus 0.2ex}
\section{Introduction}
\label{intro}
MetaPost is a programming language much like Knuth's \MF\footnote{\MF\ is a
trademark of Addison Wesley Publishing company.}\index{metafont?\MF}~\cite{kn:c}
except that it outputs PostScript programs instead of bitmaps. Borrowed from \MF\
are the basic tools for creating and manipulating pictures. These include numbers,
coordinate pairs, cubic splines, affine transformations, text strings, and boolean
quantities. Additional features facilitate integrating text and graphics and
accessing special features of PostScript\footnote{PostScript is a
trademark of Adobe Systems Inc.}\index{PostScript} such as clipping, shading, and
dashed lines.
Another feature borrowed from \MF\ is the ability to solve linear equations
that are given implicitly, thus allowing many programs to be written in a
largely declarative style. By building complex operations
from simpler ones, MetaPost achieves both power and flexibility.
MetaPost is particularly
well-suited to generating figures for technical documents where some aspects of a
picture may be controlled by mathematical or geometrical constraints that are
best expressed symbolically. In other words, MetaPost is not meant to take the
place of a freehand drawing tool or even an interactive graphics editor.
It is really a programming language for generating graphics, especially figures
for \TeX\footnote{\TeX\ is a trademark of the American Mathematical
Society.}\index{TeX?\TeX} and troff\index{troff} documents.
The figures can be integrated into a \TeX\ document via a freely available
program called {\tt dvips}\index{dvips} as shown in
Figure~\ref{fig0}.\footnote{The C
source for {\tt dvips} comes with the web2c \TeX\ distribution. Similar programs
are available from other sources.} A similar procedure works with troff: the
{\tt dpost} output processor includes PostScript figures when they are
requested via troff's {\tt \char`\\X} command.
\begin{figure}[htp]
$$ \def\fbox#1{\hbox{\vrule
\vbox{\hrule\kern5pt\hbox{\kern5pt\hbox{#1}\kern5pt}\kern5pt\hrule}%
\vrule}}
\vbox{
\halign{$\hfil#\hfil$&\hskip1in$\hfil#\hfil$\cr
\hbox{Figures in MetaPost}&
\hbox{\TeX\ Document}
\cr
\bigg\downarrow&
\bigg\downarrow
\cr
\fbox{\vrule height.2in depth.133in width0pt
\kern .1in MetaPost\kern.1in}
&
\fbox{\vrule height.2in depth.133in width0pt
\kern .167in \TeX\kern.167in}
\cr
\bigg\downarrow&
\bigg\downarrow
\cr
\hbox{Figures in PostScript}&
\hbox{{\tt dvi} file}
\cr
\bigg\downarrow&
\bigg\downarrow
\cr
\fbox{\vrule height.2in depth.133in width0pt
\kern 1in {\tt dvips} \kern1in}
\span\omit\cr
\bigg\downarrow\span\omit\cr
\hbox{PostScript}\span\omit\cr}}
$$
\caption[A diagram of the processing for a document with MetaPost figures]
{A diagram of the processing for a \TeX\ document with figures
in MetaPost}
\label{fig0}
\end{figure}
To use MetaPost, you prepare an input file containing MetaPost code and then
invoke MetaPost, usually by giving a command of the form\index{mp?\texttt{mp}}
$$ {\tt mp}\, \descr{file name} $$
(This syntax could be system dependent).
MetaPost input files\index{files!input} normally have names ending ``{\tt .mp}''
but this part of the name can be omitted when invoking MetaPost. For an input
file {\tt foo.mp}
$$ \hbox{\tt mp foo} $$
invokes MetaPost and produces output files with names like {\tt foo.1} and
{\tt foo.2}. Any terminal I/O is summarized in a
transcript\index{files!transcript}\index{transcript file}
file called {\tt foo.log}. This includes
error messages and any MetaPost commands entered interactively.%
\footnote{A {\tt *}\index{*?\texttt{*}} prompt is used for interactive input and a
{\tt **}\index{**?\texttt{**}} prompt
indicates that an input file name is expected. This can be avoided by invoking
MetaPost on a file that ends with an {\tt end}\index{end?\texttt{end}} command.}
The transcript file starts with a banner line that tells what version of MetaPost
you are using.
This document introduces the MetaPost language, beginning with the features that
are easiest to use and most important for simple applications. The first few
sections describe the language as it appears to the novice user with key parameters
at their default values. Some features described in these sections are part of a
predefined macro package called Plain. Later sections summarize the
complete language and distinguish between primitives and preloaded macros
from the Plain macro package\index{Plain macros}.
Since much of the language is identical to Knuth's \MF, the appendix gives a
detailed comparison so that advanced users can learn more about MetaPost by
reading {\sl The \MF book\/}.~\cite{kn:c}
\section{Basic Drawing Statements}
\label{basic}
The simplest drawing statements are the ones that generate straight lines.
Thus\index{draw?\texttt{draw}}\index{--?\texttt{--}}
$$ \hbox{\verb|draw (20,20)--(0,0)|} $$
draws\index{draw?\texttt{draw}} a diagonal line and
$$ \hbox{\verb|draw (20,20)--(0,0)--(0,30)--(30,0)--(0,0)|} $$
draws a polygonal line like this:
$$ \epsfbox{manfig.0} $$
What is meant by coordinates like \verb|(30,0)|? MetaPost uses the same default
coordinate system that PostScript\index{PostScript} does. This means that
\verb|(30,0)| is 30 units
to the right of the origin, where a unit is $1\over72$ of an inch. We shall refer
to this default unit as a
{\sl PostScript point\/}\index{PostScript!point}\index{point!PostScript}
to distinguish it from the standard printer's point\index{point!printer's}
which is $1\over72.27$ inches.
MetaPost uses the same names for units of measure that \TeX\ and \MF\ do. Thus
\verb|bp|\index{bp?\texttt{bp}}\label{Dbp} refers to PostScript points (``big points'')
and \verb|pt|\index{pt?\texttt{pt}}\label{Dpt} refers to printer's points.
Other units of measure
include \verb|in|\index{in?\texttt{in}}\label{Din} for inches,
\verb|cm|\index{cm?\texttt{cm}}\label{Dcm} for centimeters,
and \verb|mm|\index{mm?\texttt{mm}}\label{Dmm} for
millimeters. For example,
$$ \hbox{\verb|(2cm,2cm)--(0,0)--(0,3cm)--(3cm,0)--(0,0)|} $$
generates a larger version of the above diagram. It is OK to say \verb|0| instead
\verb|0cm| because {\tt cm} is really just a conversion factor and {\tt 0cm} just
multiplies the conversion factor by zero. (MetaPost understands constructions
like {\tt 2cm}\index{multiplication!implicit} as shorthand for \verb|2*cm|).
It is often convenient to introduce your own scale factor, say $u$.
Then you can define coordinates in terms of $u$ and decide later whether you want
to begin with \verb|u=1cm| or \verb|u=0.5cm|. This gives you control over what
gets scaled and what does not so that changing $u$ will not affect features such
as line widths.
There are many ways to affect the appearance of a line besides just changing its
width, so the width-control mechanisms allow a lot of generality that we do not need
yet.
This leads to the strange looking statement\index{pickup?\texttt{pickup}}\index{pencircle?\texttt{pencircle}}%
\index{scaled?\texttt{scaled}}
$$ \hbox{\verb|pickup pencircle scaled 4pt|} $$
for setting the line width for subsequent \verb|draw| statements to 4 points.
(This is about eight times the default line width).
With such a wide line width, even a line of zero length comes out as a big bold
dot\index{dots}. We can use this to make a grid of bold dots by having one
\verb|draw| statement
for each grid point. Such a repetitive sequence of \verb|draw| statements is
best written as a pair of nested loops:\index{loops}%
\index{for?\texttt{for}}\index{endfor?\texttt{endfor}}
$$\begin{verbatim}
for i=0 upto 2:
for j=0 upto 2: draw (i*u,j*u); endfor
endfor
\end{verbatim}
$$
The outer loop runs for $i=0,1,2$ and the inner loop runs for $j=0,1,2$.
The result is a three-by-three grid of bold dots as shown in Figure~\ref{fig1}.
The figure also includes a larger version of the polygonal line diagram that we
saw before.
\begin{figure}[htp]
$$ \begin{verbatim}
beginfig(2);
u=1cm;
draw (2u,2u)--(0,0)--(0,3u)--(3u,0)--(0,0);
pickup pencircle scaled 4pt;
for i=0 upto 2:
for j=0 upto 2: draw (i*u,j*u); endfor
endfor
endfig;
\end{verbatim}
\quad \mathcenter{\epsfbox{manfig.2}}
$$
\caption{MetaPost commands and the resulting output}
\label{fig1}
\end{figure}
Note that the program in Figure~\ref{fig1} starts with
\verb|beginfig(2)|\index{beginfig?\texttt{beginfig}} and
ends with \verb|endfig|\index{endfig?\texttt{endfig}}.
These are macros that perform various administrative
functions and ensure that the results of all the \verb|draw| statements get
packaged up and translated into PostScript. A MetaPost input file normally
contains a sequence of \verb|beginfig|, \verb|endfig| pairs with an
{\tt end}\index{end?\texttt{end}}
statement after the last one. If this file is named {\tt fig.mp}, the output
from \verb|draw| statements between \verb|beginfig(1)| and the next \verb|endfig|
is written in a file {\tt fig.1}\index{files!output}.
In other words, the numeric argument to the \verb|beginfig| macro determines the
name of the corresponding output file.
What does one do with all the PostScript files? They can be included as figures
in a \TeX\index{TeX?\TeX} or troff\index{troff} document if you have an
output driver that can handle
encapsulated PostScript figures. If your standard \TeX\ macro directory contains
a file {\tt epsf.tex}\index{epsf.tex?\texttt{epsf.tex}}, you can probably include {\tt fig.1}
in a \TeX\ document as follows:
$$ \begin{array}{c}
\hbox{\verb|\input epsf |}\\
\vdots\\
\hbox{\verb|$$\epsfbox{fig.1}$$|}
\end{array}
$$
The \verb|\epsfbox| macro figures out how much room to leave for the figure and
uses \TeX's \verb|\special| command to insert a request for {\tt fig.1}.
It is also possible to include MetaPost output in a {\em troff\/} document.
The {\tt -mpictures\/} macro package defines a command \verb|.BP| that includes
an encapsulated PostScript file. For instance, the {\em troff\/} command
$$ \hbox{\verb|.BP fig.1 3c 3c|} $$
includes {\tt fig.1} and specifies that its height and width are both three
centimeters.
\section{Curves}
\label{curves}
MetaPost is perfectly happy to draw curved lines as well as straight ones.
A \verb|draw| statement with the points separated by \verb|..| draws
a smooth curve through the points. For example consider the result of
$$ \hbox{\verb|draw z0..z1..z2..z3..z4|} $$
after defining five points as follows:
$$\begin{verbatim}
z0 = (0,0); z1 = (60,40);
z2 = (40,90); z3 = (10,70);
z4 = (30,50);
\end{verbatim}
$$
Figure~\ref{fig2} shows the curve with points \verb|z0| through \verb|z4|
labeled.
\begin{figure}[htp]
$$ \epsfbox{manfig.3}
$$
\caption[A curve through points 0, 1, 2, 3, and 4]
{The result of {\tt draw z0..z1..z2..z3..z4}}
\label{fig2}
\end{figure}
There are many other ways to draw a curved path through the same five points.
To make a smooth closed curve, connect \verb|z4| back to the beginning by
appending \verb|..cycle|\index{cycle?\texttt{cycle}} to the \verb|draw| statement as shown
in Figure~\ref{fig3}a. It is also possible in a single \verb|draw| statement
to mix curves and straight lines as shown in Figure~\ref{fig3}b. Just use
\verb|--| where you want straight lines and \verb|..| where you want curves.
Thus
$$ \hbox{\verb|draw z0..z1..z2..z3--z4--cycle|} $$
produces a curve through points 0,~1, 2, and~3, then a polygonal line from
point~3 to point~4 and back to point~0. The result is essentially the same
as having two draw statements
\begin{eqnarray*}
\hbox{\verb|draw z0..z1..z2..z3|}\\
\noalign{\hbox{and}}
\hbox{\verb|draw z3--z4--z0|}
\end{eqnarray*}
\begin{figure}[htp]
$$ {\epsfbox{manfig.104} \atop (a)}
\qquad {\epsfbox{manfig.204} \atop (b)}
$$
\caption[Closed curves through five points]
{(a)~The result of {\tt draw z0..\linebreak[0]z1..\linebreak[0]%
z2..\linebreak[0]z3..\linebreak[0]z4..\linebreak[0]cycle};
(b)~the result of {\tt draw z0..\linebreak[0]z1..\linebreak[0]%
z2..\linebreak[0]z3--\linebreak[0]z4--\linebreak[0]cycle}.}
\label{fig3}
\end{figure}
\subsection{B\'ezier Cubic Curves}
When MetaPost is asked to draw a smooth curve through a sequence of points,
it constructs a piecewise cubic curve with continuous slope and approximately
continuous curvature\index{curvature}. This means that a path specification such
as
$$ \hbox{\verb|z0..z1..z2..z3..z4..z5|} $$
results in a curve that can be defined parametrically\index{parameterization}
as $(X(t),Y(t))$ for
$0\le t\le5$, where $X(t)$ and $Y(t)$ are piecewise cubic functions. That is,
there is a different pair of cubic functions for each integer-bounded
$t$-interval. If ${\tt z0}=(x_0,y_0)$, ${\tt z1}=(x_1,y_1)$,
${\tt z2}=(x_2,y_2)$, \ldots, MetaPost selects
B\'ezier control\index{control points} points
$(x_0^+,y_0^+)$, $(x_1^-,y_1^-)$, $(x_1^+,y_1^+)$, \ldots, where
\begin{eqnarray*}
X(t+i) &=& (1-t)^3x_i + 3t(1-t)^2x_i^+ + 3t^2(1-t)x_{i+1}^- + t^3x_{i+1},\\
Y(t+i) &=& (1-t)^3y_i + 3t(1-t)^2y_i^+ + 3t^2(1-t)y_{i+1}^- + t^3y_{i+1}
\end{eqnarray*}
for $0\le t\le1$. The precise rules for choosing the B\'ezier control points
are described in \cite{ho:splin} and in {\sl The \MF book\/}~\cite{kn:c}.
In order for the path to have a continuous slope at $(x_i,y_i)$, the incoming
and outgoing directions at $(X(i),Y(i))$ must match. Thus the vectors
$$ (x_i-x_i^-,\,y_i-y_i^-) \qquad \hbox{and}
\qquad (x_i^+-x_i,\,y_i^+-y_i)
$$
must have the same direction; i.e., $(x_i,y_i)$ must be on the line segment
between $(x_i^-,y_i^-)$ and $(x_i^+,y_i^+)$. This situation is illustrated
in Figure~\ref{fig4} where the B\'ezier control points selected by MetaPost
are connected by dashed lines. For those who are familiar with the interesting
properties of this construction, MetaPost allows the control points to be
specified directly in the following format:\index{controls?\texttt{controls}}
$$ \begin{verbatim}
draw (0,0)..controls (26.8,-1.8) and (51.4,14.6)
..(60,40)..controls (67.1,61.0) and (59.8,84.6)
..(40,90)..controls (25.4,94.0) and (10.5,84.5)
..(10,70)..controls ( 9.6,58.8) and (18.8,49.6)
..(30,50);
\end{verbatim}
$$
\begin{figure}[htp]
$$ \epsfbox{manfig.5}
$$
\caption[A curve and the control polygon]
{The result of {\tt draw z0..z1..z2..z3..z4} with the
automatically-selected B\'ezier control polygon illustrated by dashed
lines.}
\label{fig4}
\end{figure}
\subsection{Specifying Direction, Tension, and Curl}
\label{tenscurl}
MetaPost provides many ways of controlling the behavior of a curved path without
actually specifying the control points. For instance, some points on the path
may be selected as vertical or horizontal extrema. If \verb|z1| is to be a
horizontal extreme and \verb|z2| is to be a vertical extreme, you can specify
that $(X(t),Y(t))$ should go upward at \verb|z1| and to the left at \verb|z2|:
$$ \hbox{\verb|draw z0..z1{up}..z2{left}..z3..z4;|} $$
The resulting shown in Figure~\ref{fig5} has the desired vertical and horizontal
directions at \verb|z1| and \verb|z2|, but it does not look as smooth as the
curve in Figure~\ref{fig2}. The reason is the large discontinuity in
curvature\index{curvature}
at \verb|z1|. If it were not for the specified direction at \verb|z1|, the
MetaPost interpreter would have chosen a direction designed to make the curvature
above \verb|z1| almost the same as the curvature below that point.
\begin{figure}[htp]
$$ \epsfbox{manfig.6}
$$
\caption[A curve and the control polygon]
{The result of {\tt draw z0..z1\char`\{up\char`\}..z2\char`\{left\char`\}%
..z3..z4}.}
\label{fig5}
\end{figure}
How can the choice of directions at given points on a curve determine whether
the curvature will be continuous? The reason is that curves used in MetaPost
come from a family where a path is determined by its endpoints and the
directions there. Figures \ref{fig6} and~\ref{fig7} give a good idea of what
this family of curves is like.
\begin{figure}[htp]
$$ \mathcenter{\epsfbox{manfig.7}} \quad
\begin{verbatim}
beginfig(7)
for a=0 upto 9:
draw (0,0){dir 45}..{dir -10a}(6cm,0);
endfor
endfig;
\end{verbatim}
$$
\caption{A curve family and the MetaPost instructions for generating it}
\label{fig6}
\end{figure}
\begin{figure}[htp]
$$ \mathcenter{\epsfbox{manfig.8}} \quad
\begin{verbatim}
beginfig(8)
for a=0 upto 7:
draw (0,0){dir 45}..{dir 10a}(6cm,0);
endfor
endfig;
\end{verbatim}
$$
\caption{Another curve family with the corresponding MetaPost instructions}
\label{fig7}
\end{figure}
Figures \ref{fig6} and~\ref{fig7} illustrate a few new MetaPost features.
The first is the {\tt dir}\index{dir?\texttt{dir}}\label{Ddirop} operator that takes an
angle in degrees
and generates a unit vector in that direction. Thus \verb|dir 0| is equivalent
to {\tt right}\index{right?\texttt{right}}\label{Dright} and \verb|dir 90| is equivalent to
{\tt up}\index{up?\texttt{up}}\label{Dup}. There are also predefined direction vectors
{\tt left}\index{left?\texttt{left}}\label{Dleft}
and {\tt down}\index{down?\texttt{down}}\label{Ddown} for {\tt dir 180}
and {\tt dir 270}.
The direction
vectors given in \verb|{}| can be of any length, and they can come before a
point as well as after one. It is even possible for a path specification
to have directions given before and after a point. For example a path
specification containing
$$ \hbox{\verb|..{dir 60}(10,0){up}..|} $$
produces a curve with a corner at $(10,0)$.
Note that some of the curves in Figure~\ref{fig6} have points of
inflection\index{inflections}.
This is necessary in order to produce smooth curves in situations like
Figure~\ref{fig3}a, but it is probably not desirable when dealing with vertical
and horizontal extreme points as in Figure~\ref{fig8}a. If \verb|z1| is supposed
to be the topmost point on the curve, this can be achieved by using
\verb|...|\index{...?\texttt{...}}
instead of \verb|..| in the path specification as shown in Figure~\ref{fig8}b.
The meaning of \verb|...| is ``choose an inflection-free path between these
points unless the endpoint directions make this impossible.'' (It would be
possible to avoid inflections in Figure~\ref{fig6}, but not in Figure~\ref{fig7}).
\begin{figure}[htp]
$$ {\mathcenter{\epsfbox{manfig.109}} \atop
\hbox{\verb|draw z0{up}..z1{right}..z2{down}|}}
\quad
{\mathcenter{\epsfbox{manfig.209}} \atop
\hbox{\verb|draw z0{up}...z1{right}...z2{down}|}}
$$
\caption{Two {\tt draw} statements and the resulting curves.}
\label{fig8}
\end{figure}
Another way to control a misbehaving path is to increase the
``tension''\index{tension} parameter.
Using \verb|..| in a path specification sets the tension parameter to the default
value~1. If this makes some part of a path a little too wild, we can selectively
increase the tension. If Figure~\ref{fig9}a is considered ``too wild,'' a
{\tt draw} statement of the following form increases the tension between
{\tt z1} and {\tt z2}:
$$ \hbox{\verb|draw z0..z1..tension 1.3..z2..z3|} $$
This produces Figure~\ref{fig9}b. For an asymmetrical effect like
Figure~\ref{fig9}c, the \verb|draw| statement becomes
$$ \hbox{\verb|draw z0..z1..tension 1.6 and 1..z2..z3|} $$
The tension parameter can be less than one, but it must be at least $3\over4$.
\begin{figure}[htp]
$$ {\mathcenter{\epsfbox{manfig.110}} \atop (a)}
\quad
{\mathcenter{\epsfbox{manfig.210}} \atop (b)}
\quad
{\mathcenter{\epsfbox{manfig.310}} \atop (c)}
$$
\caption[Effects of changing the tension parameter]
{Results of {\tt draw z0..z1..tension} $\alpha$ {\tt and} $\beta$
{\tt ..z2..z3} for various $\alpha$ and $\beta$:
(a)~$\alpha=\beta=1$; (b)~$\alpha=\beta=1.3$;
(c)~$\alpha=1.5$, $\beta=1$.}
\label{fig9}
\end{figure}
MetaPost paths also have a parameter called ``curl''\index{curl?\texttt{curl}} that affects
the ends of a
path. In the absence of any direction specifications, the first and last segments
of a non-cyclic path are approximately circular arcs as in the $c=1$ case of
Figure~\ref{fig10}. To use a different value for the curl parameter, specify
\verb|{curl c}| for some other value of $c$. Thus
$$ \hbox{\verb|draw z0{curl c}..z1..{curl c}z2|} $$
sets the curl parameter for \verb|z0| and \verb|z2|. Small values of the curl
parameter reduce the curvature\index{curvature} at the indicated path endpoints,
while large values
increase the curvature as shown in Figure~\ref{fig10}. In particular, a curl value
of zero makes the curvature approach zero.
\begin{figure}[htp]
$$ {\mathcenter{\epsfbox{manfig.111}} \atop c=0}
\qquad
{\mathcenter{\epsfbox{manfig.211}} \atop c=1}
\qquad
{\mathcenter{\epsfbox{manfig.311}} \atop c=2}
\qquad
{\mathcenter{\epsfbox{manfig.411}} \atop c=\infty}
$$
\caption[Effects of changing the curl parameter]
{Results of {\tt draw z0\char`\{curl c\char`\}..z1..%
\char`\{curl c\char`\}z2} for various values
of the curl parameter~$c$.}
\label{fig10}
\end{figure}
\subsection{Summary of Path Syntax}
There are a few other features of MetaPost path syntax, but they are relatively
unimportant. Since \MF\ uses the same path syntax, interested readers can refer
to \cite[chapter 14]{kn:c}. The summary of path syntax in Figure~\ref{sypath}
includes everything discussed so far including the \verb|--| and \verb|...|
constructions which \cite{kn:c} shows to be macros rather than primitives.
A few comments on the semantics are in order here: If there is a non-empty
$\descr{direction specifier}$ before a $\descr{path knot}$ but not after it,
or vice versa, the specified direction (or curl amount) applies to both the
incoming and outgoing path segments. A similar arrangement applies when a
$\descr{controls}$ specification gives only one $\descr{pair primary}$.
Thus
$$ \hbox{\verb|..controls (30,20)..|} $$
is equivalent to
$$ \hbox{\verb|...controls (30,20) and (30,20)..|} $$
\begin{figure}[htp]
\begin{ctabbing}
$\descr{path expression} \rightarrow
\descr{path subexpression}$\\
\qquad \= ${}\mid \descr{path subexpression} \descr{direction specifier}$\\
\> ${}\mid \descr{path subexpression} \descr{path join}$ \verb|cycle|\\
$\descr{path subexpression} \rightarrow
\descr{path knot}$\\
\> ${}\mid \descr{path expression} \descr{path join} \descr{path knot}$\\
$\descr{path join} \rightarrow
\hbox{\verb|--|}$\\
\> ${}\mid \descr{direction specifier} \descr{basic path join}
\descr{direction specifier}$\\
$\descr{direction specifier} \rightarrow
\descr{empty}$\\
\> ${}\mid {}$\verb|{curl| $\descr{numeric expression}$\verb|}|\\
\> ${}\mid {}$\verb|{|$\descr{pair expression}$\verb|}|\\
\> ${}\mid {}$\verb|{|$\descr{numeric expression}$\verb|,|%
$\descr{numeric expression}$\verb|}|\\
$\descr{basic path join} \rightarrow
\hbox{\verb|..|}
\mid \hbox{\verb|...|}
\mid \hbox{\verb|..|}\descr{tension}\hbox{\verb|..|}
\mid \hbox{\verb|..|}\descr{controls}\hbox{\verb|..|}$\\
$\descr{tension} \rightarrow
\hbox{\verb|tension|}\descr{numeric primary}$\\
\> ${}\mid \hbox{\verb|tension|}\descr{numeric primary}
\hbox{\verb|and|}\descr{numeric primary}$\\
$\descr{controls} \rightarrow
\hbox{\verb|controls|}\descr{pair primary}$\\
\> ${}\mid \hbox{\verb|controls|}\descr{pair primary}
\hbox{\verb|and|}\descr{pair primary}$
\end{ctabbing}
\caption{The syntax for path construction}
\label{sypath}
\end{figure}
A pair of coordinates like \verb|(30,20)| or a \verb|z| variable that represents a
coordinate pair is what Figure~\ref{sypath} calls a $\descr{pair primary}$.
A $\descr{path knot}$ is similar except that it can take on other forms such as
a path expression in parentheses. Primaries and expressions of various types will
be discussed in full generality in Section~\ref{exprs}.
\section{Linear Equations}
\label{lin.eq}
An important feature taken from \MF\ is the ability to solve linear
equations so that programs can be written in a partially declarative fashion.
For example, the MetaPost interpreter can read
$$ \hbox{\verb|a+b=3; 2*a=b+3;|} $$
and deduce that $a=2$ and $b=1$. The same equations can be written slightly more
compactly by stringing them together with multiple equal signs:
$$ \hbox{\verb|a+b = 2*a-b = 3;|} $$
Whichever way you give the equations, you can then give the command\index{show?\texttt{show}}
$$ \hbox{\tt show a,b;} $$
to see the values of {\tt a} and {\tt b}. MetaPost responds by typing
$$\begin{verbatim}
>> 2
>> 1
\end{verbatim}
$$
Note that {\tt =}\index{=?\texttt{=}} is not an assignment operator; it simply declares
that the left-hand side equals the right-hand side. Thus {\tt a=a+1} produces an
error message complaining about an
``inconsistent equation\index{Inconsistent equation?\texttt{Inconsistent equation}}.'' The way to increase
the value of {\tt a} is to use the assignment\index{assignment} operator
{\tt :=}\index{:=?\texttt{:=}} as follows:
$$ \hbox{\tt a:=a+1;} $$
In other words, {\tt :=} is for changing existing values while {\tt =} is for
giving linear equations to solve.
There is no restriction against mixing equations and assignment operations as in
the following example:
$$ \hbox{\tt a = 2; b = a; a := 3; c = a;} $$
After the first two equations set {\tt a} and~{\tt b} equal to 2, the assignment
operation changes {\tt a} to~3 without affecting {\tt b}. The final value of
{\tt c} is 3 since it is equated to the new value of {\tt a}. In general, an
assignment operation is interpreted by first computing the new value, then
eliminating the old value from all existing equations before actually assigning
the new value.
\subsection{Equations and Coordinate Pairs}
MetaPost can also solve linear equations involving coordinate pairs. We have
already seen many trivial examples of this in the form of equations like
$$ \hbox{\verb|z1=(0,.2in)|} $$
Each side of the equation must be formed by adding or subtracting coordinate pairs
and multiplying or dividing them by known numeric quantities. Other ways of
naming pair-valued variables will be discussed later, but the
${\tt z}\descr{number}$\index{z convention?{\tt z} convention} is convenient because it is
an abbreviation for
$$ \hbox{\tt (x}\descr{number} \hbox{\tt, y}\descr{number}\hbox{\tt)} $$
This makes it possible to give values to \verb|z| variables by giving equations
involving their coordinates. For instance, points {\tt z1}, {\tt z2}, {\tt z3},
and~{\tt z6} in Figure~\ref{fig12} were initialized via the following equations:
\begin{eqnarray*}
&&\hbox{\verb|z1=-z2=(.2in,0);|} \\
&&\hbox{\verb|x3=-x6=.3in;|} \\
&&\hbox{\verb|x3+y3=x6+y6=1.1in;|}
\end{eqnarray*}
Exactly the same points could be obtained by setting their values directly:
$$ \begin{verbatim}
z1=(.2in,0); z2=(-.2in,0);
z3=(.3in,.6in); z6=(-.3in,1.2in);
\end{verbatim}
$$
After reading the equations, the MetaPost interpreter knows the values of
{\tt z1}, {\tt z2},
{\tt z3}, and~{\tt z6}. The next step in the construction of Figure~\ref{fig12}
is to define points {\tt z4} and {\tt z5} equally spaced along the line from
{\tt z3} to {\tt z6}. Since this operation comes up often, MetaPost has a special
syntax for it. This mediation construction\index{mediation}
$$ \hbox{\verb|z4=1/3[z3,z6]|} $$
means that {\tt z4} is $1\over3$ of the way from $z3$ to $z6$; i.e.,
$$ {\tt z4}={\tt z3}+{1\over3}({\tt z6}-{\tt z3}). $$
Similarly
$$ \hbox{\verb|z5=2/3[z3,z6]|} $$
makes {\tt z5} $2\over3$ of the way from $z3$ to $z6$.
\begin{figure}[htp]
$$ \begin{verbatim}
beginfig(13);
z1=-z2=(.2in,0);
x3=-x6=.3in;
x3+y3=x6+y6=1.1in;
z4=1/3[z3,z6];
z5=2/3[z3,z6];
z20=whatever[z1,z3]=whatever[z2,z4];
z30=whatever[z1,z4]=whatever[z2,z5];
z40=whatever[z1,z5]=whatever[z2,z6];
draw z1--z20--z2--z30--z1--z40--z2;
pickup pencircle scaled 1pt;
draw z1--z2;
draw z3--z6;
endfig;
\end{verbatim}
\quad \mathcenter{\epsfbox{manfig.13}}
$$
\caption[MetaPost code and figure using linear equations]
{MetaPost commands and the resulting figure. Point labels have been
added to the figure for clarity.}
\label{fig12}
\end{figure}
Mediation can also be used to say that some point is at an unknown position along
the line between two known points. For instance, we could a introduce new
variable {\tt aa} and write something like
$$ \hbox{\verb|z20=aa[z1,z3];|} $$
This says that {\tt z20} is some unknown fraction {\tt aa} of the way along the
line between {\tt z1} and {\tt z3}. Another such equation involving a different
line is sufficient to fix the value of {\tt z20}. To say that {\tt z20} is at
the intersection of the {\tt z1}-{\tt z3} line and the {\tt z2}-{\tt z4} line,
introduce another variable {\tt ab} and set
$$ \hbox{\verb|z20=ab[z2,z4];|} $$
This allows MetaPost to solve for {\tt x20}, {\tt y20}, {\tt aa}, and {\tt ab}.
It is a little painful to keep
thinking up new names like {\tt aa} and {\tt ab}. This can be avoided by using
a special feature called {\tt whatever}\index{whatever?\texttt{whatever}}\label{Dwhatev}.
This macro generates a new anonymous
variable each time it appears. Thus the statement
$$ \hbox{\verb|z20=whatever[z1,z3]=whatever[z2,z4]|} $$
sets {\tt z20} as before, except it uses {\tt whatever} to generate two
{\em different\/} anonymous variables instead of {\tt aa} and {\tt ab}.
This is how Figure~\ref{fig12} sets {\tt z20}, {\tt z30}, and
{\tt z40}.
\subsection{Dealing with Unknowns}
A system of equations such as those used in Figure~\ref{fig12} can be given in
any order as long as all the equations are linear and all the variables can
be determined before they are needed. This means that the equations
\begin{eqnarray*}
&& \hbox{\verb|z1=-z2=(.2in,0);|}\\
&& \hbox{\verb|x3=-x6=.3in;|}\\
&& \hbox{\verb|x3+y3=x6+y6=1.1in;|}\\
&& \hbox{\verb|z4=1/3[z3,z6];|}\\
&& \hbox{\verb|z5=2/3[z3,z6];|}
\end{eqnarray*}
suffice to determine {\tt z1} through {\tt z6}, no matter what order the equations
are given in. On the other hand
$$ \hbox{\verb|z20=whatever[z1,z3]|} $$
is legal only when a known value has previously been specified for the difference
${\tt z3}-{\tt z1}$, because the equation is equivalent
to\index{mediation}
$$ \hbox{\verb|z20 = z1 + whatever*(z3-z1)|} $$
and the linearity requirement disallows multiplying unknown components of
${\tt z3}-{\tt z1}$ by the anonymous unknown result of {\tt whatever}. The general
rule is that you cannot multiply two unknown quantities or divide by an unknown
quantity, nor can an unknown quantity be used in a {\tt draw} statement.
Since only linear equations are allowed, the MetaPost interpreter can easily solve
the equations and keep track of what values are known.
The most natural way to ensure that MetaPost can handle an expression like
$$ \hbox{\verb|whatever[z1,z3]|} $$
is to ensure that {\tt z1} and {\tt z3} are both known. However this is not
actually required since MetaPost may be able to deduce a known value for
${\tt z3}-{\tt z1}$ before either of {\tt z1} and {\tt z3} are known.
For instance, MetaPost will accept the equations
$$ \hbox{\verb|z3=z1+(.1in,.6in); z20=whatever[z1,z3];|} $$
but it will not be able to determine any of the components of {\tt z1}, {\tt z3},
or {\tt z20}.
These equations do give partial information about {\tt z1}, {\tt z3},
and {\tt z20}. A good way to see this is to give another equation such as
$$ \hbox{\verb|x20-x1=(y20-y1)/6;|} $$
This produces the error message
``{\tt ! Redundant equation}\index{Redundant equation?\texttt{Redundant equation}}.''
MetaPost assumes that you are trying to tell it something new, so it will usually
warn you when you give a redundant equation. If the new equation had been
$$ \hbox{\verb|(x20-x1)-(y20-y1)/6=1in;|} $$
the error message would have been\index{Inconsistent equation?\texttt{Inconsistent equation}}
$$ \hbox{\verb|! Inconsistent equation (off by 71.99979).|} $$
This error message illustrates
roundoff\index{roundoff error} error in MetaPost's linear equation solving
mechanism. Roundoff error
is normally not a serious problem. but it is likely to cause trouble if you are
trying to do something like find the intersection of two lines that are almost
parallel.
\section{Expressions}
\label{exprs}
It is now time for a more systematic view of the MetaPost language. We have seen
that there are numeric quantities and coordinate pairs, and that these can be
combined to specify paths for {\tt draw} statements.
We have also seen how variables can be used in linear equations, but we have not
discussed all the operations and data types that can be used in equations.
It is possible to experiment with expressions involving any of the data types
mentioned below by using the statement\index{show?\texttt{show}}\label{Dshow}
$$ {\tt show}\, \descr{expression} $$
to ask MetaPost to print a symbolic representation of the value of each expression.
For known numeric values, each is printed on a new line preceded by ``{\tt >>} ''.
Other types of results are printed similarly, except that complicated values are
sometimes not printed on standard output. This produces a reference to the
transcript file\index{files!transcript} that looks like this:
$$ \hbox{\tt >> picture (see the transcript file)} $$
If you want to the full results of {\tt show} statements to be printed on your
terminal, assign a positive value to the
internal\index{internal variables} variable\index{variables!internal}
{\tt tracingonline}\index{tracingonline?\texttt{tracingonline}}\label{Dtonline}.
\subsection{Data Types}
MetaPost actually has nine basic data types\index{types}: numeric,
pair, path, transform,
color, string, boolean, picture, and pen. Let us consider these one at a time
beginning with the numeric type.
Numeric\index{numeric type} quantities in MetaPost are represented in fixed
point arithmetic\index{arithmetic} as
integer multiples of $1\over65536$. They must normally have absolute values
less than 4096 but intermediate results can be eight times larger.
This should not be a problem for distances or coordinate values since 4096
PostScript points is more than 1.4~meters. If you need to work with numbers
of magnitude 4096 or more, setting the internal variable
{\tt warningcheck}\index{warningcheck}\label{Dwarncheck} to zero
suppresses the warning messages about large numeric quantities.
The pair\index{pair type} type is represented as a pair of numeric quantities.
We have seen that pairs
are used to give coordinates in {\tt draw} statements. Pairs can be added,
subtracted, used in mediation expressions, or multiplied or divided by numerics.
Paths\index{path type} have already been discussed in the context of {\tt draw}
statements, but
that discussion did not mention that paths are first-class objects that can be
stored and manipulated. A path represents a straight or curved line that is
defined parametrically.
Another data type represents an arbitrary affine
transformation\index{transform type}. A {\em transform\/} can be any combination
of rotating, scaling, slanting,
and shifting. If ${\tt p}=(p_x,p_y)$ is a pair and {\tt T} is a
transform,\index{transformed?\texttt{transformed}}
$$ \hbox{\tt p transformed T} $$
is a pair of the form
$$ (t_x+t_{xx}p_x+t_{xy}p_y, t_y+t_{yx}p_x+t_{yy}p_y), $$
where the six numeric quantities $(t_x,t_y,t_{xx},t_{xy},t_{yx},t_{yy})$
determine {\tt T}. Transforms can also be applied to paths, pictures, pens,
and transforms.
The color\index{color type} type is a lot like the pair type, except that it
has three components
instead of two. Like pairs, colors can be added, subtracted, used in mediation
expressions, or multiplied or divided by numerics. Colors can be specified
in terms of the predefined constants {\tt black}\index{black?\texttt{black}}\label{Dblack},
{\tt white}\index{white?\texttt{white}}\label{Dwhite}, {\tt red}\index{red?\texttt{red}}\label{Dred},
{\tt green}\index{green?\texttt{green}}\label{Dgreen},
{\tt blue}\index{blue?\texttt{blue}}\label{Dblue}, or the red, green,
and blue components can be given explicitly. Black is {\tt (0,0,0)} and white
is {\tt (1,1,1)}. A level of gray such as {\tt (.4,.4,.4)} can be specified
as {\tt 0.4white}. There is no restriction against colors ``blacker
than black'' or ``whiter than white'' except all components are snapped
back to the $[0,1]$ range when a color is given in a PostScript\index{PostScript}
output file. MetaPost solves linear equations involving colors the same way it
does for pairs.
A string\index{string type} represents a sequence of characters.
String constants\index{string constants} are given
in double quotes \hbox{\verb|"like this"|}. String constants cannot contain
double quotes or newlines, but there is a way to construct a string containing
any sequence of eight-bit characters.
The boolean\index{boolean type} type has the constants
{\tt true}\index{true?\texttt{true}}\label{Dtrue} and
{\tt false}\index{false}\label{Dfalse} and the
operators {\tt and}\index{and?\texttt{and}}\label{Dand}, {\tt or}\index{or?\texttt{or}}\label{Dor},
{\tt not}\index{not?\texttt{not}}\label{Dnot}. The relations \verb|=| and
\verb|<>|\index{<>?\texttt{<>}}\label{Dcmpar}
test objects of any type for equality and inequality\index{inequality}.
Comparison\index{comparison} relations \verb|<|\index{<?\texttt{<}},
\verb|<=|\index{<=?\texttt{<=}}, \verb|>|\index{>?\texttt{>}}, and \verb|>=|\index{>=?\texttt{>=}}
are defined lexicographically for
strings and in the obvious way for numerics. Ordering relations are also
defined for booleans, pairs, colors, and transforms, but the comparison rules
are not worth discussing here.
The picture\index{picture type} data type is just what the name implies.
Anything that can be drawn in MetaPost can be stored in a picture variable.
In fact, the {\tt draw}\index{draw?\texttt{draw}}
statement actually stores its results in a special picture variable called
{\tt currentpicture}\index{currentpicture?\texttt{currentpicture}}. Pictures can be added to other
pictures and operated on by transforms.
Finally, there is a data type called a pen\index{pen type}. The main function
of pens in
MetaPost is to determine line thickness, but they can also be used to achieve
calligraphic effects. The statement\index{pickup?\texttt{pickup}}\label{Dpickup}
$$ {\tt pickup\ }\descr{pen expression} $$
causes the given pen to be used in subsequent {\tt draw} statements.
Normally, the pen expression is of the form
$$ {\tt pencircle\ scaled\ }\descr{numeric primary}. $$
This defines a circular pen that produces lines of constant thickness.
If calligraphic effects are desired, the pen expression can be adjusted to give
an elliptical pen or a polygonal pen.
\subsection{Operators}
There are many different ways to make expressions of the nine basic types, but
most of the operations fit into a fairly simple syntax with four levels of
precedence as shown in Figure~\ref{syexpr}. There are
primaries\index{primary?\tdescr{primary}}, secondaries\index{secondary?\tdescr{secondary}},
tertiaries\index{tertiary?\tdescr{tertiary}}, and expressions\index{expression?\tdescr{expression}}
of each of the basic types, so the syntax rules could
be specialized to deal with items such as \tdescr{numeric primary},
\tdescr{boolean tertiary}, etc. This allows the result type for an operation
to depend on the choice of operator and the types of its operands. For example,
the {\tt <} relation is a \tdescr{tertiary binary} that can be applied
to a \tdescr{numeric expression} and a \tdescr{numeric tertiary} to give a
\tdescr{boolean expression}. The same operator can accept other operand types
such as \tdescr{string expression} and \tdescr{string tertiary}, but an error
message results if the operand types do not match.
\begin{figure}[htp]
\begin{ctabbing}
$\tt \descr{primary} \rightarrow \descr{variable}$\\
$\tt \qquad \;|\; \hbox{\tt (}\descr{expression}\hbox{\tt )}$\\
$\tt \qquad \;|\; \descr{nullary op}$\\
$\tt \qquad \;|\; \descr{of operator} \descr{expression}
of \descr{primary}$\\
$\tt \qquad \;|\; \descr{unary op} \descr{primary}$\\
$\tt \descr{secondary} \rightarrow \descr{primary}$\\
$\tt \qquad \;|\; \descr{secondary} \descr{primary binop} \descr{primary}$\\
$\tt \descr{tertiary} \rightarrow \descr{secondary}$\\
$\tt \qquad \;|\; \descr{tertiary} \descr{secondary binop}
\descr{secondary}$\\
$\tt \descr{expression} \rightarrow \descr{tertiary}$\\
$\tt \qquad \;|\; \descr{expression} \descr{tertiary binop}
\descr{tertiary}$
\end{ctabbing}
\caption{The overall syntax rules for expressions}
\index{unary op?\tdescr{unary op}} \index{nullary op?\tdescr{nullary op}}
\index{primary binop?\tdescr{primary binop}} \index{secondary binop?\tdescr{secondary binop}}
\index{tertiary binop?\tdescr{tertiary binop}}
\label{syexpr}
\end{figure}
The multiplication and division operators {\tt *}\label{Dmldiv}
and~{\tt /} are examples of what
Figure~\ref{syexpr} calls a \tdescr{primary binop}. Each can accept two numeric
operands or one numeric operand and one operand of type pair or color.
The exponentiation operator \verb|**|\index{**?\texttt{**}}\index{exponentiation}\label{Dpow}
is a \tdescr{primary binop} that requires two numeric operands.
Placing this at the
same level of precedence as multiplication
and division has the unfortunate consequence that \verb|3*a**2| means $(3a)^2$,
not $3(a^2)$\index{parsing irregularities}. Since unary negation\label{Dneg}
applies at the primary level, it also turns
out that \verb|-a**2| means $(-a)^2$. Fortunately, subtraction has lower
precedence so that \verb|a-b**2| does mean $a-(b^2)$ instead of $(a-b)^2$.
Another \tdescr{primary binop} is the
{\tt dotprod}\index{dotprod?\texttt{dotprod}}\label{Ddprod} operator that computes the
vector dot product of two pairs. For example, {\tt z1 dotprod z2} is equivalent
to {\tt x1*y1 + x2*y2}.
The additive operators {\tt +} and {\tt -}\label{Dadd} are
\tdescr{secondary binops} that
operate on numerics, pairs, or colors and produce results of the same type.
Other operators that fall in this category are ``Pythagorean addition''
\verb|++|\index{++?\texttt{++}}\label{Dpyadd} and
``Pythagorean subtraction'' \verb|+-+|\index{+-+?\texttt{+-+}}\label{Dpysub}:
\verb|a++b| means $\sqrt{a^2+b^2}$ and \verb|a+-+b| means $\sqrt{a^2-b^2}$.
There are too many other operators to list here, but some of the most important
are the boolean operators {\tt and}\index{and?\texttt{and}} and {\tt or}\index{or?\texttt{or}}.
The {\tt and} operator is a
\tdescr{primary binop} and the {\tt or} operator is a \tdescr{secondary binop}.
The basic operations on strings are concatenation\index{concatenation} and
substring construction.
The \tdescr{tertiary binop} \verb|&|\index{&?\texttt{\&}}\label{Damp}
implements concatenation; e.g.,
$$ \hbox{\verb|"abc" & "de"|} $$
produces the string \verb|"abcde"|.
For substring construction, the
\tdescr{of operator} {\tt substring}\index{substring of?\texttt{substring of}}\label{Dsubstr}
is used like this:
$$ {\tt substring}\, \descr{pair expression} \,{\tt of}\, \descr{string primary} $$
The \tdescr{pair expression} determines what part of the string to select. For
this purpose, the string is indexed\index{indexing} so that integer positions
fall {\em between\/} characters. Pretend the string is written on a piece of
graph paper
so that the first character occupies $x$~coordinates between zero and one and the
next character covers the range $1\le x\le2$, etc. Thus the string \verb|"abcde"|
should be thought of like this
$$ \epsfbox{manfig.14} $$
and {\tt substring (2,4) of "abcde"} is {\tt "cd"}. This takes a little getting
used to but it tends to avoid annoying ``off by one'' errors.
Some operators take no arguments at all. An example of what Figure~\ref{syexpr}
calls a \tdescr{nullary op} is
{\tt nullpicture}\index{nullpicture?\texttt{nullpicture}}\label{Dnlpic} which
returns a completely blank picture.
The basic syntax in Figure~\ref{syexpr} only covers aspects of the expression
syntax that are relatively type-independent. For instance, the complicated path
syntax given in Figure~\ref{sypath} gives alternative rules for constructing a
\tdescr{path expression}. An additional rule\index{path knot?\tdescr{path knot}}
$$ \descr{path knot} \rightarrow \descr{pair tertiary} \;|\; \descr{path tertiary}
$$
explains the meaning of \tdescr{path knot} in Figure~\ref{sypath}. This means
that the path expression
$$ \hbox{\verb|z1+(1,1){right}..z2|} $$
does not need parentheses around {\tt z1+(1,1)}.
\subsection{Fractions, Mediation, and Unary Operators}
Mediation\index{mediation} expressions do not appear in the basic expression
syntax of Figure~\ref{syexpr}. Mediation expressions are parsed at the
\tdescr{primary} level, so the general rule for constructing them is
$$ \descr{primary} \rightarrow
\descr{numeric atom} \hbox{\tt [} \descr{expression}
\hbox{\tt ,} \descr{expression} \hbox{\tt ]}
$$
where each \tdescr{expression} can be of type numeric, pair, or color.
The \tdescr{numeric atom}\index{numeric atom?\tdescr{numeric atom}} in a mediation
expression is an extra simple type of \tdescr{numeric primary} as
shown in Figure~\ref{synprim}. The meaning of all this is that the initial
parameter in a mediation expression needs to be parenthesized when it is not
just a variable, a positive number, or a positive fraction.
For example,\index{parsing irregularities}
$$ \hbox{\tt -1[a,b]} \quad {\rm and}\quad \hbox{\tt (-1)[a,b]} $$
are very different: the former is $-b$ since it is equivalent to
{\tt -(1[a,b])}; the latter is $a-(b-a)$ or $2a-b$.
\begin{figure}[htp]
\begin{ctabbing}
$\tt \descr{numeric primary} \rightarrow \descr{numeric atom}$\\
$\tt \qquad \;|\; \descr{numeric atom}\hbox{\tt [}
\descr{numeric expression}\hbox{\tt ,}\descr{numeric expression}\hbox{\tt ]}$\\
$\tt \qquad \;|\; \descr{of operator} \descr{expression} of \descr{primary}$\\
$\tt \qquad \;|\; \descr{unary op} \descr{primary}$\\
$\tt \descr{numeric atom} \rightarrow \descr{numeric variable}$\\
$\tt \qquad \;|\; \descr{number or fraction}$\\
$\tt \qquad \;|\; \hbox{\tt (}\descr{numeric expression}\hbox{\tt )}$\\
$\tt \qquad \;|\; \descr{numeric nullary op}$\\
$\tt \descr{number or fraction} \rightarrow \descr{number}
\hbox{\tt /}\descr{number}$\\
$\tt \qquad \;|\; \descr{number not followed by
`$\hbox{\tt /}\descr{number}$'}$\\
\end{ctabbing}
\caption{Syntax rules for numeric primaries}
\label{synprim}
\end{figure}
A noteworthy feature of the syntax rules in Figure~\ref{synprim} is that the
{\tt /}\index{fractions} operator binds most tightly when its operands are
numbers. Thus {\tt 2/3} is a
\tdescr{numeric atom}\index{numeric atom?\tdescr{numeric atom}}\index{parsing irregularities}
while {\tt (1+1)/3} is only a \tdescr{numeric secondary}. Applying a
\tdescr{primary binop} such as {\tt sqrt}\index{sqrt?\texttt{sqrt}}\label{Dsqrt}
makes the difference clear:
$$ \hbox{\tt sqrt 2/3} $$
means $\sqrt{2\over3}$ while
$$ \hbox{\tt sqrt(1+1)/3} $$
means $\sqrt 2/3$.
Operators such as {\tt sqrt} can be written in standard functional notation,
but it is often unnecessary to parenthesize the argument. This applies to any
function that is parsed as a \tdescr{primary binop}. For instance
{\tt abs(x)}\index{abs?\texttt{abs}}\label{Dabs} and {\tt abs x} both compute the
absolute value of {\tt x}. The same holds for the
{\tt round}\index{round?\texttt{round}}\label{Dround},
{\tt floor}\index{floor?\texttt{floor}}\label{Dfloor},
{\tt ceiling}\index{ceiling?\texttt{ceiling}}\label{Dceil},
{\tt sind}\index{sind?\texttt{sind}}\label{Dsind},
and {\tt cosd}\index{cosd?\texttt{cosd}}\label{Dcosd}
functions. The last two of these compute trigonometric functions of angles in
degrees.
Not all unary operators take numeric arguments and return numeric results.
For instance, the {\tt abs}\index{abs?\texttt{abs}} operator can be applied to a pair
to compute the Euclidean length of a vector. Applying the
{\tt unitvector}\index{unitvector?\texttt{unitvector}}\label{Duvec} operator to a pair produces
the same pair rescaled so that its Euclidean length is~1.
The {\tt decimal}\index{decimal?\texttt{decimal}}\label{Ddecop}
operator takes a number and returns the string representation.
The {\tt angle}\index{angle?\texttt{angle}}\label{Dangle}
operator takes a pair and computes the two-argument arctangent; i.e., {\tt angle}
is the inverse of the {\tt dir} operator that was discussed in
Section~\ref{tenscurl}. There is also an operator
{\tt cycle}\index{cycle?\texttt{cycle}}\label{Dcycop}
that takes a \tdescr{path primary} and returns a boolean result indicating whether
the path is a closed curve.
There is a whole class of other operators that classify expressions and return
boolean results. A type name such as {\tt pair}\index{pair?\texttt{pair}} can operate on
any type of \tdescr{primary} and return a boolean result indicating whether the
argument is a {\tt pair}\label{Dpairop}. Similarly, each of the following can
be used as a unary operator:
{\tt numeric}\index{numeric?\texttt{numeric}}\label{Dnumop},
{\tt boolean}\index{boolean?\texttt{boolean}}\label{Dboolop},
{\tt color}\index{color?\texttt{color}}\label{Dcolrop},
{\tt string}\index{string?\texttt{string}}\label{Dstrgop},
{\tt transform}\index{transform?\texttt{transform}}\label{Dtrnfop},
{\tt path}\index{path?\texttt{path}}\label{Dpathop},
{\tt pen}\index{pen?\texttt{pen}}\label{Dpenop},
and {\tt picture}\index{picture?\texttt{picture}}\label{Dpictop}.
Besides just testing the type of a \tdescr{primary}, you can use the
{\tt known}\index{known?\texttt{known}}\label{Dknown} and
{\tt unknown}\index{unknown?\texttt{unknown}}\label{Dunknwn} operators to
test if it has a completely known value.
Even a number can behave like an operator in some contexts.
This refers to the trick that allows {\tt 3x}\index{multiplication, implicit} and
{\tt 3cm} as alternatives to {\tt 3*x} and {\tt 3*cm}. The rule is that a
\tdescr{number or fraction} that is not followed by {\tt +}, {\tt -}, or another
\tdescr{number or fraction} can serve as a \tdescr{primary binop}.
Thus {\tt 2/3x}\index{parsing irregularities}
is two thirds of {\tt x} but {\tt (2)/3x} is $2\over3x$ and {\tt 3 3} is illegal.
There are also operators for extracting numeric subfields from pairs, colors,
and even transforms. If {\tt p} is a \tdescr{pair primary},
{\tt xpart p}\index{xpart?\texttt{xpart}}\label{Dxprt} and
{\tt ypart p}\index{ypart}\label{Dyprt} extract its
components so that
$$ \hbox{\tt (xpart p, ypart p)} $$
is equivalent to~{\tt p} even if {\tt p} is an unknown pair that is being used
in a linear equation. Similarly, a color {\tt c} is equivalent
to\index{redpart?\texttt{redpart}}\index{greenpart?\texttt{greenpart}}\index{bluepart?\texttt{bluepart}}\label{Drgbprt}
$$ \hbox{\tt (redpart c, greenpart c, bluepart c)} $$
The part specifiers for transforms will be discussed later.
\section{Variables}
\label{vars}
MetaPost allows compound variable names such as {x.a}, {\tt x2r}, {\tt y2r},
and {\tt z2r}, where {\tt z2r} means {\tt (x2r,y2r)} and {\tt z.a} means
{\tt (x.a,y.a)}. In fact there is a broad class of suffixes such that
{\tt z}\tdescr{suffix}\index{suffix?\tdescr{suffix}} means
$$ (x\descr{suffix},\, y\descr{suffix}). $$
Since a \tdescr{suffix} is composed of tokens, it is best to begin with a few
comments about tokens.
\subsection{Tokens}
A MetaPost input file is treated as a sequence of numbers, string constants, and
symbolic tokens\index{tokens}\index{tokens!symbolic}. A number consists of a
sequence of digits possibly containing
a decimal point. Technically, the minus sign in front of a negative number is
a separate token. Since MetaPost uses fixed point arithmetic\index{arithmetic},
it does not understand exponential notation such as {\tt 6.02E23}. MetaPost
would interpret this as the number 6.02, followed by the symbolic token {\tt E},
followed by the number~23.
Anything between a pair of double quotes {\tt "} is a
string constant\index{string constants}. It is
illegal for a string constant to start on one line and end on a later line.
Nor can a string constant contain double quotes {\tt "} or anything other than
printable ASCII characters.
Everything in a line of input other than numbers and string constants is broken
into symbolic tokens\index{tokens!symbolic}. A symbolic token is a sequence of
one or more similar characters, where characters are ``similar'' if they occur
on the same row of Table~\ref{classes}.
\begin{table}
$$\begin{tabular}{c}
\verb|ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz|\\
{\tt :<=>|}\\
\verb|#&@$|\\
\verb|/*\|\\
{\tt +-}\\
{\tt !?}\\
{\tt '`}\\
\verb|^~|\\
\verb|{}|\\
{\tt [}\\
{\tt ]}\\
\end{tabular}
$$
\caption{Character classes for tokenization}
\label{classes}
\end{table}
Thus \verb|A_alpha| and {\tt +-+} are symbolic tokens but {\tt !=} is interpreted
as two tokens and {\tt x34} is a symbolic token followed by a number. Since the
brackets {\tt [} and {\tt ]} are listed on lines by themselves, the only symbolic
tokens involving them are {\tt [}, {\tt [[}, {\tt [[[}, etc.\ and
{\tt ]}, {\tt ]]}, etc.
Some characters are not listed in Table~\ref{classes} because they need special
treatment. The four characters {\tt ,;()} are ``loners'': each comma, semicolon,
or parenthesis is a separate token even when they occur consecutively. Thus
{\tt (())} is four tokens, not one or two. The percent sign is very special
because it introduces comments\index{comments}. The percent sign and everything
after it up to the end of the line are ignored.
Another special character is the period. Two or more periods
together form a symbolic token, but a single period is ignored, and a period
preceded or followed by digits is part of a number Thus {\tt ..}
and {\tt ...} are symbolic tokens while {\tt a.b} is just two tokens {\tt a}
and {\tt b}. It conventional to use periods to separate tokens in this fashion
when naming a variable that is more than one token long.
\subsection{Variable Declarations}
\label{vardecl}
A variable name is a symbolic token or a sequence of symbolic tokens.
Most symbolic
tokens are legitimate variable names, but anything with a predefined meaning like
{\tt draw}, {\tt +}, or {\tt ..} is disallowed; i.e., variable names cannot be
macros or MetaPost primitives. This minor restriction allows an amazingly broad
class of variable names: {\tt alpha}, \verb|==>|, \verb|@&#$&|, and \verb|~~| are
all legitimate variable names. Such symbolic tokens without special meanings
are called {\em tags}\index{tags}.
A variable name can be a sequence of tags like {\tt f.bot} or {\tt f.top}.
The idea is to provide some of the functionality of Pascal records or C structures.
It is also possible to simulate arrays by using variable names that contain
numbers as well as symbolic tokens. For example, the variable name {\tt x2r}
consists of the tag {\tt x}, the number 2, and the tag~{\tt r}. There can also
be variables named {\tt x3r} and even {\tt x3.14r}. These variables can be
treated as an array\index{arrays} via constructions like {\tt x[i]r},
where {\tt i} has an appropriate numeric value. The overall syntax for
variable names is shown in Figure~\ref{syvar}.
\begin{figure}[htp]
\begin{ctabbing}
$\tt \descr{variable} \rightarrow \descr{tag}\descr{suffix}$\\
$\tt \descr{suffix} \rightarrow \descr{empty} \;|\;
\descr{suffix}\descr{subscript} \;|\; \descr{suffix}\descr{tag}$\\
$\tt \descr{subscript} \rightarrow \descr{number} \;|\;
\hbox{\tt [}\descr{numeric expression}\hbox{\tt ]}$
\end{ctabbing}
\caption{The syntax for variable names.}
\index{suffix?\tdescr{suffix}}\index{subscript?\tdescr{subscript}}
\label{syvar}
\end{figure}
Variables like {\tt x2} and {\tt y2} take on numeric values by default, so we
can use the fact that {\tt z}\tdescr{suffix} is an abbreviation for\index{z convention?{\tt z} convention}\label{Dzconv}
$$ (x\descr{suffix},\, y\descr{suffix}) $$
to generate pair-valued variables when needed. It turns out that the
{\tt beginfig}\index{beginfig?\texttt{beginfig}} macro wipes out pre-existing values variables
that begin with the tags {\tt x} or {\tt y} so that
{\tt beginfig} \ldots\ {\tt endfig}
blocks do not interfere with each other when this naming scheme is used.
In other words, variables that start with {\tt x}, {\tt y}, {\tt z} are
local\index{variables!local}\index{locality}
to the figure they are used in. General mechanisms for making variables local
will be discussed in Section~\ref{grsec}.
Type declarations\index{declarations}\index{type declarations}
make it possible to use almost any naming scheme while still
wiping out any previous value that might cause interference. For example, the
declaration
$$ \hbox{\tt pair pp, a.b;} $$
makes {\tt pp} and {\tt a.b} unknown pairs. Such a declaration is not strictly
local since {\tt pp} and {\tt a.b} are not automatically restored to their
previous values at the end of the current figure. Of course, they are restored
to unknown pairs if the declaration is repeated.
Declarations work the same way for any of
the other eight types: numeric, path, transform, color, string, boolean, picture,
and pen. The only restriction is that you cannot give explicit numeric subscripts
in a variable declaration. Do not give the illegal declaration
$$ \hbox{\tt numeric q1, q2, q3;} $$
use the generic subscript\index{subscript!generic} symbol {\tt []}\index{[]?\texttt{[]}}
instead, to declare the whole array:
$$ \hbox{\tt numeric q[];} $$
You can also declare ``multidimensional'' arrays\index{arrays!multidimensional}.
After the declaration
$$ \hbox{\tt path p[]q[], pq[][];} $$
{\tt p2q3} and {\tt pq1.4 5} are both paths.
Internal\index{internal variables}\index{variables!internal}
variables like {\tt tracingonline} cannot be declared in
the normal fashion. All the internal variables discussed in this manual are
predefined and do not have to be declared at all, but there is a way to declare
that a variable should behave like a newly-created internal variable.
The declaration is {\tt newinternal}\index{newinternal?\texttt{newinternal}}\label{Dnewint}
followed by a list of symbolic tokens. For example,
$$ \hbox{\tt newinternal a, b, c;} $$
causes {\tt a}, {\tt b}, and {\tt c} to behave like internal variables. Such
variables always have known numeric values, and these values can only be changed
by using the assignment\index{assignment} operator {\tt:=}\index{:=?\texttt{:=}}.
Internal variables are initially zero
except that the Plain\index{Plain macros} macro package gives some of them nonzero
initial values. (The Plain macros are normally preloaded automatically as
explained in Section~\ref{intro}.)
\section{Integrating Text and Graphics}
\label{text}
MetaPost has a number of features for including labels and other
text\index{text and graphics}
in the figures it generates. The simplest way to do this is to use the
{\tt label}\index{label?\texttt{label}}\label{Dlabel} statement\index{label suffix?\tdescr{label suffix}}
$$ {\tt label}\descr{label suffix} \hbox{\tt (}
\descr{string or picture expression} \hbox{\tt,}\, \descr{pair expression}
\hbox{\tt );}
$$
The \tdescr{string or picture expression} gives the label and the
\tdescr{pair expression} says where to put it. The \tdescr{label suffix} can be
\tdescr{empty} in which case the label is just centered on the given coordinates.
If you are labeling some feature of a diagram you probably want to offset the
label slightly to avoid overlapping. This is illustrated in Figure~\ref{fig16}
where the {\tt "a"} label is placed above the midpoint of the line it refers to
and the {\tt "b"} label is to the left of the midpoint of its line. This is
achieved by using {\tt label.top}\index{top?\texttt{top}} for the {\tt "a"} label and
{\tt label.lft}\index{lft?\texttt{lft}}
for the {\tt "b"} label as shown in the figure. The \tdescr{label suffix}
specifies the position of the label relative to the specified coordinates.
The complete set of possibilities is\index{rt?\texttt{rt}}\index{bot?\texttt{bot}}%
\index{ulft?\texttt{ulft}}\index{urt?\texttt{urt}}\index{llft?\texttt{llft}}\index{lrt?\texttt{lrt}}
$$ \tt \descr{label suffix} \rightarrow
\descr{empty} \;|\; lft \;|\; rt \;|\; top \;|\; bot \;|\;
ulft \;|\;urt \;|\; llft \;|\; lrt
$$
where {\tt lft} and {\tt rt} mean left and right and {\tt llft}, {\tt ulft}, etc.\
mean lower left, upper left, etc. The actual amount by which the label is offset
in whatever direction is determined by the
internal variable\index{internal variables}\index{variables!internal}
{\tt labeloffset}\index{labeloffset?\texttt{labeloffset}}\label{Dlaboff}.
\begin{figure}[htp]
$$
\begin{verbatim}
beginfig(17);
a=.7in; b=.5in;
z0=(0,0);
z1=-z3=(a,0);
z2=-z4=(0,b);
draw z1..z2..z3..z4..cycle;
draw z1--z0--z2;
label.top("a", .5[z0,z1]);
label.lft("b", .5[z0,z2]);
dotlabel.bot("(0,0)", z0);
endfig;
\end{verbatim}
\qquad \mathcenter{\epsfbox{manfig.17}}
$$
\caption{MetaPost code and the resulting output}
\label{fig16}
\end{figure}
Figure~\ref{fig16} also illustrates the
{\tt dotlabel}\index{dotlabel?\texttt{dotlabel}}\label{Ddotlab}
statement. This is exactly
like the {\tt label} statement except that it adds a dot at the indicated
coordinates. For example
$$ \hbox{\tt dotlabel.bot("(0,0)", z0)} $$
places a dot at {\tt z0} and then puts the label ``(0,0)'' just below the dot.
Another alternative is the macro
{\tt thelabel}\index{thelabel?\texttt{thelabel}}\label{Dthelab}. This has
the same syntax as the {\tt label} and {\tt dotlabel} statements except that it
returns the label as a \tdescr{picture primary} instead of actually drawing it.
Thus
$$ \hbox{\tt label.bot("(0,0)", z0)} $$
is equivalent to
$$ \hbox{\tt draw thelabel.bot("(0,0)", z0)} $$
For simple applications of labeled figures, you can normally get by with just
{\tt label} and {\tt dotlabel}. In fact, you may be able to use a short form of
the {\tt dotlabel} statement that saves a lot of typing
when you have many points {\tt z0}, {\tt z1}, {\tt z.a}, {\tt z.b}, etc.\
and you want to use the {\tt z} suffixes as labels.
The statement\index{dotlabels?\texttt{dotlabels}}\label{Ddotlbs}
$$ \hbox{\tt dotlabels.rt(0, 1, a);} $$
is equivalent to
$$ \hbox{\tt dotlabel.rt("0",z0); dotlabel.rt("1",z1); dotlabel.rt("a",z.a);} $$
Thus the argument to {\tt dotlabels} is a list of suffixes for which {\tt z}
variables are known, and the \tdescr{label suffix} given with {\tt dotlabels}
is used to position all the labels.
There is also a {\tt labels}\index{labels?\texttt{labels}}\label{Dlabels} statement that is
analogous to
{\tt dotlabels} but its use is discouraged because it presents compatibility
problems with \MF\index{metafont?\MF}. Some versions of the preloaded
Plain\index{Plain macros} macro package define {\tt labels} to be synonymous
with {\tt dotlabels}.
For labeling statements such as {\tt label} and {\tt dotlabel} that use a
string expression for the label text,
the string gets typeset in a default font as determined by
the string variable {\tt defaultfont}\index{defaultfont?\texttt{defaultfont}}\label{Ddffont}.
The initial value of {\tt defaultfont}
is likely to be {\tt "cmr10"}, but it can be changed to a different font name
by giving an assignment such as
$$ \hbox{\tt defaultfont:="Times-Roman"} $$
There is also a numeric quantity called
{\tt defaultscale}\index{defaultscale?\texttt{defaultscale}}\label{Ddfscale}
that determines the type size.
When {\tt default\-scale} is 1, you get the ``normal size'' which is
usually 10 point, but this can also be changed. For instance
$$ \hbox{\tt defaultscale := 1.2} $$
makes labels come out twenty percent larger. If you do not know the normal size
and you want to be sure the text comes out at some specific size, say 12 points,
you can use the {\tt fontsize}\index{fontsize?\texttt{fontsize}}\label{Dfntsiz}
operator to determine the normal size: e.g.,
$$ \hbox{\tt defaultscale := 12pt/fontsize defaultfont;} $$
When you change {\tt defaultfont}, the new font name should be something that
\TeX\ would understand since MetaPost gets height and width information by reading
the {\tt tfm}\index{tfm file?{\tt tfm} file}\index{files!tfm?{\tt tfm}} file.
(This is explained in {\it The \TeX book\/}.~\cite{kn:a})
It should be possible to use built-in PostScript fonts, but the names for them
are system-dependent. Some systems may use {\tt rptmr} or {\tt ps-times-roman}
instead of {\tt Times-Roman}.
A \TeX\index{TeX?\TeX} font such as {\tt cmr10} is a little dangerous because it does
not have a space character or certain ASCII symbols. In addition, MetaPost does
not use the ligatures\index{ligatures} and kerning\index{kerning} information
that comes with a \TeX\ font.
\subsection{Typesetting Your Labels}
\TeX\index{TeX?\TeX} may be used to format complex labels.
If you say\index{btex?\texttt{btex}}\index{etex?\texttt{etex}}
$$ {\tt btex}\, \descr{typesetting commands}\, {\tt etex} $$
in a MetaPost input file, the \tdescr{typesetting commands} get processed by
\TeX\ and translated into a picture expression
(actually a \tdescr{picture primary}) that can be used in a {\tt label}
or {\tt dotlabel} statement. Any spaces after {\tt btex} or before {\tt etex}
are ignored. For instance, the statement
$$ \hbox{\verb|label.lrt(btex $\sqrt x$ etex, (3,sqrt 3)*u)|} $$
in Figure~\ref{fig17} places the label $\sqrt x$ at the lower right of the
point {\tt (3,sqrt 3)*u}.
\begin{figure}[htp]
$$
\begin{verbatim}
beginfig(18);
numeric u;
u = 1cm;
draw (0,2u)--(0,0)--(4u,0);
pickup pencircle scaled 1pt;
draw (0,0){up}
for i=1 upto 8: ..(i/2,sqrt(i/2))*u endfor;
label.lrt(btex $\sqrt x$ etex, (3,sqrt 3)*u);
label.bot(btex $x$ etex, (2u,0));
label.lft(btex $y$ etex, (0,u));
endfig;
\end{verbatim}
\qquad \mathcenter{\epsfbox{manfig.18}}
$$
\caption{MetaPost code and the resulting output}
\label{fig17}
\end{figure}
Figure~\ref{fig18} illustrates some of the more complicated things that can
be done with labels. Since the result of {\tt btex} \ldots {\tt etex} is
a picture, it can be operated on like a picture. In particular, it is possible
to apply transformations to pictures. We have not discussed the syntax for
this yet, but a \tdescr{picture secondary}
can be\index{rotated text}\index{rotated?\texttt{rotated}}
$$ \descr{picture secondary}\, {\tt rotated}\, \descr{numeric primary} $$
This is used in Figure~\ref{fig18} to rotate the label ``$y$ axis'' so that
it runs vertically.
\begin{figure}[htp]
$$
\begin{verbatim}
beginfig(19);
numeric ux, uy;
120ux=1.2in; 4uy=2.4in;
draw (0,4uy)--(0,0)--(120ux,0);
pickup pencircle scaled 1pt;
draw (0,uy){right}
for ix=1 upto 8:
..(15ix*ux, uy*2/(1+cosd 15ix))
endfor;
label.bot(btex $x$ axis etex, (60ux,0));
label.lft(btex $y$ axis etex rotated 90,
(0,2uy));
label.lft(
btex $\displaystyle y={2\over1+\cos x}$ etex,
(120ux, 4uy));
endfig;
\end{verbatim}
\qquad \mathcenter{\epsfbox{manfig.19}}
$$
\caption{MetaPost code and the resulting output}
\label{fig18}
\end{figure}
Another complication in Figure~\ref{fig18} is the use of the displayed equation
$$y={2\over 1+\cos x}$$
as a label. It would be more natural to code this as
$$ \hbox{\verb|$$y={2\over 1+\cos x}$$|} $$
but this would not work because
\TeX\ typesets the labels in ``horizontal mode.''
Here is how \TeX\ material gets translated into a form MetaPost understands:
The MetaPost processor skips over
{\tt btex}\index{btex?\texttt{btex}} \ldots\ {\tt etex}\index{etex?\texttt{etex}} blocks
and depends on a preprocessor to translate them into low level MetaPost
commands. If the main file is {\tt fig.mp}, the translated \TeX\
material is placed in a file named {\tt fig.mpx}\index{files!mpx?{\tt mpx}}.
This is normally
done silently without any user intervention but it could fail if one of
the {\tt btex} $\ldots$ {\tt etex} blocks contains an erroneous
\TeX\index{TeX?\TeX!errors} command. Then the erroneous \TeX\ input
is saved in the file {\tt mpxerr.tex}\index{mpxerr.tex?\texttt{mpxerr.tex}} and the error
messages appear in {\tt mpxerr.log}\index{mpxerr.log?\texttt{mpxerr.log}}.
\TeX\ macro definitions or any other auxiliary
\TeX\ commands can be enclosed in a
{\tt verbatimtex}\index{verbatimtex?\texttt{verbatimtex}} \ldots\ {\tt etex}\index{etex?\texttt{etex}} block.
The difference between
{\tt btex} and {\tt verbatimtex} is that the former generates a picture
expression while the latter only adds material for \TeX\ to process.
For instance, if you want \TeX\ to typeset labels using macros defined in
{\tt mymac.tex}, your MetaPost input file would look something like this:
\begin{eqnarray*}
&& \verb|verbatimtex \input mymac etex|\\
&& \verb|beginfig(1);|\\
&& \qquad \vdots\\
&& \verb|label(btex|\, \descr{\TeX\ material using \hbox{\tt mymac.tex}}\,
\verb|etex, | \descr{some coordinates} \hbox{\tt );}\\
&& \qquad \vdots
\end{eqnarray*}
On Unix\footnote{Unix is a registered trademark of Unix Systems
Laboratories.}\index{Unix\reg}
systems, an environment variable can be used to specify that
{\tt btex} $\ldots$ {\tt etex} and {\tt verbatimtex} $\ldots$ {\tt etex}
blocks are in troff\index{troff} instead of \TeX. When using this option,
it is a good idea to start your MetaPost input file with the assignment
{\tt prologues:=1}\index{prologues?\texttt{prologues}}\label{Dprologs}. Giving this
internal variable\index{internal variables}\index{variables!internal}
a positive value causes causes output to be formatted as
``structured PostScript''\index{PostScript!structured} generated on the
assumption that text comes from built-in PostScript fonts. This makes MetaPost
output much more portable, but it has an important drawback: It generally
does not work when you use \TeX\ fonts, since programs that translate \TeX\
output into PostScript\index{PostScript} need to make special provisions for
\TeX\index{TeX?\TeX!fonts} fonts in
included figures and the standard PostScript structuring rules do not allow
for this. The details on how to include PostScript figures in a paper done
in \TeX\ or troff are system-dependent. They can generally be found in
manual pages and other on-line documentation. A file called {\tt dvips.tex}
is distributed electronically along with the dvips\index{dvips} \TeX\ output
processor.
\subsection{The {\tt infont} operator}
\label{Sinfont}
Regardless of whether you use \TeX\ or troff, all the real work of adding
text to pictures is done by a MetaPost primitive operator called
{\tt infont}\index{infont?\texttt{infont}}. It is a
\tdescr{primary binop}\index{primary binop?\tdescr{primary binop}} that takes a
\tdescr{string secondary} as its
left argument and a \tdescr{string primary} as its right argument. The left
argument is text, and the right argument is a font name.
The result of the operation is a \tdescr{picture secondary} that can then be
transformed in various ways. One possibility is enlargement by a given factor
via the syntax\index{scaled?\texttt{scaled}}
$$ \descr{picture secondary}\, \hbox{\tt scaled}\, \descr{numeric primary} $$
Thus {\tt label("text",z0)} is equivalent to
$$ \hbox{\tt label("text" infont defaultfont scaled defaultscale, z0)} $$
If it is not convenient to use a string constant for the left argument of
{\tt infont}, you can use\index{char?\texttt{char}}\label{Dchar}
$$ {\tt char}\, \descr{numeric primary} $$
to select a character based on its numeric position in the font.
Thus
$$ \hbox{\tt char(n+64) infont "Times-Roman"} $$
is a picture containing character {\tt n+64} of the Times-Roman font.
\subsection{Measuring Text}
\label{meas}
MetaPost makes readily available the physical dimensions\index{size}
of pictures generated by the {\tt infont} operator. There are
unary operators {\tt llcorner}\index{llcorner?\texttt{llcorner}}\label{Dcornop},
{\tt lrcorner}\index{lrcorner?\texttt{lrcorner}}, {\tt urcorner}\index{urcorner?\texttt{urcorner}},
{\tt ulcorner}\index{ulcorner?\texttt{ulcorner}}, and {\tt center}\index{center}\label{Dcenter}
that take a \tdescr{picture primary} and return the corners of its ``bounding
box'' as illustrated in Figure~\ref{bbox}. The {\tt center} operator also
accepts \tdescr{path primary} and \tdescr{pen primary} operands.
In MetaPost Version 0.30 and higher, {\tt llcorner}, {\tt lrcorner}, etc.
accept all three argument types as well.
The argument type restrictions on the corner operators are not very important
because their main purpose is to allow {\tt label} and {\tt dotlabel} statements
to center their text properly.
The predefined macro\index{bbox?\texttt{bbox}}\label{Dbbox}
$$ {\tt bbox}\, \descr{picture primary} $$
finds a rectangular path that represents the bounding box of a given picture.
If {\tt p} is a picture, {\tt bbox p} equivalent to
$$ \hbox{\tt (llcorner p--lrcorner p--urcorner p--ulcorner p--cycle)} $$
except that it allows for a small amount of extra space around {\tt p} as specified
by the internal variable\index{internal variables}\index{variables!internal}
{\tt bboxmargin}\index{bboxmargin?\texttt{bboxmargin}}\label{Dbbmargin}.
\begin{figure}[htp]
$$ \epsfbox{manfig.20} $$
\caption{A bounding box and its corner points.}
\label{bbox}
\end{figure}
Note that MetaPost computes the bounding box of a {\tt btex}\index{btex?\texttt{btex}}
\ldots\ {\tt etex}\index{etex?\texttt{etex}} picture just the way \TeX\index{TeX?\TeX} does.
This is quite natural, but it has certain implications in view of the fact that
\TeX\ has features like {\tt\string\strut}\index{strut?{\tt\string\strut}} and
{\tt\string\rlap}\index{rlap?{\tt\string\rlap}} that allow \TeX\ users to lie about the
dimensions of a box.
When \TeX\ commands that lie about the dimensions of a box are translated in to
low-level MetaPost code, a {\tt setbounds}\index{setbounds?\texttt{setbounds}}\label{Dsetbnd}
statement does the lying:\index{picture variable?\tdescr{picture variable}}
$$ {\tt setbounds}\, \descr{picture variable}\, {\tt to}\, \descr{path expression}
$$
makes the \tdescr{picture variable} behave as if its bounding box were the same
as the given path. To get the true bounding box of such a picture, assign a
positive value to the
internal variable\index{internal variables}\index{variables!internal}
{\tt truecorners}\index{truecorners?\texttt{truecorners}}\label{Dtruecorn}:\footnote{The
{\tt setbounds} and
{\tt truecorners} features are only found in MetaPost version 0.30 and higher.}
i.e.,
$$ \hbox{\verb|show urcorner btex $\bullet$\rlap{ A} etex|} $$
produces ``\verb|>> (4.9813,6.8078)|'' while
$$ \hbox{\verb|truecorners:=1; show urcorner btex $\bullet$\rlap{ A} etex|} $$
produces ``\verb|>> (15.7742,6.8078)|.''
\section{Advanced Graphics}
\label{adv.gr}
All the examples in the previous sections have been simple line drawings with
labels added. This section describes shading and tools for generating
not-so-simple line drawings.
Shading is done with the {\tt fill}\index{fill?\texttt{fill}}\label{Dfill} statement.
In its simplest
form, the {\tt fill} statement requires a \tdescr{path expression} that gives
the boundary of the region to be filled. In the syntax
$$ {\tt fill}\, \descr{path expression} $$
the argument should be a cyclic path, i.e., a path that describes a closed curve
via the {\tt ..cycle} or {\tt --cycle} notation. For example, the {\tt fill}
statement in Figure~\ref{fig20} builds a closed path by extending the roughly
semicircular path~{\tt p}.
This path has a counter-clockwise orientation, but that does not matter because
the {\tt fill} statement uses PostScript's\index{PostScript} non-zero
winding\index{winding number} number rule~\cite{ad:red}.
\begin{figure}[htp]
$$ \begin{verbatim}
beginfig(21);
path p;
p = (-1cm,0)..(0,-1cm)..(1cm,0);
fill p{up}..(0,0){-1,-2}..{up}cycle;
draw p..(0,1cm)..cycle;
endfig;
\end{verbatim}
\qquad \mathcenter{\epsfbox{manfig.21}}
$$
\caption{MetaPost code and the corresponding output.}
\label{fig20}
\end{figure}
The general {\tt fill} statement\index{withcolor?\texttt{withcolor}}
$$ {\tt fill}\, \descr{path expression}\,
{\tt withcolor}\, \descr{color expression}
$$
specifies a shade of gray or (if you have a color printer) some
rainbow color.
Figure~\ref{fig21} illustrates several applications of the fill command to fill
areas with shades of gray. The paths involved are intersecting circles {\tt a}
and {\tt b} and a path {\tt ab} that bounds the region inside both circles.
Circles {\tt a} and {\tt b} are derived from a predefined path
{\tt fullcircle}\index{fullcircle?\texttt{fullcircle}}\label{Dfcirc}
that approximates a circle of unit diameter centered on the origin. There is
also a predefined path {\tt halfcircle}\index{halfcircle?\texttt{halfcircle}}\label{Dhcirc}
that is the part
of {\tt fullcircle} above the $x$ axis. Path~{\tt ab} is the initialized
using a predefined macro {\tt buildcycle} that will be discussed shortly.
\begin{figure}[htp]
$$ \begin{verbatim}
beginfig(22);
path a, b, aa, ab;
a = fullcircle scaled 2cm;
b = a shifted (0,1cm);
aa = halfcircle scaled 2cm;
ab = buildcycle(aa, b);
picture pa, pb;
pa = thelabel(btex $A$ etex, (0,-.5cm));
pb = thelabel(btex $B$ etex, (0,1.5cm));
fill a withcolor .7white;
fill b withcolor .7white;
fill ab withcolor .4white;
unfill bbox pa;
draw pa;
unfill bbox pb;
draw pb;
label.lft(btex $U$ etex, (-1cm,.5cm));
draw bbox currentpicture;
endfig;
\end{verbatim}
\qquad \mathcenter{\epsfbox{manfig.22}}
$$
\caption{MetaPost code and the corresponding output.}
\index{fullcircle?\texttt{fullcircle}}\index{halfcircle?\texttt{halfcircle}}\index{buildcycle?\texttt{buildcycle}}
\label{fig21}
\end{figure}
Filling circle {\tt a} with the light gray color {\tt .7white} and then doing the
same with circle {\tt b} doubly fills the region where the disks overlap. The
rule is that each {\tt fill} statement assigns the given color to all points in
the region covered, wiping out whatever was there previously including lines and
text as well as filled regions. Thus it is important to give {\tt fill} commands
in the right order.
In the above example, the overlap region gets the same color twice,
leaving it light gray after the first two {\tt fill} statements. The third fill
statement assigns the darker color {\tt .4white} to the overlap region.
At this point the circles and the overlap region have their final colors but
there are no cutouts for the labels. The cutouts are achieved by the
{\tt unfill}\index{unfill?\texttt{unfill}}\label{Dunfill}
statements that effectively erase\index{erasing}
the regions bounded by {\tt bbox pa}\index{bbox?\texttt{bbox}} and
{\tt bbox pb}. More precisely, {\tt unfill} is shorthand for filling
{\tt withcolor background}, where {\tt background} is normally equal to {\tt white}
as is appropriate for printing on white paper. If necessary, you can assign a new
color value to {\tt background}\index{background?\texttt{background}}\label{Dbground}.
The labels need to be stored in pictures {\tt pa} and {\tt pb} to allow
for measuring their bounding box before actually drawing them. The macro
{\tt thelabel}\index{thelabel?\texttt{thelabel}} creates such
pictures and shifts them into position so that they are ready to draw. Using the
resulting pictures in {\tt draw} statements of the form\index{draw?\texttt{draw}}
$$ {\tt draw}\, \descr{picture expression} $$
adds them to {\tt currentpicture}\index{currentpicture?\texttt{currentpicture}}
so that they overwrite a portion of what has
already been drawn. In Figure~\ref{fig21} just the white rectangles produced by
{\tt unfill} get overwritten.
\subsection{Building Cycles}
\label{buildcy}
The {\tt buildcycle}\index{buildcycle?\texttt{buildcycle}} command constructs paths for use with
the {\tt fill} or {\tt unfill} macros. When given two or more paths such as
{\tt aa} and {\tt b},
the {\tt buildcycle} macro tries to piece them together so as to form a cyclic
path. In this case path {\tt aa} is a semicircle that starts just to the right
of the intersection with path {\tt b}, then passes through {\tt b} and ends just
outside the circle on the left as shown in Figure~\ref{fig22}a.
Figure~\ref{fig22}b shows how {\tt buildcycle} forms a closed
cycle from pieces of paths {\tt aa} and {\tt b}.
The {\tt buildcycle} macro detects the two intersections\index{intersections}
labeled 1 and 2 in
Figure~\ref{fig22}b. Then it constructs the cyclic path shown in bold in the
figure by going forward along path {\tt aa} from intersection~1 to
intersection~2 and then forward around the counter-clockwise path {\tt b} back to
intersection~1. It turns out that {\tt buildcycle(a,b)} would have produced the
same result, but the reasoning behind this is a little confusing.
\begin{figure}[htp]
$$ {\epsfbox{manfig.123} \atop (a)}
\qquad {\epsfbox{manfig.223} \atop (b)}
$$
\caption[A demonstration of cycle building]
{(a)~The semicircular path~{\tt aa}
with a dashed line marking path {\tt b}; (b)~paths~{\tt aa} and {\tt b}
with the portions selected by {\tt buildcycle} shown by heavy lines.}
\label{fig22}
\end{figure}
It is a easier to use the {\tt buildcycle} macro in situations like
Figure~\ref{fig23} where there are more than two path arguments and each pair
of consecutive paths has a unique intersection. For instance, the line~{\tt q0.5}
and the curve~{\tt p2} intersect only at point~$P$; and the curve {\tt p2} and the
line~{\tt q1.5} intersect only at point~$Q$. In fact, each of the points $P$,
$Q$, $R$, $S$ is a unique intersection, and the result of\index{buildcycle?\texttt{buildcycle}}
$$ \hbox{\tt buildcycle(q0.5, p2, q1.5, p4)} $$
takes {\tt q0.5} from $S$ to~$P$, then {\tt p2} from $P$ to~$Q$, then {\tt q1.5}
from $Q$ to~$R$, and finally {\tt p4} from $R$ back to~$S$. An examination of the
MetaPost code for Figure~\ref{fig23} reveals that you have to go backwards along
{\tt p2} in order to get from $P$ to~$Q$. This works perfectly well as long as
the intersection\index{intersection} points are uniquely defined but it can cause
unexpected results when pairs of paths intersect more than once.
\begin{figure}[htp]
$$ \begin{verbatim}
beginfig(24);
h=2in; w=2.7in;
path p[], q[], pp;
for i=2 upto 4: ii:=i**2;
p[i] = (w/ii,h){1,-ii}...(w/i,h/i)...(w,h/ii){ii,-1};
endfor
q0.5 = (0,0)--(w,0.5h);
q1.5 = (0,0)--(w/1.5,h);
pp = buildcycle(q0.5, p2, q1.5, p4);
fill pp withcolor .7white;
z0=center pp;
picture lab; lab=thelabel(btex $f>0$ etex, z0);
unfill bbox lab; draw lab;
draw q0.5; draw p2; draw q1.5; draw p4;
dotlabel.top(btex $P$ etex, p2 intersectionpoint q0.5);
dotlabel.rt(btex $Q$ etex, p2 intersectionpoint q1.5);
dotlabel.lft(btex $R$ etex, p4 intersectionpoint q1.5);
dotlabel.bot(btex $S$ etex, p4 intersectionpoint q0.5);
endfig;
\end{verbatim}
\atop \mathcenter{\epsfbox{manfig.24}}
$$
\caption{MetaPost code and the corresponding output.}
\label{fig23}
\end{figure}
The general rule for the {\tt buildcycle} macro is that
$$ \hbox{\tt buildcycle(}p_1\hbox{\tt,}\, p_2\hbox{\tt,}\,
p_3\hbox{\tt,}\, \ldots \hbox{\tt,} p_k \hbox{\tt )}
$$
chooses the intersection between each $p_i$ and $p_{i+1}$ to be as late as possible
on $p_i$ and as early as possible on $p_{i+1}$. There is no
simple rule for resolving conflicts between these two goals, so you should avoid
cases where one intersection point occurs later on $p_i$ and another
intersection\index{intersection} point occurs earlier on $p_{i+1}$.
The preference for intersections as late as possible
on $p_i$ and as early as possible on $p_{i+1}$ leads to ambiguity resolution in
favor of forward-going subpaths. For cyclic paths such as path~{\tt b} in
Figure~\ref{fig22} ``early'' and ``late'' are relative to a start/finish point
which is where you get back to when you say ``{\tt ..cycle}''.
For the path~{\tt b}, this turns out to be the rightmost point on the circle.
A more direct way to deal with path intersections is via the
\tdescr{secondary binop}\index{secondary binop?\tdescr{secondary binop}}
{\tt intersection\-point}\index{intersectionpoint?\texttt{intersectionpoint}}\label{Disecpt}
that finds the points $P$, $Q$, $R$, and~$S$ in Figure~\ref{fig23}.
This macro finds a point where two given
paths intersect. If there is more than one intersection point, it just chooses
one; if there is no intersection, the macro generates an error message.
\subsection{Dealing with Paths Parametrically}
The {\tt intersectionpoint}\index{intersectionpoint?\texttt{intersectionpoint}} macro is based on a
primitive operation called
{\tt intersectiontimes}\index{intersectiontimes?\texttt{intersectiontimes}}\label{Disectt}.
This \tdescr{secondary binop} is one of several
operations that deal with paths parametrically. It locates an intersection
between two paths by giving the ``time'' parameter on each path. This refers to
the parameterization scheme from Section~\ref{curves} that described paths as
piecewise cubic curves $\bigl(X(t),Y(t)\bigr)$ where $t$ ranges from zero to the
number of curve segments. In other words, when a path is specified as passing
through a sequence of points, where $t=0$ at the first point,
then $t=1$ at the next, and $t=2$ at the next, etc. The result of
$$ \hbox{\tt a intersectiontimes b} $$
is $(-1,-1)$ if there is no intersection; otherwise you get
a pair $(t_a,t_b)$, where $t_a$ is a time on path {\tt a} when it intersects
path~{\tt b}, and $t_b$ is the corresponding time on path~{\tt b}.
For example, suppose path~{\tt a} is denoted by the thin line in Figure~\ref{fig24}
and path~{\tt b} is denoted by the thicker line. If the labels indicate time
values on the paths, the pair of time values computed by
$$ \hbox{\tt a intersectiontimes b} $$
must be one of
$$ (0.25,1.77),\ (0.75,1.40), {\rm or}\ (2.58,0.24), $$
depending on which of the three intersection points is chosen by the MetaPost
interpreter. The exact rules for choosing among multiple intersection points
are a little complicated, but it turns out that you get the time values
$(0.25,1.77)$ in this example. Smaller time values are preferred over larger
ones so that $(t_a,t_b)$ is preferred to $(t'_a,t'_b)$ whenever $t'_a<t_a$ and
$t_b<t'_b$. When no single alternative minimizes both the $t_a$ and $t_b$
components the $t_a$ component tends to get priority, but the rules get more
complicated when there are no integers between $t_a$
and $t'_a$\index{intersection}.
(For more details, see {\it The \MF book}.\cite[Chapter 14]{kn:c})
\begin{figure}[htp]
$$ \epsfbox{manfig.25} $$
\caption{Two intersecting paths with time values marked on each path.}
\label{fig24}
\end{figure}
The {\tt intersectiontimes} operator is more flexible than {\tt intersectionpoint}
because there are a number of things that can be done with time values on a path.
One of the most important is just to ask ``where is path {\tt p} at
time {\tt t}?'' The construction\index{point of?\texttt{point of}}\label{Dpntof}
$$ {\tt point}\, \descr{numeric expression}\, {\tt of}\, \descr{path primary} $$
answers this question. If the \tdescr{numeric expression} is less than zero or
greater than the time value assigned to the last point on the path, the
{\tt point of} construction normally yields an endpoint of the path. Hence, it
is common to use the predefined constant
{\tt infinity}\index{infinity?\texttt{infinity}}\label{Dinf}
(equal to 4095.99998) as the
\tdescr{numeric expression} in a {\tt point of} construction when dealing with
the end of a path.
Such ``infinite'' time values do not work for a cyclic path, since
time values outside of the normal range can be handled by modular arithmetic in
that case; i.e., a cyclic path~{\tt p} through points $z_0$, $z_1$, $z_2$,
\ldots, $z_{n-1}$ has the normal parameter range $0\le t<n$, but
$$ \hbox{\tt point t of p} $$
can be computed for any~$t$ by first reducing $t$ modulo~$n$. If the modulus~$n$
is not readily available,\index{length?\texttt{length}}\label{Dlength}
$$ {\tt length}\, \descr{path primary} $$
gives the integer value of the upper limit of the normal time parameter range
for the specified path.
MetaPost uses the same correspondence between time values and points on a path to
evaluate the {\tt subpath}\index{subpath?\texttt{subpath}}\label{Dsubpth} operator.
The syntax for this operator is
$$ {\tt subpath}\, \descr{pair expression}\, {\tt of}\, \descr{path primary} $$
If the value of the \tdescr{pair expression} is $(t_1,t_2)$ and the
\tdescr{path primary} is $p$, the result is a path that follows $p$ from
{\tt point $t_1$ of $p$} to {\tt point $t_2$ of $p$}. If $t_2<t_1$, the subpath
runs backwards along~$p$.
An important operation based on the {\tt subpath} operator is the
\tdescr{tertiary binop}\index{tertiary binop?\tdescr{tertiary binop}}
{\tt cutbefore}\index{cutbefore?\texttt{cutbefore}}\label{Dcutb}. For intersecting
paths $p_1$ and $p_2$,
$$ p_1\ {\tt cutbefore}\ p_2 $$
is equivalent to
$$ \hbox{\tt subpath (xpart($p_1$ intersectiontimes $p_2$), length $p_1$) of $p_1$}
$$
except that it also sets the path variable
{\tt cuttings}\index{cuttings?\texttt{cuttings}}\label{Dcuttings} to
the portion of $p_1$ that gets cut off. In other words, {\tt cutbefore} returns
its first argument with the part before the intersection cut off. With multiple
intersections, it tries to cut off as little as possible. If the paths do not
intersect, {\tt cutbefore} returns its first argument.
There is also an analogous \tdescr{tertiary binop}\index{tertiary binop?\tdescr{tertiary binop}}
called {\tt cutafter}\index{cutafter?\texttt{cutafter}}\label{Dcuta} that works by applying
{\tt cutbefore} with
time reversed along its first argument. Thus
$$ p_1\ {\tt cutafter}\ p_2 $$
tries to cut off the part of $p_1$ after its last intersection with $p_2$.
Another operator\index{direction of?\texttt{direction of}}\label{Ddirof}
$$ {\tt direction}\, \descr{numeric expression}\, {\tt of}\, \descr{path primary}
$$
finds a vector in the direction of the \tdescr{path primary}. This is defined
for any time value analogously to the {\tt point of} construction. The resulting
direction vector has the correct orientation and a somewhat arbitrary magnitude.
Combining {\tt point of} and {\tt direction of} constructions yields the equation
for a tangent line as illustrated in Figure~\ref{fig25}.
\begin{figure}[htp]
$$ \begin{verbatim}
beginfig(26);
numeric scf, #, t[];
3.2scf = 2.4in;
path fun;
# = .1; % Keep the function single-valued
fun = ((0,-1#)..(1,.5#){right}..(1.9,.2#){right}..{curl .1}(3.2,2#))
yscaled(1/#) scaled scf;
x1 = 2.5scf;
for i=1 upto 2:
(t[i],whatever) =
fun intersectiontimes ((x[i],-infinity)--(x[i],infinity));
z[i] = point t[i] of fun;
z[i]-(x[i+1],0) = whatever*direction t[i] of fun;
draw (x[i],0)--z[i]--(x[i+1],0);
fill fullcircle scaled 3bp shifted z[i];
endfor
label.bot(btex $x_1$ etex, (x1,0));
label.bot(btex $x_2$ etex, (x2,0));
label.bot(btex $x_3$ etex, (x3,0));
draw (0,0)--(3.2scf,0);
pickup pencircle scaled 1pt;
draw fun;
endfig;
\end{verbatim}
\atop \epsfbox{manfig.26}
$$
\caption{MetaPost code and the resulting figure}
\label{fig25}
\end{figure}
If you know a slope and you want to find a point on a curve where the tangent
line has that slope,
the {\tt directiontime}\index{directiontime of?\texttt{directiontime of}}\label{Ddtimof}
operator inverts the {\tt direction
of} operation. Given a direction vector and a path,
$$ {\tt directiontime}\, \descr{pair expression}\, {\tt of}\,
\descr{path primary}
$$
returns a numeric value that gives the first time~$t$ when the path has the
indicated direction. (If there is no such time, the result is $-1$).
For example, if {\tt a} is the path drawn as a thin curve in Figure~\ref{fig24},
{\tt directiontime (1,1) of a} returns 0.2084.
There is also an predefined macro \index{directionpoint of?\texttt{directionpoint of}}\label{Ddpntof}
$$ {\tt directionpoint}\, \descr{pair expression}\, {\tt of}\,
\descr{path primary}
$$
that finds the first point on a path where a given direction is achieved. The
{\tt directionpoint} macro produces an error message if the direction does not
occur on the path.
Operators {\tt arclength}\index{arclength?\texttt{arclength}}\label{Darclng} and
{\tt arctime of}\index{arctime of?\texttt{arctime of}}\label{Darctim} relate the ``time''
on a path is related to the more familiar concept of
arc length.\index{arc length}\footnote{The
{\tt arclength} and {\tt arctime} operators are only found in MetaPost
version 0.50 and higher.}
The expression
$$ \hbox{{\tt arclength} \tdescr{path primary}} $$
gives the arc length of a path. If {\tt p} is a path and {\tt a} is a number
between 0 and {\tt arclength p},
$$ \hbox{\tt arctime a of p} $$
gives the time~{\tt t} such that
$$ \hbox{\tt arclength subpath (0,t) of p} = {\tt a}. $$
\subsection{Affine Transformations}
\label{transsec}
\index{transform type}
Note how path {\tt fun} in Figure~\ref{fig25} is first constructed as
$$ \hbox{\verb|(0,-.1)..(1,.05){right}..(1.9,.02){right}..{curl .1}(3.2,.2)|} $$
and then the {\tt yscaled}\index{yscaled?\texttt{yscaled}} and {\tt scaled}\index{scaled?\texttt{scaled}}
operators are used to adjust the
shape and size of the path. As the name suggests, an expression involving
``{\tt yscaled 10}'' multiplies $y$ coordinates by ten so that every point $(x,y)$
on the original path corresponds to a point $(x,10y)$ on the transformed path.
Including {\tt scaled} and {\tt yscaled}, there are seven transformation
operators that take a numeric or pair argument:\index{shifted?\texttt{shifted}}%
\index{rotated?\texttt{rotated}}\index{slanted?\texttt{slanted}}\index{scaled?\texttt{scaled}}\index{xscaled?\texttt{xscaled}}%
\index{yscaled?\texttt{yscaled}}\index{zscaled?\texttt{zscaled}}\label{Dtranop}
\begin{eqnarray*}
(x,y){\tt\ shifted\ }(a,b) &=& (x+a,\, y+b); \\
(x,y){\tt\ rotated\ }\theta &=& (x\cos\theta-y\sin\theta,\,
x\sin\theta+y\cos\theta); \\
(x,y){\tt\ slanted\ }a &=& (x+ay,\, y); \\
(x,y){\tt\ scaled\ }a &=& (ax,\, ay); \\
(x,y){\tt\ xscaled\ }a &=& (ax,\, y); \\
(x,y){\tt\ yscaled\ }a &=& (x,\, ay); \\
(x,y){\tt\ zscaled\ }(a,b) &=& (ax-by,\, bx+ay).
\end{eqnarray*}
Most of these operations are self-explanatory except for {\tt zscaled} which can
be thought of as multiplication of complex numbers. The effect of {\tt zscaled}
$(a,b)$ is to rotate and scale so as to map $(1,0)$ into $(a,b)$. The effect of
{\tt rotated}~$\theta$ is rotate $\theta$ degrees counter-clockwise.
Any combination of shifting, rotating, slanting, etc.\ is an affine transformation,
the net effect of which is to transform any pair $(x,y)$ into
$$ (t_x+t_{xx}x+t_{xy}y,\, t_y+t_{yx}x+t_{yy}y), $$
for some sextuple $(t_x,t_y,t_{xx},t_{xy},t_{yx},t_{yy})$. This information can
be stored in a variable of type transform so that
{\tt transformed T}\index{transformed?\texttt{transformed}}\label{Dtrfrmd} might be equivalent to
$$ \hbox{\tt xscaled -1 rotated 90 shifted (1,1)} $$
if {\tt T} is an appropriate transform variable. The
transform~{\tt T} could then be initialized with an
expression of type transform as follows:
$$ \begin{verbatim}
transform T;
T = identity xscaled -1 rotated 90 shifted (1,1);
\end{verbatim}
$$
As this example indicates, transform expressions can be built up by applying
transformation operators to other transforms. The predefined transformation
{\tt identity}\index{identity?\texttt{identity}}\label{Dident} is a useful starting point
for this process.
This can be illustrated by paraphrasing the above equation for {\tt T} into
English: ``{\tt T} should be the transform obtained by doing whatever
{\tt identity} does, then scaling $x$~coordinates by $-1$, rotating $45^\circ$,
and shifting by $(1,1)$.'' This works because {\tt identity} is the identity
transformation which does nothing; i.e., {\tt transformed identity} is a no-op.
The syntax for transform expressions and transformation operators is given in
Figure~\ref{sytrans}. It includes two more options for
\tdescr{transformer}:\index{reflectedabout?\texttt{reflectedabout}}
$$ \hbox{\tt reflectededabout(}p, q\hbox{\tt )} $$
reflects about the line defined by points $p$ and $q$; and\index{rotatedaround?\texttt{rotatedaround}}
$$ \hbox{\tt rotatedaround(}p,\theta\hbox{\tt )} $$
rotates $\theta$ degrees counter-clockwise around point $p$. For example,
the equation for initializing transform~{\tt T} could have been
$$ \hbox{\tt T = identity reflectedabout((2,0), (0,2))}. $$
\begin{figure}[htp]
\begin{ctabbing}
$\tt \descr{pair secondary} \rightarrow
\descr{pair secondary} \descr{transformer}$\\
$\tt \descr{path secondary} \rightarrow
\descr{path secondary} \descr{transformer}$\\
$\tt \descr{picture secondary} \rightarrow
\descr{picture secondary} \descr{transformer}$\\
$\tt \descr{pen secondary} \rightarrow
\descr{pen secondary} \descr{transformer}$\\
$\tt \descr{transform secondary} \rightarrow
\descr{transform secondary} \descr{transformer}$\\[6pt]
$\tt \descr{transformer} \rightarrow rotated \descr{numeric primary}$\\
$\tt \qquad \;|\; scaled \descr{numeric primary}$\\
$\tt \qquad \;|\; shifted \descr{pair primary}$\\
$\tt \qquad \;|\; slanted \descr{numeric primary}$\\
$\tt \qquad \;|\; transformed \descr{transform primary}$\\
$\tt \qquad \;|\; xscaled \descr{numeric primary}$\\
$\tt \qquad \;|\; yscaled \descr{numeric primary}$\\
$\tt \qquad \;|\; zscaled \descr{pair primary}$\\
$\tt \qquad \;|\; reflectedabout\hbox{\tt (}\descr{pair expression}
\hbox{\tt ,}\descr{pair expression}\hbox{\tt )}$\\
$\tt \qquad \;|\; rotatedaround\hbox{\tt (}\descr{pair expression}
\hbox{\tt ,}\descr{numeric expression}\hbox{\tt )}$\\
\end{ctabbing}
\caption{The syntax for transforms and related operators}
\label{sytrans}
\end{figure}
There is also a unary operator {\tt inverse}\index{inverse?\texttt{inverse}}\label{Dinv}
that takes a
transform and finds another transform that undoes the effect of the first
transform. Thus if
$$ p = q{\tt\ transformed\ }T $$
then
$$ q = p{\tt\ transformed\ inverse\ }T. $$
It is not legal to take the {\tt inverse} of an
unknown transform\index{transformation!unknown} but we
have already seen that you can say
$$ \hbox{\tt T = } \descr{transform expression} $$
when {\tt T} has not been given a value yet. It is also possible to apply
an unknown transform to a known pair or transform and use the result in a linear
equation. Three such equations are sufficient to determine a transform. Thus
the equations
$$ \begin{verbatim}
(0,1) transformed T' = (3,4);
(1,1) transformed T' = (7,1);
(1,0) transformed T' = (4,-3);
\end{verbatim}
$$
allow MetaPost to determine that the transform {\tt T'} is a combination of
rotation and scaling with
$$\openup\jot
\tabskip=0pt plus 1fil
\halign to\displaywidth{\tabskip=0pt
\hfil$\displaystyle{#}$& $\displaystyle{{}#}$\hfil \qquad&
\hfil$\displaystyle{#}$& $\displaystyle{{}#}$\hfil
\tabskip=0pt plus 1fil\cr
\noalign{\vskip-\jot}
t_{xx}&=4,& t_{yx}&=-3,\cr
t_{yx}&=3,& t_{yy}&=4,\cr
t_x&=0,& t_y&=0.\cr}
$$
Equations involving an unknown transform are treated as linear equations in the
six parameters that define the transform. These six parameters can also be
referred to directly as\index{xpart?\texttt{xpart}}\index{ypart?\texttt{ypart}}\index{xxpart?\texttt{xxpart}}%
\index{xypart?\texttt{xypart}}\index{yxpart?\texttt{yxpart}}\index{yypart?\texttt{yypart}}\label{Dtrprt}
$$ {\tt xpart\ T},\ {\tt ypart\ T},\ {\tt xxpart\ T},\ {\tt xypart\ T},\
{\tt yxpart\ T},\ {\tt yypart\ T},
$$
where {\tt T} is a transform. For instance, Figure~\ref{fig27} uses the
equations
$$ \hbox{\tt xxpart T=yypart T; yxpart T=-xypart T} $$
to specify that {\tt T} is shape preserving; i.e., it is a combination of
rotating, shifting, and uniform scaling.
\begin{figure}[htp]
$$\begin{verbatim}
beginfig(28);
path p[];
p1 = fullcircle scaled .6in;
z1=(.75in,0)=-z3;
z2=directionpoint left of p1=-z4;
p2 = z1..z2..{curl1}z3..z4..{curl 1}cycle;
fill p2 withcolor .4[white,black];
unfill p1;
draw p1;
transform T;
z1 transformed T = z2;
z3 transformed T = z4;
xxpart T=yypart T; yxpart T=-xypart T;
picture pic;
pic = currentpicture;
for i=1 upto 2:
pic:=pic transformed T;
draw pic;
endfor
dotlabels.top(1,2,3); dotlabels.bot(4);
endfig;
\end{verbatim}
\quad \mathcenter{\epsfbox{manfig.28}}
$$
\caption{MetaPost code and the resulting ``fractal'' figure}
\label{fig27}
\end{figure}
\subsection{Dashed Lines}
The MetaPost language provides many ways of changing the appearance of a line
besides just changing its width. One way is to use dashed lines as was done in
Figures \ref{fig4} and~\ref{fig22}. The syntax for this is\index{dashed?\texttt{dashed}}
$$ {\tt draw}\, \descr{path expression}\, {\tt dashed}\, \descr{dash pattern} $$
where a \tdescr{dash pattern}\index{dash pattern?\tdescr{dash pattern}} is really a special
type of \tdescr{picture expression}. There is a predefined \tdescr{dash pattern}
called {\tt evenly}\index{evenly?\texttt{evenly}}\label{Devenly} that makes dashes 3 PostScript
points long separated by gaps of the same size.
Another predefined dash pattern {\tt withdots}\index{withdots?\texttt{withdots}}\label{Dwdots}
produces dotted lines with dots 5 PostScript points apart.\footnote{{\tt withdots}
is only found in MetaPost version 0.50 and higher.}
For dots further apart or longer dashes further apart, the
\tdescr{dash pattern} can be
scaled\index{scaled?\texttt{scaled}} as shown in Figure~\ref{fig28}
\begin{figure}[htp]
$$ \epsfbox{manfig.29} $$
\caption[Dashed lines and the corresponding dash patters]
{Dashed lines each labeled with the \tdescr{dash pattern} used to create
it.}
\label{fig28}
\end{figure}
Another way to change a dash pattern is to alter its phase by shifting it
horizontally. Shifting to the right makes the dashes move forward along the
path and shifting to the left moves them backward. Figure~\ref{fig29} illustrates
this effect. The dash pattern can be thought of as an infinitely repeating pattern
strung out along a horizontal line where the portion of the line to the right of
the $y$~axis is laid out along the path to be dashed\index{dash pattern?\tdescr{dash pattern}}.
\begin{figure}[htp]
$$ \epsfbox{manfig.30} $$
\caption[Dashed lines and the corresponding dash patters]
{Dashed lines and the MetaPost statements for drawing them where {\tt e4}
refers to the dash pattern {\tt evenly scaled 4}.}
\label{fig29}
\end{figure}
When you shift a dash pattern so that the $y$~axis crosses the middle of a dash,
the first dash gets truncated. Thus the line with dash pattern {\tt e4} starts
with a dash of length 12bp followed by a 12bp gap and another 12bp dash, etc.,
while {\tt e4 shifted (-6bp,0)} produces a 6bp dash, a 12 bp gap, then a
12bp dash, etc. This dash pattern could be specified more directly via the
{\tt dashpattern}\index{dash pattern?\texttt{dash pattern}}\label{Ddshpat} function:
$$ \hbox{\tt dashpattern(on 6bp off 12bp on 6bp)} $$
This means ``draw the first 6bp of the line, then skip the next 12bp, then draw
another 6bp and repeat.'' If the line to be dashed is more than 30bp long, the
last 6bp of the first copy of the dash pattern will merge with the first 6bp of
the next copy to form a dash 12bp long. The general syntax for the
{\tt dashpattern} function is shown in Figure~\ref{sydash}.
\begin{figure}[htp]
\begin{ctabbing}
$\tt \descr{dash pattern} \rightarrow dashpattern
\hbox{\tt (}\descr{on/off list}\hbox{\tt )}$\\
$\tt \descr{on/off list} \rightarrow
\descr{on/off list}\descr{on/off clause} \;|\; \descr{on/off clause}$\\
$\tt \descr{on/off clause} \rightarrow on \descr{numeric tertiary}
\;|\; off \descr{numeric tertiary}$
\end{ctabbing}
\caption{The syntax for the {\tt dashpattern} function}
\label{sydash}
\end{figure}
Since a dash pattern is really just a special kind of picture, the
{\tt dashpattern} function returns a picture. It is not really necessary to know
the structure of such a picture, so the casual reader will probably want to skip
on to Section~\ref{oopt}. For those who want to know, a little experimentation
shows that if {\tt d} is
$$ \hbox{\tt dashpattern(on 6bp off 12bp on 6bp)}, $$
then {\tt llcorner d} is $(0,24)$ and {\tt urcorner d} is $(24,24)$. Drawing
{\tt d} directly without using it as a dash pattern produces two thin horizontal
line segments like this:
$$ \epsfbox{manfig.31} $$
The lines in this example are specified as having width zero, but this does not
matter because the line width is ignored when a picture is used as a dash pattern.
The general rule for interpreting a picture {\tt d} as a dash pattern is that
the line segments in {\tt d} are projected onto the $x$-axis and the resulting
pattern is replicated to infinity in both directions by placing copies of the
pattern end-to-end. The actual dash lengths are obtained by starting at $x=0$
and scanning in the positive $x$ direction.
To make the idea of ``replicating to infinity'' more precise, let $P({\tt d})$
be the projection of {\tt d} onto the $x$~axis, and let
${\rm shift}(P({\tt d}),x)$ be the result of shifting {\tt d} by~$x$.
The pattern resulting from infinite replication is
$$ \bigcup_{{\rm integers}\ n} {\rm shift}(P(d),\, n\cdot\ell(d)), $$
where $\ell(d)$ measures the length of $P(d)$. The most restrictive possible
definition of this length is $d_{\rm max}-d_{\rm min}$,
where $[d_{\rm min},d_{\rm max}]$
is the range of $x$~coordinates in $P(d)$. In fact, MetaPost uses
$$ \max(\left|y_0({\tt d})\right|,\, d_{\rm max}-d_{\rm min}), $$
where $y_0({\tt d})$ is the $y$ coordinate of the contents of {\tt d}.
The contents of {\tt d} should lie on a horizontal line, but if they do not,
the MetaPost interpreter just picks
a $y$~coordinate that occurs in {\tt d}\index{dash pattern?\tdescr{dash pattern}}.
A picture used as a dashed pattern must contain no text or filled regions,
but it can contain lines that are themselves dashed. This can give small dashes
inside of larger dashes as shown in
Figure~\ref{fig32}\index{dash pattern?\tdescr{dash pattern}!recursive}
\begin{figure}[htp]
$$\begin{verbatim}
beginfig(32);
draw dashpattern(on 15bp off 15bp) dashed evenly;
picture p;
p=currentpicture;
currentpicture:=nullpicture;
draw fullcircle scaled 1cm xscaled 3 dashed p;
endfig;
\end{verbatim}
\quad \mathcenter{\epsfbox{manfig.32}}
$$
\caption{MetaPost code and the corresponding output}
\label{fig32}
\end{figure}
\subsection{Other Options}
\label{oopt}
You might have noticed that the dashed lines produced by
{\tt dashed evenly}\index{evenly?\texttt{evenly}} appear
to have more black than white. This is an effect of the
{\tt linecap}\index{linecap?\texttt{linecap}}\label{Dlinecap} parameter
that controls the appearance of the ends of lines as well as the ends of dashes.
There are also a number of other ways to affect the appearance of things drawn
with MetaPost.
The {\tt linecap} parameter has three different settings just as in PostScript.
Plain MetaPost gives this
internal variable\index{internal variables}\index{variables!internal} the
default value {\tt rounded}\index{rounded?\texttt{rounded}}
which causes line segments to be drawn with rounded ends like the segment from
{\tt z0} to {\tt z3} in Figure~\ref{fig33}. Setting
${\tt linecap}\mathrel{\hbox{\tt:=}}{\tt butt}$\index{butt?\texttt{butt}}\label{Dbutt}
cuts the ends off
flush so that dashes produced by {\tt dashed evenly}\index{evenly?\texttt{evenly}} have
length 3bp, not 3bp plus the line width. You can also get squared-off ends
that extend past the specified endpoints by setting
${\tt linecap}\mathrel{\hbox{\tt:=}}{\tt squared}$\index{squared?\texttt{squared}}\label{Dsqred}
as was done in the line from {\tt z2} to {\tt z5} in Figure~\ref{fig33}.
\begin{figure}[htp]
$$\begin{verbatim}
beginfig(33);
for i=0 upto 2:
z[i]=(0,40i); z[i+3]-z[i]=(100,30);
endfor
pickup pencircle scaled 18;
draw z0..z3 withcolor .8white;
linecap:=butt;
draw z1..z4 withcolor .8white;
linecap:=squared;
draw z2..z5 withcolor .8white;
dotlabels.top(0,1,2,3,4,5);
endfig; linecap:=rounded;
\end{verbatim}
\qquad
\mathcenter{\epsfbox{manfig.33}}
$$
\caption{MetaPost code and the corresponding output}
\label{fig33}
\end{figure}
Another parameter borrowed from PostScript affects the way a {\tt draw} statement
treats sharp corners\index{corners} in the path to be drawn.
The {\tt linejoin}\index{linejoin?\texttt{linejoin}}\label{Dlinejoin} parameter can
be {\tt rounded}\index{rounded?\texttt{rounded}}\label{Drnded},
{\tt beveled}\index{beveled?\texttt{beveled}}\label{Dbvled},
or {\tt mitered}\index{mitered?\texttt{mitered}}\label{Dmitred} as shown in Figure~\ref{fig34}.
The default value for plain MetaPost is {\tt rounded} which gives the effect of
drawing with a circular brush.
\begin{figure}[htp]
$$\begin{verbatim}
beginfig(34);
for i=0 upto 2:
z[i]=(0,50i); z[i+3]-z[i]=(60,40);
z[i+6]-z[i]=(120,0);
endfor
pickup pencircle scaled 24;
draw z0--z3--z6 withcolor .8white;
linejoin:=mitered;
draw z1..z4--z7 withcolor .8white;
linejoin:=beveled;
draw z2..z5--z8 withcolor .8white;
dotlabels.bot(0,1,2,3,4,5,6,7,8);
endfig; linejoin:=rounded;
\end{verbatim}
\qquad
\mathcenter{\epsfbox{manfig.34}}
$$
\caption{MetaPost code and the corresponding output}
\label{fig34}
\end{figure}
When {\tt linejoin} is {\tt mitered}, sharp corners generate long pointed features
as shown in Figure~\ref{fig35}. Since this might be undesirable, there is an
internal variable\index{internal variables}\index{variables!internal}
called {\tt miterlimit}\index{miterlimit?\texttt{miterlimit}}\label{Dmiterlim} that controls how
extreme the situation can get before the mitered join is replaced by a beveled
join. For Plain MetaPost, {\tt miterlimit} has a default value of 10.0 and line
joins revert to beveled when the ratio of miter length to line width
reaches this value.
\begin{figure}[htp]
$$ \epsfbox{manfig.35} $$
\caption{The miter length and line width whose ratio is limited by
{\tt miterlimit}.}
\label{fig35}
\end{figure}
The {\tt linecap}, {\tt linejoin}, and {\tt miterlimit} parameters are especially
important because they also affect things that get drawn behind the scenes.
For instance, Plain MetaPost has statements for drawing
arrows\index{arrows}, and the arrowheads are slightly rounded when {\tt linejoin}
is {\tt rounded}. The effect depends on the line width and is quite subtle at the
default line width of 0.5bp as shown in Figure~\ref{fig36}.
\begin{figure}[htp]
$$\epsfbox{manfig.36}$$
\caption{Three ways of drawing arrows.}
\label{fig36}
\end{figure}
Drawing arrows like the ones in Figure~\ref{fig36} is simply a matter of
saying\index{drawarrow?\texttt{drawarrow}}\label{Ddrwarr}
$$ {\tt drawarrow}\, \descr{path expression} $$
instead of {\tt draw} \tdescr{path expression}. This draws the given path with
an arrowhead at the last point on the path. If you want the arrowhead at the
beginning of the path, just use the unary operator
{\tt reverse}\index{reverse?\texttt{reverse}}\label{Drevrse} to take the
original path and make a new one with its time sense reversed; i.e., for a
path~{\tt p} with {\tt length p}${}=n$,
$$ {\tt point\ } t {\tt\ of\ reverse\ p}
\quad {\rm and} \quad
{\tt point\ } n-t {\tt\ of\ p}
$$ are synonymous.
As shown in Figure~\ref{fig36}, a statement beginning\index{drawdblarrow?\texttt{drawdblarrow}}%
\index{arrows!double-headed}\label{Ddrwdar}
$$ {\tt drawdblarrow}\, \descr{path expression} $$
draws a double-headed arrow. The size of the arrowhead is guaranteed to be
larger than the line width, but it might need adjusting if the line width is
very great. This is done by assigning a new value to the
internal variable\index{internal variables}\index{variables!internal}
{\tt ahlength}\index{ahlength?\texttt{ahlength}}\label{Dahlength}
that determines arrowhead length as shown in Figure~\ref{fig37}.
Increasing {\tt ahlength} from the default value of 4 PostScript points to
1.5 centimeters produces the large arrowhead in Figure~\ref{fig37}. There
is also an {\tt ahangle}\index{ahangle?\texttt{ahangle}}\label{Dahangle}
parameter that controls the angle
at the tip of the arrowhead. The default value of this angle is 45 degrees
as shown in the figure.
\begin{figure}[htp]
$$ \epsfbox{manfig.37} $$
\caption[A large arrowhead with key parameters labeled.]
{A large arrowhead with key parameters labeled and paths used to
draw it marked with white lines.}
\label{fig37}
\end{figure}
The arrowhead is created by filling the triangular region that is outlined
in white in Figure~\ref{fig37} and then drawing around it with the currently
picked up pen. This combination of filling and drawing can be combined into
a single {\tt filldraw} statement\index{filldraw?\texttt{filldraw}}\label{Dfildrw}:
$$ {\tt filldraw}\, \descr{path expression}\,
\descr{optional {\tt dashed} and {\tt withcolor} and {\tt withpen} clauses};
$$
The \tdescr{path expression} should be a closed cycle like the triangular path
in Figure~\ref{fig37}. This path should not be confused with the path argument
to {\tt drawarrow} which is indicated by a white line in the figure.
White lines like the ones in the figure can be created by an
{\tt undraw}\index{undraw?\texttt{undraw}}\label{Dundraw} statement.
This is an erasing\index{erasing}
version of {\tt draw} that draws {\tt withcolor background}\index{background?\texttt{background}}
just as the {\tt unfill} statement does. There is also an
{\tt unfilldraw}\index{unfilldraw?\texttt{unfilldraw}}\label{Dunfdrw}
statement just in case someone finds a
use for it.
The {\tt filldraw}, {\tt undraw} and {\tt unfilldraw} statements and all the
arrow drawing statements are like the {\tt fill} and {\tt draw} statements in that
they take {\tt dashed}\index{dashed?\texttt{dashed}}, {\tt withpen}\index{withpen?\texttt{withpen}},
and {\tt withcolor}\index{withcolor?\texttt{withcolor}} options.
When you have a lot of drawing statements it is
nice to be able to apply an option such as {\tt withcolor 0.8white} to all of
them without having to type this repeatedly as was done in Figures \ref{fig33}
and~\ref{fig34}. The statement for this purpose is\index{drawoptions?\texttt{drawoptions}}\label{Ddropts}
$$ \hbox{\tt drawoptions(} \descr{text} \hbox{\tt )} $$
where the \tdescr{text} argument gives a sequence of {\tt dashed}, {\tt withcolor},
and {\tt withpen} options to be applied automatically to all drawing statements.
If you specify
$$ \hbox{\tt drawoptions(withcolor .5[black,white])} $$
and then want to draw a black line, you can override the {\tt drawoptions}
by specifying
$$ {\tt draw}\, \descr{path expression}\, {\tt withcolor\ black} $$
To turn off {\tt drawoptions} all together, just give an empty list:
$$ \hbox{\tt drawoptions()} $$
(This is done automatically by the {\tt beginfig}\index{beginfig?\texttt{beginfig}} macro).
Since irrelevant options are ignored, there is no harm in giving a statement
like
$$ \hbox{\tt drawoptions(dashed evenly)} $$
followed by a sequence of {\tt draw} and {\tt fill} commands. It does not make
sense to use a dash pattern when filling so the {\tt dashed evenly} gets ignored
for {\tt fill} statements. It turns out that
$$ \hbox{\tt drawoptions(withpen } \descr{pen expression} \hbox{\tt )} $$
does affect {\tt fill} statements as well as {\tt draw} statements.
In fact there is a special pen variable called
{\tt currentpen}\index{currentpen?\texttt{currentpen}} such that
{\tt fill} \ldots\ {\tt withpen currentpen} is equivalent to a {\tt filldraw}
statement.
Precisely what does it mean to say that drawing options affect those statements
where they make sense? The {\tt dashed} \tdescr{dash pattern} option only affects
$$ {\tt draw}\, \descr{path expression} $$
statements, and text appearing in the \tdescr{picture expression} argument to
$$ {\tt draw}\, \descr{picture expression} $$
statement is only affected by the {\tt withcolor} \tdescr{color expression} option.
For all other combinations of drawing statements and options, there is some effect.
An option applied to a {\tt draw} \tdescr{picture expression} statement will in
general affect some parts of the picture but not others. For instance,
a {\tt dashed} or {\tt withpen} option will affect all the lines in the picture
but none of the labels.
\subsection{Pens}
Previous sections have given numerous examples of {\tt pickup}
\tdescr{pen expression} and {\tt withpen} \tdescr{pen expression}, but there have
not been any examples of pen expressions other than
$$ {\tt pencircle\ scaled}\, \descr{numeric primary} $$
which produces lines of a specified width. For calligraphic effects such in
Figure~\ref{fig38}, you can apply any of the transformation operators discussed
in Section~\ref{transsec}. The starting point for such transformations is
{\tt pencircle}\index{pencircle?\texttt{pencircle}}\label{Dpncirc},
a circle one PostScript point in diameter. Thus affine
transformations produce a circular or elliptical\index{pens!elliptical} pen shape.
The width of lines drawn with the pen depends on how nearly perpendicular the line
is to the long axis of the ellipse.
\begin{figure}[htp]
$$\begin{verbatim}
beginfig(38);
pickup pencircle scaled .2in yscaled .08 rotated 30;
x0=x3=x4;
z1-z0 = .45in*dir 30;
z2-z3 = whatever*(z1-z0);
z6-z5 = whatever*(z1-z0);
z1-z6 = 1.2*(z3-z0);
rt x3 = lft x2;
x5 = .55[x4,x6];
y4 = y6;
lft x3 = bot y5 = 0;
top y2 = .9in;
draw z0--z1--z2--z3--z4--z5--z6 withcolor .7white;
dotlabels.top(0,1,2,3,4,5,6);
endfig;
\end{verbatim}
\quad \mathcenter{\epsfbox{manfig.38}}
$$
\caption{MetaPost code and the resulting ``calligraphic'' figure.}
\label{fig38}\index{lft?\texttt{lft}}\index{bot?\texttt{bot}}\index{top?\texttt{top}}
\end{figure}
Figure~\ref{fig38} demonstrates operators {\tt lft}\index{lft?\texttt{lft}}\label{Dlft},
{\tt rt}\index{rt?\texttt{rt}}\label{Drt}, {\tt top}\index{top?\texttt{top}}\label{Dtop},
and {\tt bot}\index{bot?\texttt{bot}}\label{Dbot}
that answer the question, ``If the current pen is placed at the position
given by the argument, where will its left, right, top, or bottom edge be?''
In this case the current pen is the ellipse given in the {\tt pickup} statement
and its bounding box is 0.1734 inches wide and 0.1010 inches high, so
{\tt rt x3} is ${\tt x3}+{\tt 0.0867in}$ and {\tt bot y5} is
${\tt y5}-{\tt 0.0505in}$.
The {\tt lft}, {\tt rt}, {\tt top}, and {\tt bot} operators also accept arguments
of type pair in which case they compute the $x$ and~$y$ coordinates of the
leftmost, rightmost, topmost, or bottommost point on the pen shape. For example,
$$ {\tt rt}(x,y) = (x,y)+({\tt 0.0867in}, {\tt 0.0496in}) $$
for the pen in Figure~\ref{fig38}. Note that {\tt beginfig}\index{beginfig?\texttt{beginfig}}
resets the current pen to a default value of
$$ \hbox{\tt pencircle scaled 0.5bp} $$
at the beginning of each figure. This value can be reselected at any time
by giving the command
{\tt pickup defaultpen}\index{defaultpen?\texttt{defaultpen}}\label{Ddefaultpen}.
This would be the end of the story on pens, except that
for compatibility with \MF\index{metafont?\MF}, MetaPost also allows pen shapes to be
polygonal\index{pens!polygonal}.
There is a predefined pen called
{\tt pensquare}\index{pensquare?\texttt{pensquare}}\label{Dpnsqr} that
can be transformed to yield pens shaped like parallelograms. In fact, there is
even an operator called {\tt makepen}\index{makepen?\texttt{makepen}}\label{Dmkpen} that takes
a convex-polygon-shaped path and makes a pen that shape and size. If the path is
not exactly convex or polygonal, the {\tt makepen} operator will straighten the
edges and/or drop some of the vertices.
In particular, {\tt pensquare} is equivalent to
$$ \hbox{\tt makepen((-.5,-.5)--(.5,-.5)--(.5,.5)--(-.5,.5)--cycle)} $$
The inverse of {\tt makepen} is the
{\tt makepath}\index{makepath?\texttt{makepath}}\label{Dmkpath} operator
that takes a \tdescr{pen primary} and returns the corresponding path. Thus
{\tt makepath pencircle} produces a circular path identical to
{\tt fullcircle}\index{fullcircle?\texttt{fullcircle}}. This also works for a polygonal pen
so that
$$ {\tt makepath\ makepen}\, \descr{path expression} $$
will take any cyclic path and turn it into a convex polygon\index{convex polygons}.
\subsection{Clipping and Low-Level Drawing Commands}
Drawing statements such as {\tt draw}, {\tt fill}, {\tt filldraw}, and {\tt unfill}
are part of the Plain macro\index{Plain macros} package and are defined in terms
of more primitive statements. The main difference between the drawing
statements discussed in previous sections and the more primitive versions is that
the primitive drawing statements all require you to specify a picture variable to
hold the results. For {\tt fill}, {\tt draw}, and related statements, the results
always go to a picture variable called
{\tt currentpicture}\index{currentpicture?\texttt{currentpicture}}\label{Dcurpic}.
The syntax for the primitive
drawing statements that allow you to specify a picture variable is shown in
Figure~\ref{sydraw}.
\begin{figure}[htp]
\begin{ctabbing}
$\tt \descr{addto command} \rightarrow$\\
$\tt \qquad addto \descr{picture variable} also
\descr{picture expression} \descr{option list}$\\
$\tt \qquad \;|\; addto \descr{picture variable}
contour \descr{path expression} \descr{option list}$\\
$\tt \qquad \;|\; addto \descr{picture variable}
doublepath \descr{path expression} \descr{option list}$\\
$\tt \descr{option list} \rightarrow \descr{empty} \;|\;
\descr{drawing option} \descr{option list}$\\
$\tt \descr{drawing option} \rightarrow withcolor \descr{color expression}$\\
$\tt \qquad \;|\; withpen \descr{pen expression} \;|\;
dashed \descr{picture expression}$
\end{ctabbing}
\caption{The syntax for primitive drawing statements}
\label{sydraw}
\index{option list?\tdescr{option list}}\index{addto also?\texttt{addto also}}\index{addto contour?\texttt{addto contour}}%
\index{addto doublepath?\texttt{addto doublepath}}\index{withcolor?\texttt{withcolor}}\index{withpen?\texttt{withpen}}%
\index{dashed?\texttt{dashed}}\index{drawing option?\tdescr{drawing option}}
\end{figure}
The syntax for primitive drawing commands is compatible with
\MF\index{metafont?\MF}. Table~\ref{draweqv} shows how the primitive drawing statements
relate to the familiar {\tt draw} and {\tt fill} statements. Each of the
statements in the first column of the table could be ended with an
\tdescr{option list} of its own, which is equivalent to appending the
\tdescr{option list} to the corresponding entry in the second column of the table.
For example,
$$ {\tt draw}\ p\ {\tt withpen\ pencircle} $$
is equivalent to
$$ {\tt addto\ currentpicture\ doublepath}\ p\
{\tt withpen\ currentpen\ withpen\ pencircle}
$$
where {\tt currentpen}\index{currentpen?\texttt{currentpen}}\label{Dcurpen} is a special
pen variable that always holds the last pen picked up.
The second {\tt withpen} option silently overrides the {\tt withpen currentpen}
from the expansion of {\tt draw}.
\begin{table}[htp]
$$\begin{tabular}{|l|l|} \hline
\multicolumn1{|c|}{statement}& \multicolumn1{c|}{equivalent primitives}\\ \hline
{\tt draw} {\it pic}& {\tt addto currentpicture also} {\it pic}\\
{\tt draw} $p$& {\tt addto currentpicture doublepath} $p$
{\tt withpen} $q$\\
{\tt fill} $c$& {\tt addto currentpicture contour} $c$\\
{\tt filldraw} $c$& {\tt addto currentpicture contour} $c$ {\tt withpen} $q$\\
{\tt undraw} {\it pic}& {\tt addto currentpicture also} {\it pic}
{\tt withcolor} $b$\\
{\tt undraw} $p$& {\tt addto currentpicture doublepath} $p$
{\tt withpen} $q$
{\tt withcolor} $b$\\
{\tt unfill} $c$& {\tt addto currentpicture contour} $c$
{\tt withcolor} $b$\\
{\tt unfilldraw} $c$& {\tt addto currentpicture contour} $c$ {\tt withpen} $q$
{\tt withcolor} $b$\\ \hline
\end{tabular}
$$
\caption[Drawing statements and equivalent primitive commands]
{Common drawing statements and equivalent primitive versions, where
$q$ stands for {\tt currentpen}, $b$ stands for {\tt background},
$p$ stands for any path, $c$ stands for a cyclic path, and {\it pic} stands
for a \tdescr{picture expression}. Note that nonempty {\tt drawoptions}
would complicate the entries in the second column.}
\label{draweqv}
\index{drawoptions?\texttt{drawoptions}}
\end{table}
There are two more primitive drawing commands that do not accept any drawing
options. One is the {\tt setbounds} command that was discussed in
Section~\ref{meas}; the other is the
{\tt clip} command\index{clip?\texttt{clip}}\label{Dclip}:
$$ {\tt clip}\, \descr{picture variable}\, {\tt to}\, \descr{path expression} $$
Given a cyclic path, this statement trims the contents of the
\tdescr{picture variable} to eliminate everything outside of the cyclic path.
There is no ``high level'' version of this statement, so you have to use
$$ {\tt clip\ currentpicture\ to}\, \descr{path expression} $$
if you want to clip {\tt currentpicture}\index{currentpicture?\texttt{currentpicture}}.
Figure~\ref{fig40} illustrates clipping.
\begin{figure}[htp]
$$\begin{verbatim}
beginfig(40);
path p[];
p1 = (0,0){curl 0}..(5pt,-3pt)..{curl 0}(10pt,0);
p2 = p1..(p1 yscaled-1 shifted(10pt,0));
p0 = p2;
for i=1 upto 3: p0:=p0.. p2 shifted (i*20pt,0);
endfor
for j=0 upto 8: draw p0 shifted (0,j*10pt);
endfor
p3 = fullcircle shifted (.5,.5) scaled 72pt;
clip currentpicture to p3;
draw p3;
endfig;
\end{verbatim}
\qquad
\mathcenter{\epsfbox{manfig.40}}
$$
\caption{MetaPost code and the resulting ``clipped'' figure.}
\label{fig40}
\end{figure}
All the primitive drawing operations would be useless without one last operation
called {\tt shipout}. The statement\index{shipout?\texttt{shipout}}\label{Dship}
$$ {\tt shipout}\, \descr{picture expression} $$
This writes out a picture as a PostScript\index{PostScript} file whose name ends
{\tt.}{\it nnn}, where {\tt nnn} is the decimal representation of the value of
the internal variable\index{internal variables}\index{variables!internal}
{\tt charcode}\index{charcode?\texttt{charcode}}\label{Dcharcode}.
(The name ``{\tt charcode}'' is for compatibility with \MF\index{metafont?\MF}.)
Normally, {\tt beginfig}\index{beginfig?\texttt{beginfig}} sets {\tt charcode}, and
{\tt endfig}\index{endfig?\texttt{endfig}} invokes {\tt shipout}.
\section{Macros}
\label{macros}
As alluded to earlier, MetaPost has a set of automatically included macros called
the Plain macro package\index{Plain macros}, and some of the commands discussed in
previous sections are defined as macros instead of being built into MetaPost.
The purpose of this section is to explain how to write such macros.
Macros with no arguments are very simple.
A macro definition\index{replacement text?\tdescr{replacement text}}%
\index{def?\texttt{def}}\index{enddef?\texttt{enddef}}
$$ {\tt def}\, \descr{symbolic token}\, \hbox{\tt =}\,
\descr{replacement text}\, {\tt enddef}
$$
makes the \tdescr{symbolic token} an abbreviation for the \tdescr{replacement text},
where the \tdescr{replacement text} can be virtually any sequence of tokens. For
example, the Plain macro package could almost define the {\tt fill} statement like
this\index{fill?\texttt{fill}}:
$$ \hbox{\tt def fill = addto currentpicture contour enddef} $$
Macros with arguments are similar, except they have formal parameters that tell
how to use the arguments in the \tdescr{replacement text}. For example, the
{\tt rotatedaround}\index{rotatedaround?\texttt{rotatedaround}} macro is defined like this:
$$\begin{verbatim}
def rotatedaround(expr z, d) =
shifted -z rotated d shifted z enddef;
\end{verbatim}
$$
The {\tt expr}\index{expr?\texttt{expr}} in this definition means that formal parameters
{\tt z} and {\tt d} can be arbitrary expressions. (They should be pair expressions
but the MetaPost interpreter does not immediately check for that.)
Since MetaPost is an interpreted language, macros with arguments are a lot like
subroutines\index{subroutines}. MetaPost macros are often used like subroutines,
so the language includes programming concepts to support this.
These concepts include local variables, loops, and conditional statements.
\subsection{Grouping}
\label{grsec}
Grouping in MetaPost is essential for functions\index{functions} and
local\index{variables!local}\index{locality} variables.
The basic idea is that a group is
a sequence of statements possibly followed by an expression with the provision
that certain symbolic tokens\index{tokens!symbolic} can have their old meanings
restored at the end of the group. If the group ends with an expression, the
group behaves like a function call that returns that expression. Otherwise,
the group is just a compound statement\index{compound statement}.
The syntax for a group is\index{begingroup?\texttt{begingroup}}\index{endgroup?\texttt{endgroup}}
$$ {\tt begingroup}\, \descr{statement list}\, {\tt endgroup} $$
or
$$ {\tt begingroup}\, \descr{statement list}\, \descr{expression}\, {\tt endgroup}
$$
where a \tdescr{statement list} is a sequence of statements each followed by a
semicolon. A group with an \tdescr{expression} after the \tdescr{statement list}
behaves like a \tdescr{primary} in Figure~\ref{syexpr} or like a
\tdescr{numeric atom} in Figure~\ref{synprim}.
Since the \tdescr{replacement text} for the {\tt beginfig}\index{beginfig?\texttt{beginfig}}
macro starts with {\tt begingroup} and the \tdescr{replacement text} for
{\tt endfig}\index{endfig?\texttt{endfig}} ends with {\tt endgroup},
each figure in a MetaPost input file behaves like a
group. This is what allows figures can have local variables.
We have already seen in Section~\ref{vardecl} that
variable names beginning with {\tt x} or {\tt y} are local in the sense that they
have unknown values at the beginning of each figure and these values are forgotten
at the end of each figure. The following example illustrates how locality works:
\begin{eqnarray*}
&& \hbox{\tt x23 = 3.1;}\\
&& \hbox{\tt beginfig(17);}\\
&& \qquad \vdots\\
&& \hbox{\tt y3a=1; x23=2;}\\
&& \qquad \vdots\\
&& \hbox{\tt endfig;}\\
&& \hbox{\tt show x23, y3a;}
\end{eqnarray*}
The result of the {\tt show}\index{show} command is
$$\begin{verbatim}
>> 3.1
>> y3a
\end{verbatim}
$$
indicating that {\tt x23} has returned to its former value of {\tt 3.1} and
{\tt y3a} is completely unknown as it was at {\tt beginfig(17)}.
The locality of {\tt x} and {\tt y} variables is achieved by the
statement\index{save?\texttt{save}}\label{Dsave}
$$ \hbox{\tt save x,y} $$
in the \tdescr{replacement text} for {\tt beginfig}\index{beginfig?\texttt{beginfig}}.
In general, variables are made local by the statement
$$ {\tt save}\, \descr{symbolic token list} $$
where \tdescr{symbolic token list} is a comma-separated list of
tokens:\index{tokens!symbolic}
\begin{ctabbing}
$\tt \descr{symbolic token list} \rightarrow \descr{symbolic token}$\\
$\tt \qquad \;|\; \descr{symbolic token}\hbox{\tt ,}
\descr{symbolic token list}$
\end{ctabbing}
All variables whose names begin with one of the specified symbolic tokens become
unknown numerics and their present values are saved for restoration at the end
of the current group. If the {\tt save} statement is used outside of a group, the
original values are simply discarded.
The main purpose of the {\tt save} statement is to allow macros to use variables
without interfering with existing variables or variables in other calls to the
same macro. For example, the predefined macro {\tt whatever}\index{whatever}
has the \tdescr{replacement text}
$$ \hbox{\tt begingroup save ?; ? endgroup} $$
This returns an unknown numeric quantity, but it is no longer called question
mark since that name was local to the group. Asking the name via
{\tt show\index{show?\texttt{show}} whatever} yields\index{CAPSULE?\texttt{CAPSULE}}
$$ \hbox{\tt >> \%CAPSULE}{\it nnnn} $$
where {\it nnnn} is an identification number that is chosen when {\tt save}
makes the name question mark disappear.
In spite of the versatility of {\tt save}, it cannot be used to make local changes
to any of MetaPost's
internal variables\index{internal variables}\index{variables!internal}.
A statement such as\index{linecap?\texttt{linecap}}
$$ \hbox{\tt save linecap} $$
would cause MetaPost to temporarily forget the special meaning of this variable
and just make it an unknown numeric. If you want to draw one dashed line with
{\tt linecap:=butt} and then go back to the previous value, you can use the
{\tt interim}\index{interim?\texttt{interim}}\label{Dinterm} statement as follows:
\begin{eqnarray*}
&& \hbox{\tt begingroup interim linecap:=butt;}\\
&& {\tt draw}\, \descr{path expression}\, \hbox{\tt dashed evenly; endgroup}
\end{eqnarray*}
This saves the value of the
internal variable\index{internal variables}\index{variables!internal}
{\tt linecap} and temporarily
gives it a new value without forgetting that {\tt linecap} is an internal
variable. The general syntax is
$$ {\tt interim}\, \descr{internal variable} \mathrel{\hbox{\tt:=}}
\descr{numeric expression}
$$
\subsection{Parameterized Macros}
The basic idea behind parameterized macros is to achieve greater flexibility by
allowing auxiliary information to be passed to a macro. We have already seen
that macro definitions can have formal parameters that represent expressions
to be given when the macro is called. For instance a definition such as
$$ \hbox{\tt def rotatedaround(expr z, d) = } \descr{replacement text}\,
{\tt enddef}
$$
allows the MetaPost interpreter to understand macro calls of the form
$$\tt rotatedaround\hbox{\tt (}
\descr{expression}\hbox{\tt ,} \descr{expression}\hbox{\tt )}
$$
The keyword {\tt expr}\index{expr?\texttt{expr}}\index{parameter!expr} in the macro
definition means that the
parameters can be expressions of any type. When the definition specifies
{\tt (expr z, d)}, the formal parameters {\tt z} and {\tt d} behave like
variables of the appropriate
types. Within the \tdescr{replacement text}, they can be used in expressions
just like variables, but they cannot be redeclared or assigned to. There is no
restriction against unknown or partially known arguments. Thus the
definition\index{midpoint?\texttt{midpoint}}
$$ \hbox{\tt def midpoint(expr a, b) = (.5[a,b]) enddef} $$
works perfectly well when {\tt a} and {\tt b} are unknown. An
equation such as
$$ \hbox{\tt midpoint(z1,z2) = (1,1)} $$
could be used to help determine {\tt z1} and {\tt z2}.
Notice that the above definition for {\tt midpoint} works for numerics, pairs,
or colors as long as both parameters have the same type. If for some reason we
want a {\tt middlepoint}\index{middlepoint?\texttt{middlepoint}} macro that works for
a single path or picture, it would be
necessary to do an {\tt if}\index{if?\texttt{if}} test on the argument type. This uses
the fact there is a unary operator\index{path?\texttt{path}}
$$ {\tt path}\, \descr{primary} $$
that returns a boolean result indicating whether its argument is a path. Since
the basic {\tt if} test has the syntax\index{else?\texttt{else}}\index{fi?\texttt{fi}}
$$ {\tt if}\, \descr{boolean expression}\hbox{\tt:}\, \descr{balanced tokens}\,
\hbox{\tt else:}\, \descr{balanced tokens}\, {\tt fi}
$$
where the \tdescr{balanced tokens}\index{balanced tokens?\tdescr{balanced tokens}} can be anything
that is balanced with respect to {\tt if} and {\tt fi}, the complete
{\tt middlepoint}\index{midpoint?\texttt{midpoint}} macro with type test looks like this:
$$\begin{verbatim}
def middlepoint(expr a) = if path a: (point .5*length a of a)
else: .5(llcorner a + urcorner a) fi enddef;
\end{verbatim}
$$
The complete syntax for {\tt if} tests is shown in Figure~\ref{syif}.
It allows multiple {\tt if} tests like
$$ \hbox{\tt if $e_1$: \ldots\ else: if $e_2$: \ldots\ else: \ldots\ fi fi} $$
to be shortened to\index{elseif?\texttt{elseif}}
$$ \hbox{\tt if $e_1$: \ldots\ elseif $e_2$: \ldots\ else: \ldots\ fi} $$
where $e_1$ and $e_2$ represent boolean expressions.
Note that {\tt if} tests are not statements and the \tdescr{balanced tokens} in
the syntax rules can be any sequence of balanced tokens even if they do not form
a complete expression or statement. Thus we could have saved two tokens at the
expense of clarity by defining {\tt midpoint} like this:
$$\begin{verbatim}
def midpoint(expr a) = if path a: (point .5*length a of
else: .5(llcorner a + urcorner fi a) enddef;
\end{verbatim}
$$
\begin{figure}[htp]
\begin{ctabbing}
$\tt \descr{if test} \rightarrow if \descr{boolean expression} \hbox{\tt :}
\descr{balanced tokens} \descr{alternatives} fi$\\
$\tt \descr{alternatives} \rightarrow \descr{empty}$\\
$\tt \qquad \;|\; else\hbox{\tt :} \descr{balanced tokens}$\\
$\tt \qquad \;|\; elseif \descr{boolean expression} \hbox{\tt :}
\descr{balanced tokens} \descr{alternatives}$
\end{ctabbing}
\caption{The syntax for {\tt if} tests.}
\label{syif}
\end{figure}
The real purpose of macros and {\tt if} tests is to automate repetitive tasks and
allow important subtasks to be solved separately. For example, Figure~\ref{fig42}
uses macros \verb|draw_marked|, \verb|mark_angle|, and \verb|mark_rt_angle| to
mark lines and angles that appear in the figure.
\begin{figure}[htp]
$$\begin{verbatim}
beginfig(42);
pair a,b,c,d;
b=(0,0); c=(1.5in,0); a=(0,.6in);
d-c = (a-b) rotated 25;
dotlabel.lft("a",a);
dotlabel.lft("b",b);
dotlabel.bot("c",c);
dotlabel.llft("d",d);
z0=.5[a,d];
z1=.5[b,c];
(z.p-z0) dotprod (d-a) = 0;
(z.p-z1) dotprod (c-b) = 0;
draw a--d;
draw b--c;
draw z0--z.p--z1;
draw_marked(a--b, 1);
draw_marked(c--d, 1);
draw_marked(a--z.p, 2);
draw_marked(d--z.p, 2);
draw_marked(b--z.p, 3);
draw_marked(c--z.p, 3);
mark_angle(z.p, b, a, 1);
mark_angle(z.p, c, d, 1);
mark_angle(z.p, c, b, 2);
mark_angle(c, b, z.p, 2);
mark_rt_angle(z.p, z0, a);
mark_rt_angle(z.p, z1, b);
endfig;
\end{verbatim}
\quad \mathcenter{\epsfbox{manfig.42}}
$$
\caption{MetaPost code and the corresponding figure}
\label{fig42}
\end{figure}
The task of the \verb|draw_marked|\index{draw_marked?\texttt{draw\_marked}} macro is to draw a path
with a given number of cross marks near its midpoint. A convenient starting place
is the subproblem of drawing a single cross mark perpendicular to a path {\tt p}
at some time {\tt t}. The \verb|draw_mark|\index{draw_mark?\texttt{draw\_mark}} macro in
Figure~\ref{drawmarked} does this by first finding a vector {\tt dm} perpendicular
to~{\tt p} at~{\tt t}. To simplify positioning the cross mark,
the \verb|draw_marked| macro is defined to take an arc length\index{arc length}
{\tt a} along {\tt p} and use the {\tt arctime}\index{arctime} operator to
compute~{\tt t}
With the subproblem of drawing a single mark out of the way, the \verb|draw_marked|
macro only needs to draw the path and call \verb|draw_mark| with the appropriate
arc length values. The \verb|draw_marked| macro in Figure~\ref{drawmarked}
uses {\tt n} equally-spaced {\tt a} values centered on
{\tt .5*arclength~p}\index{arclength?\texttt{arclength}}.
\begin{figure}[htp]
$$\begin{verbatim}
marksize=4pt;
def draw_mark(expr p, a) =
begingroup
save t, dm; pair dm;
t = arctime a of p;
dm = marksize*unitvector direction t of p
rotated 90;
draw (-.5dm.. .5dm) shifted point t of p;
endgroup
enddef;
def draw_marked(expr p, n) =
begingroup
save amid;
amid = .5*arclength p;
for i=-(n-1)/2 upto (n-1)/2:
draw_mark(p, amid+.6marksize*i);
endfor
draw p;
endgroup
enddef;
\end{verbatim}
$$
\caption{Macros for drawing a path {\tt p} with {\tt n} cross marks.}
\label{drawmarked}
\end{figure}
Since \verb|draw_marked| works for curved lines, it can be used to draw the arcs
that the \verb|mark_angle|\index{mark_angle?\texttt{mark\_angle}} macro generates. Given points
{\tt a}, {\tt b}, and {\tt c} that define a counter-clockwise angle at {\tt b},
the \verb|mark_angle| needs to generate a small arc from segment {\tt ba} to
segment {\tt bc}. The macro definition in Figure~\ref{markangle} does this by
creating an arc {\tt p} of radius one and then computing a scale factor {\tt s}
that makes it big enough to see clearly.
The \verb|mark_rt_angle|\index{mark_rt_angle?\texttt{mark\_rt\_angle}} macro is much simpler.
It takes a generic right-angle corner and uses the {\tt zscaled}\index{zscaled?\texttt{zscaled}}
operator to rotate it and scale it as necessary.
\begin{figure}[htp]
$$\begin{verbatim}
angle_radius=8pt;
def mark_angle(expr a, b, c, n) =
begingroup
save s, p; path p;
p = unitvector(a-b){(a-b)rotated 90}..unitvector(c-b);
s = .9marksize/length(point 1 of p - point 0 of p);
if s<angle_radius: s:=angle_radius; fi
draw_marked(p scaled s shifted b, n);
endgroup
enddef;
def mark_rt_angle(expr a, b, c) =
draw ((1,0)--(1,1)--(0,1))
zscaled (angle_radius*unitvector(a-b)) shifted b
enddef;
\end{verbatim}
$$
\caption{Macros for marking angles.}
\label{markangle}
\end{figure}
\subsection{Suffix and Text Parameters}
Macro parameters need not always be expressions as in the previous examples.
Replacing the keyword {\tt expr} with {\tt suffix}\index{suffix?\texttt{suffix}} or
{\tt text}\index{text?\texttt{text}} in a macro definition declares the parameters to be
variable names or arbitrary sequences of tokens. For example, there is a
predefined macro called {\tt hide}\index{hide?\texttt{hide}} that takes a
text parameter\index{parameter!text} and
interprets it as a sequence of statements while ultimately producing an empty
\tdescr{replacement text}. In other words, {\tt hide} executes its argument and
then gets the next token as if nothing happened. Thus
$$ \hbox{\tt show hide(numeric a,b; a+b=3; a-b=1) a;} $$
prints ``\verb|>> 2|.''
If the {\tt hide} macro were not predefined, it could be defined like this:
$$\begin{verbatim}
def ignore(expr a) = enddef;
def hide(text t) = ignore(begingroup t; 0 endgroup) enddef;
\end{verbatim}
$$
The statements represented by the text parameter {\tt t} would be evaluated as part
of the group that forms the argument to {\tt ignore}. Since {\tt ignore} has an
empty \tdescr{replacement text}, expansion of the {\tt hide} macro ultimately
produces nothing.
Another example of a predefined macro with a text parameter is
{\tt dashpattern}\index{dashpattern?\texttt{dashpattern}}. The definition of {\tt dashpattern}
starts
$$\begin{verbatim}
def dashpattern(text t) =
begingroup save on, off;
\end{verbatim}
$$
then it defines {\tt on} and {\tt off} to be macros that create the desired
picture when the text parameter~{\tt t} appears in the replacement text.
Text parameters are very general, but their generality sometimes gets in the way.
If you just want to pass a variable name to a macro, it is better to declare it
as a suffix parameter\index{parameter!suffix}. For example,\index{incr?\texttt{incr}}
$$ \hbox{\verb|def incr(suffix $) = begingroup $:=$+1; $ endgroup enddef;|} $$
defines a macro that will take any numeric variable, add one to it, and return
the new value. Since variable names can be more than one token long,
$$ \hbox{\tt incr(a3b)} $$
is perfectly acceptable if {\tt a3b} is a numeric variable.
Suffix parameters are slightly more general than variable names because the
definition in Figure~\ref{syvar} allows a \tdescr{suffix}\index{suffix?\tdescr{suffix}}
to start with a \tdescr{subscript}\index{subscript?\tdescr{subscript}}.
Figure~\ref{fig45} shows how suffix and expr parameters can be used together.
The {\tt getmid}\index{getmid?\texttt{getmid}} macro takes a path variable and creates arrays
of points and directions whose names are obtained by appending {\tt mid},
{\tt off}, and {\tt dir} to the path variable. The {\tt joinup}\index{joinup?\texttt{joinup}}
macro takes arrays of points and directions and creates a path of length {\tt n}
that passes through each {\tt pt[i]} with direction {\tt d[i]} or
$-\hbox{\tt d[i]}$.
\begin{figure}[htp]
$$\begin{verbatim}
def getmid(suffix p) =
pair p.mid[], p.off[], p.dir[];
for i=0 upto 36:
p.dir[i] = dir(5*i);
p.mid[i]+p.off[i] = directionpoint p.dir[i] of p;
p.mid[i]-p.off[i] = directionpoint -p.dir[i] of p;
endfor
enddef;
def joinup(suffix pt, d)(expr n) =
begingroup
save res, g; path res;
res = pt[0]{d[0]};
for i=1 upto n:
g:= if (pt[i]-pt[i-1]) dotprod d[i] <0: - fi 1;
res := res{g*d[i-1]}...{g*d[i]}pt[i];
endfor
res
endgroup
enddef;
beginfig(45)
path p, q;
p = ((5,2)...(3,4)...(1,3)...(-2,-3)...(0,-5)...(3,-4)
...(5,-3)...cycle) scaled .3cm shifted (0,5cm);
getmid(p);
draw p;
draw joinup(p.mid, p.dir, 36)..cycle;
q = joinup(p.off, p.dir, 36);
draw q..(q rotated 180)..cycle;
drawoptions(dashed evenly);
for i=0 upto 3:
draw p.mid[9i]-p.off[9i]..p.mid[9i]+p.off[9i];
draw -p.off[9i]..p.off[9i];
endfor
endfig;
\end{verbatim}
\quad \mathcenter{\epsfbox{manfig.45}}
$$
\caption{MetaPost code and the corresponding figure}
\label{fig45}
\end{figure}
A definition that starts
$$ \hbox{\tt def joinup(suffix pt, d)(expr n) =} $$
might suggest that calls to the {\tt joinup} macro should have two sets of
parentheses as in
$$ \hbox{\tt joinup(p.mid, p.dir)(36)} $$
instead of
$$ \hbox{\tt joinup(p.mid, p.dir, 36)} $$
In fact, both forms are acceptable. Parameters in a macro call can be separated
by commas or by {\tt )(} pairs. The only restriction is that a
text parameter\index{parameter!text}
must be followed by a right parenthesis. For instance, a macro {\tt foo} with one
text parameter and one expr parameter can be called
$$ \hbox{\tt foo(a,b)(c)} $$
in which case the text parameter is ``{\tt a,b}'' and the expr parameter is
{\tt c}, but
$$ \hbox{\tt foo(a,b,c)} $$
sets the text parameter to ``{\tt a,b,c}'' and leaves the MetaPost interpreter
still looking for the expr parameter.
\subsection{Vardef Macros}
A macro definition can begin with {\tt vardef}\index{vardef?\texttt{vardef}} instead of
{\tt def}. Macros defined in this way are called vardef macros. They are
particularly well-suited to applications where macros are being used like functions
or subroutines. The main idea is that a vardef macro is like a variable of type
``macro.''
Instead of {\tt def} \tdescr{symbolic token}, a vardef macro begins
$$ {\tt vardef}\, \descr{generic variable} $$
where a \tdescr{generic variable}\index{generic variable?\tdescr{generic variable}} is a variable
name with numeric subscripts replaced by the
generic subscript\index{subscript!generic} symbol {\tt []}\index{[]?\texttt{[]}}.
In other words, the name following {\tt vardef} obeys exactly the same syntax as
the name given in a variable declaration. It is a sequence of tags and generic
subscript symbols starting with a tag, where a tag\index{tags} is a symbolic token
that is not a macro or a primitive operator as explained in Section~\ref{vardecl}.
The simplest case is when the name of a vardef macro consists of a single tag.
Under such circumstances, {\tt def} and {\tt vardef} provide roughly the same
functionality. The most obvious difference is that
{\tt begingroup}\index{begingroup?\texttt{begingroup}} and {\tt endgroup}\index{endgroup?\texttt{endgroup}}
are automatically inserted at the beginning and end of the
\tdescr{replacement text} of every vardef macro. This makes the
\tdescr{replacement text} a group so that a vardef
macro behaves like a subroutine or a function call.
Another property of vardef macros is that they allow multi-token macro
names and macro names involving generic subscripts.
When a vardef macro name has generic subscripts, numeric values have to be given
when the macro is called. After a macro definition
$$ \hbox{\tt vardef a[]b(expr p) =}\, \descr{replacement text}\,
\hbox{\tt enddef;}
$$
{\tt a2b((1,2))} and {\tt a3b((1,2)..(3,4))} are macro calls. But how can the
\tdescr{replacement text} tell the difference between {\tt a2b} and {\tt a3b}?
Two implicit suffix parameters\index{parameter!suffix} are automatically
provided for this purpose.
Every vardef macro has suffix parameters \verb|#@|\index{#@?\texttt{\#@}}
and \verb|@|\index{@?\texttt{@}}, where \verb|@| is the last token in the name from the
macro call and \verb|#@| is everything preceding the last token. Thus \verb|#@|
is {\tt a2} when the name is given as {\tt a2b} and {\tt a3} when the name is
given as {\tt a3b}.
Suppose, for example, that the {\tt a[]b} macro is to take its argument and
shift it by an amount that depends on the macro name. The macro could be defined
like this:
$$ \hbox{\verb|vardef a[]b(expr p) = p shifted (#@,b) enddef;|} $$
Then {\tt a2b((1,2))} means {\tt (1,2) shifted (a2,b)}
and {\tt a3b((1,2)..(3,4))} means
$$ \hbox{\tt ((1,2)..(3,4)) shifted (a3,b)}. $$
If the macro had been {\tt a.b[]}, \verb|#@| would always be {\tt a.b} and the
\verb|@| parameter would give the numeric subscript. Then {\tt a@} would refer to
an element of the array {\tt a[]}. Note that \verb|@| is a suffix parameter, not
an expr parameter, so an expression like {\tt @+1} would be illegal. The only way
to get at the numeric values of subscripts in a
suffix parameter\index{parameter!suffix} is by extracting
them from the string returned by the {\tt str}\index{str?\texttt{str}}\label{Dstr}
operator. This operator takes a suffix and returns a string
representation of a suffix. Thus {\tt str @} would be \verb|"3"| in {\tt a.b3}
and \verb|"3.14"| in {\tt a.b3.14} or {\tt a.b[3.14]}. Since the syntax for a
\tdescr{suffix}\index{suffix?\tdescr{suffix}} in Figure~\ref{syvar} requires negative
subscripts to be in brackets, {\tt str @} returns {\tt "[-3]"} in {\tt a.b[-3]}.
The {\tt str} operator is generally for emergency use only. It is better to
use suffix parameters only as variable names or suffixes. The best example of a
vardef macro involving suffixes is the {\tt z} macro that defines the
{\tt z} convention\index{z convention?{\tt z} convention}. The definition involves a special
token \verb|@#|\index{@#?\texttt{@\#}} that refers to the suffix following the macro name:
$$ \hbox{\verb|vardef z@#=(x@#,y@#) enddef;|} $$
This means that any variable name whose first token is {\tt z} is equivalent to
a pair of variables whose names are obtained by replacing {\tt z} with {\tt x}
and~{\tt y}. For instance, {\tt z.a1} calls the {\tt z} macro with the suffix
parameter \verb|@#| set to {\tt a1}.
In general,
$$ {\tt vardef}\, \descr{generic variable} \hbox{\verb|@#|} $$
is an alternative to {\tt vardef} \tdescr{generic variable} that causes the
MetaPost interpreter
to look for a suffix following the name given in the macro call and makes this
available as the \verb|@#| suffix parameter.
To summarize the special features of vardef macros, they allow a broad class of
macro names as well as macro names followed by a special suffix parameter.
Furthermore, {\tt begingroup} and {\tt endgroup} are automatically added to the
\tdescr{replacement text} of a vardef macro. Thus using {\tt vardef}
instead of {\tt def} to define the {\tt joinup}\index{joinup?\texttt{joinup}} macro in
Figure~\ref{fig45} would have avoided the need to include {\tt begingroup} and
{\tt endgroup} explicitly in the macro definition.
In fact, most of the macro definitions given in previous examples could equally
well use {\tt vardef} instead of {\tt def}. It usually does not matter very much
which you use, but a good general rule is to use {\tt vardef} if you intend the
macro to be used like a function or a subroutine. The following comparison
should help in deciding when to use {\tt vardef}.
\begin{itemize}
\item Vardef macros are automatically surrounded by {\tt begingroup}
and {\tt endgroup}.
\item The name of a vardef macro can be more than one token long and it can
contain subscripts.
\item A vardef macro can have access to the suffix that follows the macro name
when the macro is called.
\item When a symbolic token is used in the name of a vardef macro it remains
a tag\index{tags} and can still be used in other variable names. Thus {\tt p5dir}
is a legal variable name even though {\tt dir} is a vardef macro, but an ordinary
macro such as {\tt ...}\index{...?\texttt{...}} cannot be used in a variable name.
(This is fortunate since {\tt z5...z6} is supposed to be a path expression, not
an elaborate variable name).
\end{itemize}
\subsection{Defining Unary and Binary Macros}
It has been mentioned several times that some of the operators and commands
discussed so far are actually predefined macros. These include unary operators
such as {\tt round}\index{round?\texttt{round}} and {\tt unitvector}\index{unitvector?\texttt{unitvector}},
statements such as {\tt fill}\index{fill?\texttt{fill}} and {\tt draw}\index{draw?\texttt{draw}},
and binary operators such as {\tt dotprod}\index{dotprod?\texttt{dotprod}} and
{\tt intersectionpoint}\index{intersectionpoint?\texttt{intersectionpoint}}. The main difference
between these macros and the ones we already know how to define is their argument
syntax.
The {\tt round} and {\tt unitvector} macros are examples of what
Figure~\ref{syexpr} calls \tdescr{unary op}. That is, they are followed by a
primary expression. To specify a macro argument of this type, the macro definition
should look like this:
$$ \hbox{\tt vardef round primary u =}\, \descr{replacement text}\,
\hbox{\tt enddef;}
$$
The {\tt u} parameter is an expr parameter\index{parameter!expr} and it can be
used exactly like the expr parameter defined using the ordinary
$$ \hbox{\tt (expr u)} $$
syntax.
As the {\tt round} example suggests, a macro can be defined to take a
\tdescr{secondary}\index{secondary?\tdescr{secondary}},
\tdescr{tertiary}\index{tertiary?\tdescr{tertiary}}, or an
\tdescr{expression}\index{expression?\tdescr{expression}} parameter. For example, the
predefined definition of the {\tt fill} macro is roughly\index{fill?\texttt{fill}}
$$ \hbox{\tt def fill expr c = addto currentpicture contour c enddef;} $$
It is even possible to define a macro to play the role of
\tdescr{of operator}\index{of operator?\tdescr{of operator}} in Figure~\ref{syexpr}.
For example, the {\tt direction of}\index{direction of?\texttt{direction of}} macro has a definition
of this form:
$$ \hbox{\tt vardef direction expr t of p =}\, \descr{replacement text}\,
\hbox{\tt enddef;}
$$
Macros can also be defined to behave like binary operators. For instance, the
definition of the {\tt dotprod} macro has the
form\index{dotprod?\texttt{dotprod}}\index{primarydef?\texttt{primarydef}}
$$ \hbox{\tt primarydef w dotprod z =}\, \descr{replacement text}\,
\hbox{\tt enddef;}
$$
This makes {\tt dotprod} a \tdescr{primary binop}\index{primary binop?\tdescr{primary binop}}.
Similarly, {\tt secondarydef}\index{secondarydef?\texttt{secondarydef}} and
{\tt tertiarydef}\index{tertiarydef?\texttt{tertiarydef}} introduce
\tdescr{secondary binop}\index{secondary binop?\tdescr{secondary binop}} and
\tdescr{tertiary binop}\index{tertiary binop?\tdescr{tertiary binop}} definitions. These all
define ordinary macros, not vardef macros; e.g., there is
no ``{\tt primaryvardef}.''
Thus macro definitions can be introduced by {\tt def}, {\tt vardef},
{\tt primarydef}, {\tt secondarydef}, or {\tt tertiarydef}.
A \tdescr{replacement text}\index{replacement text?\tdescr{replacement text}} is any list of tokens
that is balanced with respect to {\tt def}-{\tt enddef} pairs where all five macro
definition tokens are treated like {\tt def} for the purpose of
{\tt def}-{\tt enddef} matching.
The rest of the syntax for macro definitions is summarized in Figure~\ref{symacro}.
The syntax contains a few surprises. The macro parameters can have a
\tdescr{delimited part} and an \tdescr{undelimited part}. Normally, one of
these is \tdescr{empty}, but it is possible to have both parts nonempty:
$$ \hbox{\tt def foo(text a) expr b =}\, \descr{replacement text}\,
\hbox{\tt enddef;}
$$
This defines a macro {\tt foo} to take a text parameter in parentheses followed
by an expression.
\begin{figure}[htp]
\begin{ctabbing}
$\tt \descr{macro definition} \rightarrow
\descr{macro heading} \hbox{\tt =} \descr{replacement text}\, enddef$\\
$\tt \descr{macro heading} \rightarrow def\, \descr{symbolic token}
\descr{delimited part} \descr{undelimited part}$\\
$\tt \qquad \;|\; vardef\, \descr{generic variable} \descr{delimited part}
\descr{undelimited part}$\\
$\tt \qquad \;|\; vardef\, \descr{generic variable} \hbox{\tt @\#}
\descr{delimited part} \descr{undelimited part}$\\
$\tt \qquad \;|\; \descr{binary def} \descr{parameter}
\descr{symbolic token} \descr{parameter}$\\
$\tt \descr{delimited part} \rightarrow \descr{empty}$\\
$\tt \qquad \;|\; \descr{delimited part}
\hbox{\tt (}\descr{parameter type} \descr{parameter tokens}\hbox{\tt )}$\\
$\tt \descr{parameter type} \rightarrow expr \;|\; suffix \;|\; text$\\
$\tt \descr{parameter tokens} \rightarrow \descr{parameter} \;|\;
\descr{parameter tokens}\hbox{\tt ,} \descr{parameter}$\\
$\tt \descr{parameter} \rightarrow \descr{symbolic token}$\\
$\tt \descr{undelimited part} \rightarrow \descr{empty}$\\
$\tt \qquad \;|\; \descr{parameter type} \descr{parameter}$\\
$\tt \qquad \;|\; \descr{precedence level} \descr{parameter}$\\
$\tt \qquad \;|\; expr\, \descr{parameter}\, of\, \descr{parameter}$\\
$\tt \descr{precedence level} \rightarrow primary \;|\; secondary \;|\;
tertiary$\\
$\tt \descr{binary def} \rightarrow primarydef \;|\; secondarydef \;|\;
tertiatydef$
\end{ctabbing}
\caption{The syntax for macro definitions}
\label{symacro}
\end{figure}
The syntax also allows the \tdescr{undelimited part} to specify an argument type
of {\tt suffix}\index{suffix?\texttt{suffix}} or {\tt text}\index{text?\texttt{text}}. An example of
a macro with an undelimited suffix parameter\index{parameter!suffix}
is the predefined macro {\tt incr}\index{incr?\texttt{incr}}\label{Dincr} that is actually
defined like this:
$$ \hbox{\verb|vardef incr suffix $ = $:=$+1; $ enddef;|} $$
This makes {\tt incr} a function that takes a variable, increments it, and
returns the new value. Undelimited suffix parameters may be parenthesized,
so {\tt incr a} and {\tt incr(a)} are both legal if {\tt a} is a numeric
variable. There is also a similar predefined macro {\tt decr}\index{decr?\texttt{decr}}
that subtracts~1.
Undelimited text parameters\index{parameter!text} run to the end of a statement.
More precisely, an undelimited text parameter is the list of tokens following the
macro call up to the first ``{\tt ;}\index{semicolon}'' or
``{\tt endgroup}\index{endgroup?\texttt{endgroup}}'' or ``{\tt end}\index{end?\texttt{end}}''
except that an argument containing ``{\tt begingroup}'' will always
include the matching ``{\tt endgroup}.''
An example of an undelimited text parameter comes from the predefined macro
{\tt cutdraw}\index{cutdraw?\texttt{cutdraw}}\label{Dctdraw} whose definition is
roughly\index{linecap?\texttt{linecap}}\index{butt?\texttt{butt}}\index{interim?\texttt{interim}}
$$\begin{verbatim}
def cutdraw text t =
begingroup interim linecap:=butt; draw t; endgroup enddef;
\end{verbatim}
$$
This makes {\tt cutdraw} synonymous with {\tt draw} except for the {\tt linecap}
value. (This macro is provided mainly for compatibility with \MF\index{metafont?\MF}.)
\section{Loops}
Numerous examples in previous sections have used simple {\tt for} loops of the
form\index{loops}\index{for?\texttt{for}}\index{endfor?\texttt{endfor}}
$$ {\tt for}\, \descr{symbolic token}\, \hbox{\tt =}\,
\descr{expression}\, {\tt upto}\, \descr{expression}:\
\descr{loop text}\, {\tt endfor}
$$
It is equally simple to construct a loop that counts downward: just replace
{\tt upto} by {\tt downto}\index{downto?\texttt{downto}}\label{Ddwnto}
make the second \tdescr{expression} smaller than the first.
This section covers more complicated types of progressions, loops where the loop
counter behaves like a suffix parameter, and ways of exiting from a loop.
The first generalization is suggested by the fact that {\tt upto}\index{upto?\texttt{upto}}
is a predefined macro for\index{step?\texttt{step}}\index{until?\texttt{until}}
$$ \hbox{\tt step 1 until} $$
and {\tt downto}\index{downto?\texttt{downto}} is a macro for {\tt step -1 until}.
A loop begining
$$ \hbox{\tt for i=a step b until c} $$
scans a sequence of {\tt i} values {\tt a}, ${\tt a}+{\tt b}$, ${\tt a}+2{\tt b}$,
\ldots, stopping before {\tt i} passes {\tt c}; i.e., the loop scans {\tt i} values
where ${\tt i}\le {\tt c}$ if ${\tt b}>0$ and ${\tt i}\ge {\tt c}$ if ${\tt i}<0$.
It is best to use this feature only when the step size is an integer or some
number that can be represented exactly in fixed point arithmetic\index{arithmetic}
as a multiple of $1\over65536$. Otherwise, error will accumulate and the loop
index might not reach the expected termination value. For instance,
$$ \hbox{\tt for i=0 step .1 until 1: show i; endfor} $$
shows ten {\tt i} values the last of which is 0.90005.
The standard way of avoid the problems associated with non-integer step sizes is
to iterate over integer values and then multiply by a scale factor when using
the loop index as was done in Figures \ref{fig1} and~\ref{fig40}.
Alternatively, the values to iterate over can be given explicitly. Any sequence
of zero or more expressions separated by commas can be used in place of
{\tt a step b upto c}. In fact, the expressions need not all be the same type
and they need not have known values. Thus
$$ \hbox{\tt for t=3.14, 2.78, (a,2a), "hello": show a; endfor} $$
shows the four values listed.
Note that the loop body in the above example is a statement followed by a
semicolon. It is common for the body of a loop to be one or more statements,
but this need not be the case. A loop is like a macro definition followed by
calls to the macro. The loop body can be virtually any sequence of tokens as
long as they make sense together. Thus, the (ridiculous) statement
$$ \hbox{\tt draw for p=(3,1),(6,2),(7,5),(4,6),(1,3): p-- endfor cycle;} $$
is equivalent to
$$ \hbox{\tt draw (3,1)--(6,2)--(7,5)--(4,6)--(1,3)--cycle;} $$
(See Figure~\ref{fig17} for a more realistic example of this.)
If a loop is like a macro definition, the loop index is like an
expr parameter\index{parameter!expr}. It can represent any value, but it is
not a variable and it cannot be changed by an assignment
statement\index{assignment}. In order to do that, you need a
{\tt forsuffixes}\index{forsuffixes?\texttt{forsuffixes}} loop. A {\tt forsuffixes} loop is
a lot like a {\tt for} loop, except the loop index behaves like a
suffix parameter\index{parameter!suffix}. The syntax is
$$ {\tt forsuffixes}\, \descr{symbolic token}\, \hbox{\tt =}\,
\descr{suffix list}:\ \descr{loop text}\, {\tt endfor}
$$
where a \tdescr{suffix list} is a comma-separated list of suffixes.
If some of the suffixes are \tdescr{empty}, the \tdescr{loop text} gets executed
with the loop index parameter set to the empty suffix.
A good example of a {\tt forsuffixes} loop is the definition of the
{\tt dotlabels}\index{dotlabels?\texttt{dotlabels}} macro\index{str?\texttt{str}}:
$$\begin{verbatim}
vardef dotlabels@#(text t) =
forsuffixes $=t: dotlabel@#(str$,z$); endfor enddef;
\end{verbatim}
$$
This should make it clear why the parameter to {\tt dotlabels} has to be a
comma-separated list of suffixes. Most macros that accept variable-length
comma-separated lists
use them in {\tt for} or {\tt forsuffixes} loops in this fashion as values to
iterate over.
When there are no values to iterate over, you can use a
{\tt forever}\index{forever?\texttt{forever}} loop:
$$ {\tt forever}\hbox{\tt :}\, \descr{loop text}\, {\tt endfor} $$
To terminate such a loop when a boolean condition becomes true, use an exit
clause\index{exitif?\texttt{exitif}}:
$$ {\tt exitif}\, \descr{boolean expression} \hbox{\tt ;} $$
When the MetaPost interpreter encounters an exit clause, it evaluates the
\tdescr{boolean expression} and exits the current loop if the expression is
true. If it is more convenient to exit the loop when an expression becomes false,
use the predefined macro {\tt exitunless}\index{exitunless?\texttt{exitunless}}.
Thus MetaPost's version of a {\bf while} loop is
$$ \hbox{\tt forever: exitunless}\, \descr{boolean expression} \hbox{\tt ;}\,
\descr{loop text}\, {\tt endfor}
$$
The exit clause could equally well come just before {\tt endfor} or anywhere
in the \tdescr{loop text}. In fact any {\tt for}, {\tt forever}, or
{\tt forsuffixes} loop can contain any number of exit clauses.
The summary of loop syntax shown in Figure~\ref{syloop} does not mention
exit clauses explicitly because a \tdescr{loop text} can be virtually any
sequence of tokens. The only restriction is that a \tdescr{loop text} must
be balanced with respect to {\tt for} and {\tt endfor}. Of course this balancing
process treats {\tt forsuffixes} and {\tt forever} just like {\tt for}.
\begin{figure}[htp]
\begin{ctabbing}
$\tt \descr{loop} \rightarrow \descr{loop header}\hbox{\tt :}\,
\descr{loop text} endfor$\\
$\tt \descr{loop header} \rightarrow for\, \descr{symbolic token}\,
\hbox{\tt =}\, \descr{progression}$\\
$\tt \qquad \;|\; for\, \descr{symbolic token}\, \hbox{\tt =}\,
\descr{for list}$\\
$\tt \qquad \;|\; forsuffixes\, \descr{symbolic token}\, \hbox{\tt =}\,
\descr{suffix list}$\\
$\tt \qquad \;|\; forever$\\
$\tt \descr{progression} \rightarrow \descr{numeric expression}\, upto\,
\descr{numeric expression}$\\
$\tt \qquad \;|\; \descr{numeric expression}\, downto\,
\descr{numeric expression}$\\
$\tt \qquad \;|\; \descr{numeric expression}\, step\,
\descr{numeric expression}\, until\, \descr{numeric expression} $\\
$\tt \descr{for list} \rightarrow \descr{expression}
\;|\; \descr{for list}\hbox{\tt ,}\, \descr{expression}$\\
$\tt \descr{suffix list} \rightarrow \descr{suffix}
\;|\; \descr{suffix list}\hbox{\tt ,}\, \descr{suffix}$
\end{ctabbing}
\caption{The syntax for loops}
\label{syloop}
\end{figure}
\section{Making Boxes}
\label{boxessec}
This section describes auxiliary macros not included in Plain MetaPost that
make it convenient to do things that {\it pic} is good at \cite{ke:pic}. What
follows is a description of how to use the macros contained in the
file {\tt boxes.mp}\index{boxes.mp?\texttt{boxes.mp}}. This file is included in a special
directory reserved for MetaPost macros and support software\footnote{The name
of this directory is likely to be something like \verb|/usr/lib/mp/lib|, but
this is system dependent.}
and can be accessed by giving the MetaPost command {\tt input boxes} before any
figures that use the box making macros.
The syntax for the {\tt input} command is \index{input?\texttt{input}}
$$ {\tt input}\, \descr{file name} $$
where a final ``{\tt .mp}'' can be omitted from the file name. The {\tt input}
command looks first in the current directory and then in the special macro
directory. Users interested in writing macros may want to look at the
{\tt boxes.mp} file in this directory.
\subsection{Rectangular Boxes}
The main idea of the box-making macros is that one should
say\index{boxit?\texttt{boxit}}\label{Dboxit}
$$ {\tt boxit.} \descr{suffix}
\hbox{\tt(} \descr{picture expression} \hbox{\tt)}
$$
where the \tdescr{suffix} does not start with a subscript.\footnote{Some early
versions of the box making macros did not allow any subscripts in the
{\tt boxit} suffix.}
This creates pair variables \tdescr{suffix}{\tt.c},
\tdescr{suffix}{\tt.n}, \tdescr{suffix}{\tt.e}, \ldots\ that can then be
used for positioning the picture before drawing it with a separate command such
as\index{drawboxed?\texttt{drawboxed}}\label{Ddrbxed}
$$ \hbox{\tt drawboxed(} \descr{suffix list} \hbox{\tt )} $$
The argument to {\tt drawboxed} should be a comma-separated list of box names,
where a box name\index{box name} is a \tdescr{suffix} with which {\tt boxit}
has been called.
For the command {\tt boxit.bb(pic)}, the box name is {\tt bb} and the contents
of the box is the picture {\tt pic}. In this case, {\tt bb.c} the position
where the center of picture {\tt pic} is to be placed, and {\tt bb.sw},
{\tt bb.se}, {\tt bb.ne}, and {\tt bb.nw} are the corners of a rectangular path
that will surround the resulting picture. Variables {\tt bb.dx} and {\tt bb.dy}
give the spacing between the shifted version of {\tt pic} and the surrounding
rectangle, and {\tt bb.off} is the amount by which {\tt pic} has to be shifted
to achieve all this.
When the {\tt boxit} macro is called with box name~$b$, it gives linear equations
that force $b${\tt.sw}, $b${\tt.se}, $b${\tt.ne}, and $b${\tt.nw} to be the
corners of a rectangle
aligned on the $x$ and $y$ axes with the box contents centered inside as
indicated by the gray rectangle in Figure~\ref{fig48}. The values of $b${\tt.dx},
$b${\tt.dy}, and $b${\tt.c} are left unspecified so that the user can give
equations for positioning the boxes. If no such equations are given, macros
such as {\tt drawboxed} can detect this and give default values.
The default values for {\tt dx} and {\tt dy} variables are controlled by the
internal variables\index{internal variables}\index{variables!internal}
{\tt defaultdx}\index{defaultdx?\texttt{defaultdx}}\label{Ddefaultdx} and
{\tt defaultdy}\index{defaultdy?\texttt{defaultdy}}\label{Ddefaultdy}.
\begin{figure}[htp]
$$ \epsfbox{manfig.48} $$
\caption[How a {\tt boxit} picture relates to the associated variables]
{The relationship between the picture given to {\tt boxit} and the
associated variables. The picture is indicated by a gray rectangle.}
\label{fig48}
\end{figure}
If $b$ represents a box name, {\tt drawboxed($b$)} draws the rectangular boundary
of box~$b$ and then the contents of the box. This bounding rectangle can be
accessed separately as {\tt bpath~b}, or in general\index{bpath?\texttt{bpath}}\label{Dbpath}
$$ {\tt bpath}\, \descr{box name} $$
It is useful in combination with operators like
{\tt cutbefore}\index{cutbefore?\texttt{cutbefore}} and {\tt cutafter}\index{cutafter?\texttt{cutafter}}
in order to control paths that enter the box.
For example, if $a$ and $b$ are box names and $p$ is a path from $a${\tt.c}
to $b${\tt.c},\index{drawarrow?\texttt{drawarrow}}
$$ \hbox{\tt drawarrow $p$ cutbefore bpath $a$ cutafter bpath $b$} $$
draws an arrow from the edge of box $a$ to the edge of box $b$.
Figure~\ref{fig49} shows a practical example including some arrows drawn with
{\tt cutafter bpath} \tdescr{box name}. It is
instructive to compare Figure~\ref{fig49} to the similar figure in the pic
manual \cite{ke:pic}. The figure uses a macro\index{boxjoin?\texttt{boxjoin}}\label{Dbxjoin}
$$ \hbox{\tt boxjoin(} \descr{equation text} \hbox{\tt )} $$
to control the relationship between consecutive boxes. Within the
\tdescr{equation text}, {\tt a} and {\tt b} represent the box names given in
consecutive calls to {\tt boxit} and the \tdescr{equation text} gives equations
to control the relative sizes and positions of the boxes.
\begin{figure}[htp]
$$\hbox{$\begin{verbatim}
input boxes
beginfig(49);
boxjoin(a.se=b.sw; a.ne=b.nw);
boxit.a(btex\strut$\cdots$ etex); boxit.ni(btex\strut$n_i$ etex);
boxit.di(btex\strut$d_i$ etex); boxit.ni1(btex\strut$n_{i+1}$ etex);
boxit.di1(btex\strut$d_{i+1}$ etex); boxit.aa(btex\strut$\cdots$ etex);
boxit.nk(btex\strut$n_k$ etex); boxit.dk(btex\strut$d_k$ etex);
drawboxed(di,a,ni,ni1,di1,aa,nk,dk); label.lft("ndtable:", a.w);
interim defaultdy:=7bp;
boxjoin(a.sw=b.nw; a.se=b.ne);
boxit.ba(); boxit.bb(); boxit.bc();
boxit.bd(btex $\vdots$ etex); boxit.be(); boxit.bf();
bd.dx=8bp; ba.ne=a.sw-(15bp,10bp);
drawboxed(ba,bb,bc,bd,be,bf); label.lft("hashtab:",ba.w);
vardef ndblock suffix $ =
boxjoin(a.sw=b.nw; a.se=b.ne);
forsuffixes $$=$1,$2,$3: boxit$$(); ($$dx,$$dy)=(5.5bp,4bp);
endfor; enddef;
ndblock nda; ndblock ndb; ndblock ndc;
nda1.c-bb.c = ndb1.c-nda3.c = (whatever,0);
xpart ndb3.se = xpart ndc1.ne = xpart di.c;
ndc1.c - be.c = (whatever,0);
drawboxed(nda1,nda2,nda3, ndb1,ndb2,ndb3, ndc1,ndc2,ndc3);
drawarrow bb.c -- nda1.w;
drawarrow be.c -- ndc1.w;
drawarrow nda3.c -- ndb1.w;
drawarrow nda1.c{right}..{curl0}ni.c cutafter bpath ni;
drawarrow nda2.c{right}..{curl0}di.c cutafter bpath di;
drawarrow ndc1.c{right}..{curl0}ni1.c cutafter bpath ni1;
drawarrow ndc2.c{right}..{curl0}di1.c cutafter bpath di1;
drawarrow ndb1.c{right}..nk.c cutafter bpath nk;
drawarrow ndb2.c{right}..dk.c cutafter bpath dk;
x.ptr=xpart aa.c; y.ptr=ypart ndc1.ne;
drawarrow subpath (0,.7) of (z.ptr..{left}ndc3.c) dashed evenly;
label.rt(btex \strut ndblock etex, z.ptr); endfig;
\end{verbatim}
$}
\atop \vcenter{\vskip8pt\hbox{\epsfbox{manfig.49}}}
$$
\caption{MetaPost code and the corresponding figure}
\label{fig49}
\end{figure}
For example, the second line of input for the above figure contains
$$ \hbox{\tt boxjoin(a.se=b.sw; a.ne=b.nw)} $$
This causes boxes to line up horizontally by giving additional equations that
are invoked each time some box {\tt a} is followed by some other box~{\tt b}.
These equations are first invoked on the next line when box~{\tt a} is followed
by box~{\tt ni}. This yields
$$ \hbox{\tt a.se=ni.sw; a.ne=ni.nw} $$
The next pair of boxes is box~{\tt ni} and box~{\tt di}. This time the
implicitly generated equations are
$$ \hbox{\tt ni.se=di.sw; ni.ne=di.nw} $$
This process continues until a new {\tt boxjoin}\index{boxjoin?\texttt{boxjoin}} is given.
In this case the new declaration is
$$ \hbox{\tt boxjoin(a.sw=b.nw; a.se=b.ne)} $$
which causes boxes to be stacked below each other.
After calling {\tt boxit} for the first eight boxes {\tt a} through {\tt dk},
the box heights are constrained to match but the widths are still unknown.
Thus the {\tt drawboxed}\index{drawboxed?\texttt{drawboxed}} macro needs to assign default
values to the \tdescr{box name}{\tt.dx} and \tdescr{box name}{\tt.dy}
variables. First, {\tt di.dx} and {\tt di.dy} get default values so that all
the boxes are forced to be large enough to contain the contents of box~{\tt di}.
The macro that actually assigns default values to {\tt dx} and {\tt dy} variables
is called {\tt fixsize}\index{fixsize?\texttt{fixsize}}\label{Dfixsiz}.
It takes a list of box names and
considers them one at a time, making sure that each box has a fixed size and
shape. A macro called {\tt fixpos}\index{fixpos?\texttt{fixpos}}\label{Dfixpos} then takes
this same list
of box names and assigns default values to the \tdescr{box name}{\tt.off}
variables as needed to fix the position of each box. By using {\tt fixsize}
to fix the dimensions of each box before assigning default positions to any
of them, the number of needing default positions can usually be cut to at most
one.
Since the bounding path for a box cannot be computed until the size, shape, and
position of the box is determined, the {\tt bpath}\index{bpath?\texttt{bpath}} macro applies
{\tt fixsize} and {\tt fixpos} to its argument. Other macros that do this
include\index{pic?\texttt{pic}}\label{Dpic}
$$ {\tt pic}\, \descr{box name} $$
where the \tdescr{box name} is a suffix, possibly in parentheses. This returns
the contents of the named box as a picture positioned so that
$$ {\tt draw\ pic} \descr{box name} $$
draws the box contents without the bounding rectangle. This operation can also
be accomplished by the {\tt drawunboxed}\index{drawunboxed?\texttt{drawunboxed}}\label{Ddrunbx}
macro that takes a comma-separated list of box names. There is also a
{\tt drawboxes}\index{drawboxes?\texttt{drawboxes}}\label{Ddrbxes} macro that draws just the
bounding rectangles.
Another way to draw empty rectangles is by just saying\label{Deboxit}
$$ {\tt boxit} \descr{box name} \hbox{\tt ()} $$
with no picture argument as is done several times in Figure~\ref{fig49}.
This is like calling {\tt boxit} with an empty picture.
Alternatively the argument can be a string\label{Dsboxit} expression
instead of a picture
expression in which case the string is typeset in the default font.
\subsection{Circular and Oval Boxes}
Circular and oval boxes are a lot like rectangular boxes except for the shape
of the bounding path. Such boxes are set up by the
{\tt circleit}\index{circleit?\texttt{circleit}}\label{Dcircit} macro:
$$ {\tt circleit} \descr{box name}
\hbox{\tt(} \descr{box contents} \hbox{\tt)}
$$
where \tdescr{box name} is a suffix and \tdescr{box contents} is either a
picture expression, a string expression, or \tdescr{empty}.
The {\tt circleit} macro defines pair variable just as {\tt boxit} does, except
that there are no corner points \tdescr{box name}{\tt.ne},
\tdescr{box name}{\tt.sw}, etc. A call to
$$ \hbox{\tt circleit.a(}\ldots \hbox{\tt )} $$
gives relationships among points {\tt a.c}, {\tt a.s},
{\tt a.e}, {\tt a.n}, {\tt a.w}
and distances {\tt a.dx} and {\tt a.dy}. Together with {\tt a.c} and {\tt a.off},
these variables describe how the picture is centered in an oval as can be seen
from the Figure~\ref{fig50}.
\begin{figure}[htp]
$$ \epsfbox{manfig.50} $$
\caption[How a {\tt circleit} picture relates to the associated variables]
{The relationship between the picture given to {\tt circleit} and the
associated variables. The picture is indicated by a gray rectangle.}
\label{fig50}
\end{figure}
The {\tt drawboxed}\index{drawboxed?\texttt{drawboxed}}, {\tt drawunboxed}\index{drawunboxed?\texttt{drawunboxed}},
{\tt drawboxes}\index{drawboxes?\texttt{drawboxes}}, {\tt pic}\index{pic?\texttt{pic}}, and
{\tt bpath}\index{bpath?\texttt{bpath}} macros work for {\tt circleit} boxes just as they do
for {\tt boxit} boxes. By default, the boundary path for a {\tt circleit} box is
a circle large enough to surround the box contents with a small safety margin
controlled by the
internal variable\index{internal variables}\index{variables!internal}
{\tt circmargin}\label{Dcmargin}. Figure~\ref{fig51} gives
a basic example of the use of {\tt bpath} with {\tt circleit} boxes.
\begin{figure}[htbp]
$$\begin{verbatim}
vardef drawshadowed(text t) =
fixsize(t);
forsuffixes s=t:
fill bpath.s shifted (1pt,-1pt);
unfill bpath.s;
drawboxed(s);
endfor
enddef;
beginfig(51)
circleit.a(btex Box 1 etex);
circleit.b(btex Box 2 etex);
b.n = a.s - (0,20pt);
drawshadowed(a,b);
drawarrow a.s -- b.n;
endfig;
\end{verbatim}
\qquad \mathcenter{\epsfbox{manfig.51}} $$
\caption[MetaPost code and the resulting figure.]
{MetaPost code and the resulting figure. Note that the {\tt drawshadowed}
macro used here is not part of the {\tt boxit.mp} macro package.}
\label{fig51}
\index{drawshadowed?\texttt{drawshadowed}}
\end{figure}
A full example of {\tt circleit} boxes appears in Figure~\ref{fig52}.
The oval boundary paths around ``Start'' and ``Stop'' are due to the equations
$$ \hbox{\tt aa.dx=aa.dy;} \quad {\rm and}\quad \hbox{\tt ee.dx=ee.dy} $$
after
$$ \hbox{\verb|circleit.ee(btex\strut Stop etex)|}
\quad{\rm and}\quad
\hbox{\verb|circleit.ee(btex\strut Stop etex)|}.
$$
The general rule is that {\tt bpath.}$c$ comes out circular if $c${\tt.dx},
$c${\tt.dy}, and $c\hbox{\tt.dx}-c\hbox{\tt.dy}$ are all unknown. Otherwise, the
macros select an oval big enough to contain the given picture with the safety
margin {\tt circmargin}\index{circmargin?\texttt{circmargin}}.
\begin{figure}[htp]
$$\hbox{$\begin{verbatim}
vardef cuta(suffix a,b) expr p =
drawarrow p cutbefore bpath.a cutafter bpath.b;
point .5*length p of p
enddef;
vardef self@# expr p =
cuta(@#,@#) @#.c{curl0}..@#.c+p..{curl0}@#.c enddef;
beginfig(52);
verbatimtex \def\stk#1#2{$\displaystyle{\matrix{#1\cr#2\cr}}$} etex
circleit.aa(btex\strut Start etex); aa.dx=aa.dy;
circleit.bb(btex \stk B{(a|b)^*a} etex);
circleit.cc(btex \stk C{b^*} etex);
circleit.dd(btex \stk D{(a|b)^*ab} etex);
circleit.ee(btex\strut Stop etex); ee.dx=ee.dy;
numeric hsep;
bb.c-aa.c = dd.c-bb.c = ee.c-dd.c = (hsep,0);
cc.c-bb.c = (0,.8hsep);
xpart(ee.e - aa.w) = 3.8in;
drawboxed(aa,bb,cc,dd,ee);
label.ulft(btex$b$etex, cuta(aa,cc) aa.c{dir50}..cc.c);
label.top(btex$b$etex, self.cc(0,30pt));
label.rt(btex$a$etex, cuta(cc,bb) cc.c..bb.c);
label.top(btex$a$etex, cuta(aa,bb) aa.c..bb.c);
label.llft(btex$a$etex, self.bb(-20pt,-35pt));
label.top(btex$b$etex, cuta(bb,dd) bb.c..dd.c);
label.top(btex$b$etex, cuta(dd,ee) dd.c..ee.c);
label.lrt(btex$a$etex, cuta(dd,bb) dd.c..{dir140}bb.c);
label.bot(btex$a$etex, cuta(ee,bb) ee.c..tension1.3 ..{dir115}bb.c);
label.urt(btex$b$etex, cuta(ee,cc) ee.c{(cc.c-ee.c)rotated-15}..cc.c);
endfig;
\end{verbatim}
$}
\atop \vcenter{\vskip8pt\hbox{\epsfbox{manfig.52}}}
$$
\caption{MetaPost code and the corresponding figure}
\label{fig52}
\index{self?\texttt{self}}
\end{figure}
\section{Debugging}
MetaPost inherits from \MF\index{metafont?\MF} numerous facilities for interactive
debugging, most of which can only be mentioned briefly here. Further information
on error messages, debugging, and generating tracing information can be found in
{\it The\ \MF book} \cite{kn:c}.
Suppose your input file says
$$ \hbox{\tt draw z1--z2;} $$
on line 17 without first giving known values to {\tt z1} and {\tt z2}.
Figure~\ref{errmsg} shows what the MetaPost interpreter prints on your terminal
when it finds the error. The actual error message is the line beginning with
``{\tt !}''; the next six lines give the context that shows exactly what input
was being read when the error was found; and the ``{\tt ?}'' on last line is a
prompt for your response. Since the error message talks about an undefined
$x$~coordinate, this value is printed on the first line after the ``{\tt >>}''.
In this case the $x$~coordinate of {\tt z1} is just the unknown variable {\tt x1},
so the interpreter prints the variable name {\tt x1} just as it would if it
were told to\index{show?\texttt{show}} ``{\tt show x1}'' at this point.
\begin{figure}[htp]
$$\begin{verbatim}
>> x1
! Undefined x coordinate has been replaced by 0.
<to be read again>
{
--->{
curl1}..{curl1}
l.17 draw z1--
z2;
?
\end{verbatim}
$$
\caption{An example of an error message.}
\label{errmsg}
\end{figure}
The context listing may seem a little confusing at first, but it really just
gives a few lines of text showing how much of each line has been read so far.
Each line of input is printed on two lines like this:
\begin{eqnarray*}
\descr{descriptor}\ \hbox{Text read so far} \\
&& \hbox{Text yet to be read}
\end{eqnarray*}
The \tdescr{descriptor} identifies the input source. It is either a line number
like ``{\tt l.17}'' for line 17 of the current file; or it can be a macro name
followed by ``{\tt ->}''; or it is a descriptive phrase in angle brackets.
Thus, the meaning of the context listing in Figure~\ref{errmsg} is that the
interpreter has just read line 17 of the input file up to ``{\tt --},'' the
expansion of the {\tt --} macro has just started, and the initial
``\verb|{|'' has been reinserted to allow for user input before scanning
this token.
Among the possible responses to a {\tt ?} prompt are the following:
\begin{description}
\item[x] terminates the run so that you can fix you input file and start over.
\item[h] prints a help message followed by another {\tt ?} prompt.
\item[\tdescr{return}] causes the interpreter to proceed as best it can.
\item[?] prints a listing of the options available, followed by another
{\tt ?} prompt.
\end{description}
Error messages and responses to {\tt show} commands are also written into the
transcript\index{files!transcript} file whose name is obtained from the name
of the main input file by changing ``{\tt .mp}'' to ``{\tt .log}''. When the
internal variable\index{internal variables}\index{variables!internal}
{\tt tracingonline}\index{tracingonline?\texttt{tracingonline}} is at its default
value of zero, some {\tt show} commands print their results in full detail only
in transcript file.
Only one type of {\tt show}\index{show?\texttt{show}} command has been discussed so far:
{\tt show} followed by a comma-separated list of expressions prints symbolic
representations of the expressions.
The {\tt showtoken}\index{showtoken?\texttt{showtoken}}\label{Dshtok}
command can be used to show the
parameters and replacement text of a macro. It takes a comma-separated list of
tokens and identifies each one. If the token is a primitive as in
``\verb|showtoken +|'' it is just identified as being itself:
$$ \hbox{\verb|> +=+|} $$
Applying {\tt showtoken} to a variable or a {\tt vardef} macro yields
$$ \hbox{\tt > } \descr{token}\hbox{\tt =variable} $$
To get more information about a variable, use
{\tt showvariable}\index{showvariable?\texttt{showvariable}}\label{Dshvar}
instead of {\tt showtoken}. The
argument to {\tt showvariable} is a comma-separated list of symbolic tokens
and the result is a description of all the variables whose names begin with
one of the listed tokens. This even works for {\tt vardef} macros. For
example, {\tt showvariable z} yields
$$ \hbox{\verb|z@#=macro:->begingroup(x(SUFFIX2),y(SUFFIX2))endgroup|} $$
There is also a {\tt showdependencies}\index{showdependencies?\texttt{showdependencies}}\label{Dshdep}
command that takes no arguments and prints a list of all {\em dependent} variables
and how the linear equations given so far make them depend on other variables.
Thus after
$$ \hbox{\tt z2-z1=(5,10); z1+z2=(a,b);} $$
{\tt showdependencies} prints what is shown in Figure~\ref{shdep}. This could
be useful in answering a question like ``What does it mean
`{\tt !\ Undefined x coordinate}?' I thought the equations given so far would
determine {\tt x1}.''
\begin{figure}[htp]
$$\begin{verbatim}
x2=0.5a+2.5
y2=0.5b+5
x1=0.5a-2.5
y1=0.5b-5
\end{verbatim}
$$
\caption{The result of {\tt z2-z1=(5,10); z1+z2=(a,b); showdependencies;}}
\label{shdep}
\end{figure}
When all else fails, the predefined macro
{\tt tracingall}\index{tracingall?\texttt{tracingall}}\label{Dtall}
causes the interpreter to print a detailed listing of everything it is doing.
Since the tracing information is often quite voluminous, it may be better to use
the {\tt loggingall}\index{loggingall?\texttt{loggingall}}\label{Dlogall}
macro that produces the same information
but only writes it in the transcript\index{files!transcript} file. There is also
a {\tt tracingnone}\index{tracingnone?\texttt{tracingnone}}\label{Dtnone}
macro that turns off all the tracing output.
Tracing output is controlled by the set of
internal variables\index{internal variables}\index{variables!internal}
summarized below.
When any one of these variables is given a positive value, the corresponding form
of tracing is turned on. Here is the set of tracing variables and what happens
when each of them is positive:
\begin{description}
\item[{\tt tracingcapsules}]\index{tracingcapsules?\texttt{tracingcapsules}}\label{Dtcapsules}%
shows the values of temporary quantities (capsules) when they become known.
%
\item[{\tt tracingchoices}]\index{tracingchoices?\texttt{tracingchoices}}\label{Dtchoices}%
shows the B\'ezier control\index{control points} points of each new path when they
are chosen.
%
\item[{\tt tracingcommands}]\index{tracingcommands?\texttt{tracingcommands}}\label{Dtcommands}%
shows the commands before they are performed. A setting ${}>1$ also shows
{\tt if}\index{if?\texttt{if}} tests and loops before they are expanded;
a setting ${}>2$ shows algebraic operations before they are performed.
%
\item[{\tt tracingequations}]\index{tracingequations?\texttt{tracingequations}}\label{Dtequations}%
shows each variable when it becomes known.
%
\item[{\tt tracinglostchars}]\index{tracinglostchars?\texttt{tracinglostchars}}\label{Dtlostchars}%
warns about characters omitted from a picture because they are not in the font
being used to typeset labels.
%
\item[{\tt tracingmacros}]\index{tracingmacros?\texttt{tracingmacros}}\label{Dtmacros}%
shows macros before they are expanded.
%
\item[{\tt tracingoutput}]\index{tracingoutput?\texttt{tracingoutput}}\label{Dtoutput}%
shows pictures as they are being shipped out as PostScript files.
%
\item[{\tt tracingrestores}]\index{tracingrestores?\texttt{tracingrestores}}\label{Dtrestores}%
shows symbols and internal variables as they are being restored at the end
of a group.
%
\item[{\tt tracingspecs}]\index{tracingspecs?\texttt{tracingspecs}}\label{Dtspecs}%
shows the outlines generated when drawing with a
polygonal pen\index{pens!polygonal}.
%
\item[{\tt tracingstats}]\index{tracingstats?\texttt{tracingstats}}\label{Dtstats}
shows in the transcript file at the end of the job how many of the
MetaPost interpreter's limited resources were used.
\end{description}
\section*{Acknowledgement}
I would like to thank Don Knuth for making this work possible by developing
\MF\ and placing it in the public domain. I am also indebted to him for helpful
suggestions, particularly with regard to the treatment of included \TeX\ material.
\appendix
\section{Reference Manual}
\let\svtopfrac=\topfraction % prepare to restore values at end of this appendix
\let\svtxtfrac=\textfraction % grouping would fail because \setcounter is global
\newcounter{svtopnum}
\newcounter{svtotnum}
\setcounter{svtopnum}{\value{topnumber}}
\setcounter{svtotnum}{\value{totalnumber}}
\renewcommand\topfraction{1.0} % set values to allow *lots* of figures and tables
\renewcommand\textfraction{0.0}
\setcounter{topnumber}{10}
\setcounter{totalnumber}{10}
Tables \ref{ivartab}--\ref{pseudotab} summarize the built-in features of
Plain MetaPost and the features defined in the {\tt boxes.mp}\index{boxes.mp?\texttt{boxes.mp}}
macro file. As explained in Section~\ref{boxessec}, the {\tt boxes.mp} macro
file is not automatically preloaded and the macros defined there are not
accessible until you ask for them via the command\index{input?\texttt{input}}
$$ \hbox{\tt input boxes} $$
Features that depend on {\tt boxes.mp} are marked by \bx\ symbols.
Features from the Plain\index{Plain macros} macro package are marked are marked
by \pl\ symbols, and MetaPost primitives are not marked by \bx\ or \pl.
The distinction between primitives and plain macros can be ignored by the casual
user, but it is important to remember that features marked by a \bx\ can only
be used after reading in the {\tt boxes.mp}\index{boxes.mp?\texttt{boxes.mp}} macro file.
The tables in this appendix give the name each feature, the page number where
it is explained, and a short description. A few features are not explained
elsewhere and have no page number listed. These features exist primarily for
compatibility with \MF\index{metafont?\MF} and are intended to be self-explanatory.
Certain other features from \MF\ are omitted entirely because they are of
limited interest to the MetaPost users and/or would require long explanations.
All of these are documented in {\it The \MF book} \cite{kn:c} as explained
in Appendix~\ref{MPvsMF}.
Table~\ref{ivartab} lists internal variables that take on numeric values.
Table~\ref{pvartab} lists predefined variables of other types.
Table~\ref{consttab} lists predefined constants. Some of these are implemented
as variables whose values are intended to be left unchanged.
Tables \ref{optabA}--\ref{optabD} summarize MetaPost operators and list the
possible argument and result types for each one. A ``--'' entry for the left
argument indicates a unary operator; ``--'' entries for both arguments indicate a
nullary operator. Operators that take suffix parameters are not listed in
these tables because they are treated as ``function-like macros''.
The last two tables are Table~\ref{cmdtab} for commands and Table~\ref{pseudotab}
macros that behave like functions or procedures. Such macros take parenthesized
argument lists and/or suffix parameters, returning either a value whose type is
listed in the table, or nothing. The latter case is for macros that behave
like procedures. Their return values are listed as ``--''.
The figures in this appendix present the syntax of the MetaPost language
starting with expressions in Figures \ref{syexpr1}--\ref{sypseudo}.
Although the productions sometimes specify types for expressions, primaries,
secondaries, and tertiaries, no attempt is made to give separate syntaxes
for \tdescr{numeric expression}, \tdescr{pair expression}, etc.
The simplicity of the productions in Figure~\ref{sytypexpr} is due to this
lack of type information. Type information
can be found in Tables \ref{ivartab}--\ref{pseudotab}.
Figures \ref{syprog} and \ref{sycmds} give the syntax for MetaPost programs,
including statements and commands. They do not mention loops\index{loops}
and {\tt if}\index{if?\texttt{if}}
tests because these constructions do not behave like statements. The syntax
given in Figures \ref{syexpr1}--\ref{pseudotab} applies to the result of
expanding all conditionals and loops. Conditionals and loops do have a
syntax, but they deal with almost arbitrary sequences of tokens.
Figure~\ref{sycondloop} specifies conditionals in terms of
\tdescr{balanced tokens} and loops in terms of \tdescr{loop text}, where
\tdescr{balanced tokens} is any sequence of tokens balanced with respect
to {\tt if} and {\tt fi}, and \tdescr{loop text} is a sequence of tokens
balanced with respect to {\tt for}, {\tt forsuffixes}, {\tt forever},
and {\tt endfor}.
\begin{table}[htp]
\caption{Internal variables with numeric values}
$$\begin{tabular}{|l|r|l|}
\hline
\multicolumn1{|c}{Name}& \multicolumn1{|c}{Page}& \multicolumn1{|c|}{Explanation}\\
\hline
\hline
\pl\tt ahangle& \pageref{Dahangle}&
angle for arrowheads in degrees (default: 45)\\\hline
\pl\tt ahlength& \pageref{Dahlength}&
size of arrowheads (default: 4{\tt bp})\\\hline
\pl\tt bboxmargin& \pageref{Dbbmargin}&
extra space allowed by {\tt bbox} (default 2{\tt bp})\\\hline
\tt charcode& \pageref{Dcharcode}&
the number of the next character to be output\\\hline
\bx\tt circmargin& \pageref{Dcmargin}&
clearance around contents of a circular or oval box\\\hline
\tt day& --&
the current day of the month\\\hline
\bx\tt defaultdx& \pageref{Ddefaultdx}&
usual horizontal space around box contents (default 3{\tt bp})\\\hline
\bx\tt defaultdy& \pageref{Ddefaultdy}&
usual vertical space around box contents (default 3{\tt bp})\\\hline
\pl\tt defaultpen& \pageref{Ddefaultpen}&
numeric index used by {\tt pickup} to select default pen\\\hline
\pl\tt defaultscale& \pageref{Ddfscale}&
font scale factor for label strings (default 1)\\\hline
\pl\tt labeloffset& \pageref{Dlaboff}&
offset distance for labels (default 3{\tt bp})\\\hline
\tt linecap& \pageref{Dlinecap}&
0 for butt, 1 for round, 2 for square\\\hline
\tt linejoin& \pageref{Dlinejoin}&
0 for mitered, 1 for round, 2 for beveled\\\hline
\tt miterlimit& \pageref{Dmiterlim}&
controls miter length as in PostScript\\\hline
\tt month& --&
the current month (e.g, 3 $\equiv$ March)\\\hline
\tt pausing& --&
${}>0$ to display lines on the terminal before they are read\\\hline
\tt prologues& \pageref{Dprologs}&
${}>0$ to output conforming PostScript using built-in fonts\\\hline
\tt showstopping& --&
${}>0$ to stop after each {\tt show} command\\\hline
\tt time& --&
the number of minutes past midnight when this job started\\\hline
\tt tracingcapsules& \pageref{Dtcapsules}&
${}>0$ to show capsules too\\\hline
\tt tracingchoices& \pageref{Dtchoices}&
${}>0$ to show the control points chosen for paths\\\hline
\tt tracingcommands& \pageref{Dtcommands}&
${}>0$ to show commands and operations as they are performed\\\hline
\tt tracingequations& \pageref{Dtequations}&
${}>0$ to show each variable when it becomes known\\\hline
\tt tracinglostchars& \pageref{Dtlostchars}&
${}>0$ to show characters that aren't {\tt infont}\\\hline
\tt tracingmacros& \pageref{Dtmacros}&
${}>0$ to show macros before they are expanded\\\hline
\tt tracingonline& \pageref{Dtonline}&
${}>0$ to show long diagnostics on the terminal\\\hline
\tt tracingoutput& \pageref{Dtoutput}&
${}>0$ to show digitized edges as they are output\\\hline
\tt tracingrestores& \pageref{Dtrestores}&
${}>0$ to show when a variable or internal is restored\\\hline
\tt tracingspecs& \pageref{Dtspecs}&
${}>0$ to show path subdivision when using a polygonal a pen\\\hline
\tt tracingstats& \pageref{Dtstats}&
${}>0$ to show memory usage at end of job\\\hline
\tt tracingtitles& --&
${}>0$ to show titles online when they appear\\\hline
\tt truecorners& \pageref{Dtruecorn}&
${}>0$ to make {\tt llcorner} etc. ignore {\tt setbounds}\\\hline
\tt warningcheck& \pageref{Dwarncheck}&
controls error message when variable value is large\\\hline
\tt year& --&
the current year (e.g., 1992)\\\hline
\end{tabular}
$$
\label{ivartab}%
\index{day?\texttt{day}}\index{month?\texttt{month}}\index{pausing?\texttt{pausing}}\index{showstopping?\texttt{showstopping}}%
\index{time?\texttt{time}}\index{tracingtitles?\texttt{tracingtitles}}\index{year?\texttt{year}}
\end{table}
\begin{table}[htp]
\caption{Other Predefined Variables}
$$\begin{tabular}{|l|l|r|l|}
\hline
\multicolumn1{|c}{Name}& \multicolumn1{|c}{Type}& \multicolumn1{|c}{Page}&
\multicolumn1{|c|}{Explanation}\\
\hline
\hline
\pl\tt background& color& \pageref{Dbground}&
Color for {\tt unfill} and {\tt undraw} (usually white)\\\hline
\pl\tt currentpen& pen& \pageref{Dcurpen}&
Last pen picked up (for use by the {\tt draw} command)\\\hline
\pl\tt currentpicture& picture& \pageref{Dcurpic}&
Accumulate results of {\tt draw} and {\tt fill} commands\\\hline
\pl\tt cuttings& path& \pageref{Dcuttings}&
subpath cut off by last {\tt cutbefore} or {\tt cutafter}\\\hline
\pl\tt defaultfont& string& \pageref{Ddffont}&
Font used by label commands for typesetting strings\\\hline
\pl\tt extra\_beginfig& string& \pageref{Dxbfig}&
Commands for {\tt beginfig} to scan\\\hline
\pl\tt extra\_endfig& string& \pageref{Dxefig}&
Commands for {\tt endfig} to scan\\\hline
\end{tabular}
$$
\label{pvartab}
\end{table}
\begin{table}[htp]
\caption{Predefined Constants}
$$\begin{tabular}{|l|l|r|l|}
\hline
\multicolumn1{|c}{Name}& \multicolumn1{|c}{Type}& \multicolumn1{|c}{Page}&
\multicolumn1{|c|}{Explanation}\\
\hline
\hline
\pl\tt beveled& numeric& \pageref{Dbvled}&
{\tt linejoin} value for beveled joins [2]\\\hline
\pl\tt black& color& \pageref{Dblack}&
Equivalent to {\tt (0,0,0)}\\\hline
\pl\tt blue& color& \pageref{Dblue}&
Equivalent to {\tt (0,0,1)}\\\hline
\pl\tt bp& numeric& \pageref{Dbp}&
One PostScript point in {\tt bp} units [1]\\\hline
\pl\tt butt& numeric& \pageref{Dbutt}&
{\tt linecap} value for butt end caps [0]\\\hline
\pl\tt cc& numeric& --&
One cicero in {\tt bp} units [12.79213]\\\hline
\pl\tt cm& numeric& \pageref{Dcm}&
One centimeter in {\tt bp} units [28.34645]\\\hline
\pl\tt dd& numeric& --&
One didot point in {\tt bp} units [1.06601]\\\hline
\pl\tt ditto& string& --&
The {\tt "} character as a string of length 1\\\hline
\pl\tt down& pair& \pageref{Ddown}&
Downward direction vector $(0,-1)$\\\hline
\pl\tt epsilon& numeric& --&
Smallest positive MetaPost number [$1\over65536$]\\\hline
\pl\tt evenly& picture& \pageref{Devenly}&
Dash pattern for equal length dashes\\\hline
\tt false& boolean& \pageref{Dfalse}&
The boolean value {\it false\/}\\\hline
\pl\tt fullcircle& path& \pageref{Dfcirc}&
Circle of diameter 1 centered on $(0,0)$\\\hline
\pl\tt green& color& \pageref{Dgreen}&
Equivalent to {\tt (0,1,0)}\\\hline
\pl\tt halfcircle& path& \pageref{Dhcirc}&
Upper half of a circle of diameter 1\\\hline
\pl\tt identity& transform& \pageref{Dident}&
Identity transformation\\\hline
\pl\tt in& numeric& \pageref{Din}&
One inch in {\tt bp} units [72]\\\hline
\pl\tt infinity& numeric& \pageref{Dinf}&
Large positive value [4095.99998]\\\hline
\pl\tt left& pair& \pageref{Dleft}&
Leftward direction $(-1,0)$\\\hline
\pl\tt mitered& numeric& \pageref{Dmitred}&
{\tt linejoin} value for mitered joins [0]\\\hline
\pl\tt mm& numeric& \pageref{Dmm}&
One millimeter in {\tt bp} units [2.83464]\\\hline
\tt nullpicture& picture& \pageref{Dnlpic}&
Empty picture\\\hline
\pl\tt origin& pair& --&
The pair $(0,0)$\\\hline
\pl\tt pc& numeric& --&
One pica in {\tt bp} units [11.95517]\\\hline
\tt pencircle& pen& \pageref{Dpncirc}&
Circular pen of diameter 1\\\hline
\pl\tt pensquare& pen& \pageref{Dpnsqr}&
square pen of height 1 and width 1\\\hline
\pl\tt pt& numeric& \pageref{Dpt}&
One printer's point in {\tt bp} units [0.99626]\\\hline
\pl\tt quartercircle& path& --&
First quadrant of a circle of diameter 1\\\hline
\pl\tt red& color& \pageref{Dred}&
Equivalent to {\tt (1,0,0)}\\\hline
\pl\tt right& pair& \pageref{Dright}&
Rightward direction $(1,0)$\\\hline
\pl\tt rounded& numeric& \pageref{Drnded}&
{\tt linecap} and {\tt linejoin} value for round joins\\
\tt & & &
and end caps [1]\\\hline
\pl\tt squared& numeric& \pageref{Dsqred}&
{\tt linecap} value for square end caps [2]\\\hline
\tt true& boolean& \pageref{Dtrue}&
The boolean value {\tt true}\\\hline
\pl\tt unitsquare& path& --&
The path {\tt (0,0)--(1,0)--(1,1)--(0,1)--cycle}\\\hline
\pl\tt up& pair& \pageref{Dup}&
Upward direction $(0,1)$\\\hline
\pl\tt white& color& \pageref{Dwhite}&
Equivalent to {\tt (1,1,1)}\\\hline
\pl\tt withdots& picture& \pageref{Dwdots}&
Dash pattern that produces dotted lines\\\hline
\end{tabular}
$$
\label{consttab}%
\index{cc?\texttt{cc}}\index{dd?\texttt{dd}}\index{ditto?\texttt{ditto}}\index{epsilon?\texttt{epsilon}}%
\index{origin?\texttt{origin}}\index{pc?\texttt{pc}}\index{quartercircle?\texttt{quartercircle}}%
\index{unitsquare?\texttt{unitsquare}}
\end{table}
\begin{table}[htp]
\caption{Operators (Part 1)}
$$\begin{tabular}{|l|l|l|l|r|l|}
\hline
\multicolumn1{|c}{Name}& \multicolumn3{|c}{Argument/result types}&
\multicolumn1{|c}{Page}& \multicolumn1{|c|}{Explanation}\\
\cline{2-4}
& Left& Right& Result& & \\
\hline
\hline
\tt \verb|&|& string& string& string& \pageref{Damp}&
Concatenation---works for paths $l\hbox{\tt\&}r$ if\\
& path& path& path& &
$r$ starts exactly where the $l$ ends\\\hline
\tt \verb|*|& numeric& color& color& \pageref{Dmldiv}&
Multiplication\\
& & numeric& numeric& &
\\
& & pair& pair& &
\\\hline
\tt \verb|*|& color& numeric& color& \pageref{Dmldiv}&
Multiplication\\
& numeric& & numeric& &
\\
& pair& & pair& &
\\\hline
\tt \verb|**|& numeric& numeric& numeric& \pageref{Dpow}&
Exponentiation\\\hline
\tt \verb|+|& color& color& color& \pageref{Dadd}&
Addition\\
& numeric& numeric& numeric& &
\\
& pair& pair& pair& &
\\\hline
\tt \verb|++|& numeric& numeric& numeric& \pageref{Dpyadd}&
Pythagorean addition $\sqrt{l^2+r^2}$\\\hline
\tt \verb|+-+|& numeric& numeric& numeric& \pageref{Dpysub}&
Pythagorean subtraction $\sqrt{l^2-r^2}$\\\hline
\tt \verb|-|& color& color& color& \pageref{Dadd}&
Subtraction\\
& numeric& numeric& numeric& &
\\
& pair& pair& pair& &
\\\hline
\tt \verb|-|& --& color& color& \pageref{Dneg}&
Negation\\
& & numeric& numeric& &
\\
& & pair& pair& &
\\\hline
\tt \verb|/|& color& numeric& color& \pageref{Dmldiv}&
Division\\
& numeric& & numeric& &
\\
& pair& & pair& &
\\\hline
\tt \verb|< = >|& string& string& boolean& \pageref{Dcmpar}&
Comparison operators\\
\tt \verb|<= >=|& numeric& numeric& & &
\\
\tt \verb|<>|& pair& pair& & &
\\
& color& color& & &
\\
& transform& transform& & &
\\\hline
\pl\tt \verb|abs|& --& numeric& numeric& \pageref{Dabs}&
Absolute value\\
& & pair& & &
\\\hline
\tt \verb|and|& boolean& boolean& boolean& \pageref{Dand}&
Logical and\\\hline
\tt \verb|angle|& --& pair& numeric& \pageref{Dangle}&
2$-$argument arctangent (in degrees)\\\hline
\tt \verb|arclength|& --& path& numeric& \pageref{Darclng}&
Arc length of a path\\\hline
\tt \verb|arctime|& numeric& path& numeric& \pageref{Darctim}&
Time on a path where arclength from\\
\tt \verb|of|& & & & &
the start reaches a given value\\\hline
\tt \verb|ASCII|& --& string& numeric& --&
ASCII value of first character in string\\\hline
\pl\tt \verb|bbox|& --& picture& path& \pageref{Dbbox}&
A rectangular path for the bounding\\
& & path& & &
box\\
& & pen& & &
\\\hline
\tt \verb|bluepart|& --& color& numeric& \pageref{Drgbprt}&
Extracts the third component\\\hline
\tt \verb|boolean|& --& any& boolean& \pageref{Dboolop}&
Is the expression of type boolean?\\\hline
\tt \verb|bot|& --& numeric& numeric& \pageref{Dbot}&
Bottom of current pen when centered\\
& & pair& pair& &
at the given coordinate(s)\\\hline
\pl\tt \verb|ceiling|& --& numeric& numeric& \pageref{Dceil}&
Least integer greater than or equal to\\\hline
\pl\tt \verb|center|& --& picture& pair& \pageref{Dcenter}&
Center of the bounding box\\
& & path& & &
\\
& & pen& & &
\\\hline
\end{tabular}
$$
\index{ASCII?\texttt{ASCII}}%
\label{optabA}
\end{table}
\begin{table}[htp]
\caption{Operators (Part 2)}
$$\begin{tabular}{|l|l|l|l|r|l|}
\hline
\multicolumn1{|c}{Name}& \multicolumn3{|c}{Argument/result types}&
\multicolumn1{|c}{Page}& \multicolumn1{|c|}{Explanation}\\
\cline{2-4}
& Left& Right& Result& & \\
\hline
\hline
\tt \verb|char|& --& numeric& string& \pageref{Dchar}&
Character with a given ASCII code\\\hline
\tt \verb|color|& --& any& boolean& \pageref{Dcolrop}&
Is the expression of type color?\\\hline
\tt \verb|cosd|& --& numeric& numeric& \pageref{Dcosd}&
Cosine of angle in degrees\\\hline
\pl\tt \verb|cutafter|& path& path& path& \pageref{Dcuta}&
Left argument with part after the\\
& & & & &
intersection dropped\\\hline
\pl\tt \verb|cutbefore|& path& path& path& \pageref{Dcutb}&
Left argument with part before the\\
& & & & &
intersection dropped\\\hline
\tt \verb|cycle|& --& path& boolean& \pageref{Dcycop}&
Determines whether a path is cyclic\\\hline
\tt \verb|decimal|& --& numeric& string& \pageref{Ddecop}&
The decimal representation\\\hline
\pl\tt \verb|dir|& --& numeric& pair& \pageref{Ddirop}&
$(\cos\theta,\sin\theta)$ given $\theta$ in degrees\\\hline
\pl\tt \verb|direction|& numeric& path& pair& \pageref{Ddirof}&
The direction of a path at a given\\
\tt \verb| of|& & & & &
`time'\\\hline
\pl\tt \verb|direction-|& pair& path& numeric& \pageref{Ddpntof}&
Point where a path has a given\\
\tt \verb|point of|& & & & &
direction\\\hline
\tt \verb|direction-|& pair& path& numeric& \pageref{Ddtimof}&
`Time' when a path has a given\\
\tt \verb|time of|& & & & &
direction\\\hline
\pl\tt \verb|div|& numeric& numeric& numeric& --&
Integer division $\lfloor l/r\rfloor$\\\hline
\pl\tt \verb|dotprod|& pair& pair& numeric& \pageref{Ddprod}&
vector dot product\\\hline
\tt \verb|floor|& --& numeric& numeric& \pageref{Dfloor}&
Greatest integer less than or equal to\\\hline
\tt \verb|fontsize|& --& string& numeric& \pageref{Dfntsiz}&
The point size of a font\\\hline
\tt \verb|greenpart|& --& color& numeric& \pageref{Drgbprt}&
Extract the second component\\\hline
\tt \verb|hex|& --& string& numeric& --&
Interpret as a hexadecimal number\\\hline
\tt \verb|infont|& string& string& picture& \pageref{Sinfont}&
Typeset string in given font\\\hline
\pl\tt \verb|intersec-|& path& path& pair& \pageref{Disecpt}&
An intersection point\\
\tt \verb| tionpoint|& & & & &
\\\hline
\tt \verb|intersec-|& path& path& pair& \pageref{Disectt}&
Times ($t_l,t_r)$ on paths $l$ and $r$\\
\tt \verb|tiontimes|& & & & &
when the paths intersect\\\hline
\pl\tt \verb|inverse|& --& transform& transform& \pageref{Dinv}&
Invert a transformation\\\hline
\tt \verb|known|& --& any& boolean& \pageref{Dknown}&
Does argument have a known value?\\\hline
\tt \verb|length|& --& path& numeric& \pageref{Dlength}&
Number of arcs in a path\\\hline
\pl\tt \verb|lft|& --& numeric& numeric& \pageref{Dlft}&
Left side of current pen when its\\
& & pair& pair& &
center is at the given coordinate(s)\\\hline
\tt \verb|llcorner|& --& picture& pair& \pageref{Dcornop}&
Lower-left corner of bounding box\\
& & path& & &
\\
& & pen& & &
\\\hline
\tt \verb|lrcorner|& --& picture& pair& \pageref{Dcornop}&
Lower-left corner of bounding box\\
& & path& & &
\\
& & pen& & &
\\\hline
\tt \verb|makepath|& --& pen& path& \pageref{Dmkpath}&
Cyclic path bounding the pen shape\\\hline
\tt \verb|makepen|& --& path& pen& \pageref{Dmkpen}&
A polygonal pen made from the\\
& & & & &
convex hull of the path knots\\\hline
\tt \verb|mexp|& --& numeric& numeric& --&
The function $\exp(x/256)$\\\hline
\tt \verb|mlog|& --& numeric& numeric& --&
The function $256\ln(x)$\\\hline
\pl\tt \verb|mod|& --& numeric& numeric& --&
The remainder function $l-r\lfloor l/r\rfloor$\\\hline
\tt \verb|normal-|& --& --& numeric& --&
Choose a random number with\\
\tt \verb|deviate|& & & & &
mean 0 and standard deviation 1\\\hline
\end{tabular}
$$
\index{div?\texttt{div}}\index{hex?\texttt{hex}}\index{mexp?\texttt{mexp}}\index{mlog?\texttt{mlog}}%
\index{mod?\texttt{mod}}\index{normaldeviate?\texttt{normaldeviate}}%
\label{optabB}
\end{table}
\begin{table}[htp]
\caption{Operators (Part 3)}
$$\begin{tabular}{|l|l|l|l|r|l|}
\hline
\multicolumn1{|c}{Name}& \multicolumn3{|c}{Argument/result types}&
\multicolumn1{|c}{Page}& \multicolumn1{|c|}{Explanation}\\
\cline{2-4}
& Left& Right& Result& & \\
\hline
\hline
\tt \verb|not|& --& boolean& boolean& \pageref{Dnot}&
Logical negation\\\hline
\tt \verb|numeric|& --& any& boolean& \pageref{Dnumop}&
Is the expression of type numeric?\\\hline
\tt \verb|oct|& --& string& numeric& --&
Interpret a string as an octal number\\\hline
\tt \verb|odd|& --& numeric& boolean& --&
Is the closest integer odd or even?\\\hline
\tt \verb|or|& boolean& boolean& boolean& \pageref{Dor}&
Logical inclusive or\\\hline
\tt \verb|pair|& --& any& boolean& \pageref{Dpairop}&
Is the expression of type pair?\\\hline
\tt \verb|path|& --& any& boolean& \pageref{Dpathop}&
Is the expression of type path?\\\hline
\tt \verb|pen|& --& any& boolean& \pageref{Dpenop}&
Is the expression of type pen?\\\hline
\tt \verb|penoffset|& pair& pen& pair& --&
Point on the pen furthest to the\\
\tt \verb|of|& & & & &
right of the given direction\\\hline
\tt \verb|picture|& --& any& boolean& \pageref{Dpictop}&
Is the expression of type picture?\\\hline
\tt \verb|point of|& numeric& path& pair& \pageref{Dpntof}&
Point on a path given a time value\\\hline
\tt \verb|postcontrol|& numeric& path& pair& --&
First B\'ezier control point on path\\
\tt \verb|of|& & & & &
segment starting at the given time\\\hline
\tt \verb|precontrol|& numeric& path& pair& --&
Last B\'ezier control point on path\\
\tt \verb|of|& & & & &
segment ending at the given time\\\hline
\tt \verb|redpart|& --& color& numeric& \pageref{Drgbprt}&
Extract the first component\\\hline
\tt \verb|reverse|& --& path& path& \pageref{Drevrse}&
`time'-reversed path with beginning\\
& & & & &
swapped with ending\\\hline
\tt \verb|rotated|& picture& numeric& picture& \pageref{Dtranop}&
Rotate counterclockwise a given\\
& path& & path& &
number of degrees\\
& pair& & pair& &
\\
& pen& & pen& &
\\
& transform& & transform& &
\\\hline
\pl\tt \verb|round|& --& numeric& numeric& \pageref{Dround}&
round each component to the nearest\\
& & pair& pair& &
integer\\\hline
\pl\tt \verb|rt|& --& numeric& numeric& \pageref{Drt}&
Right side of current pen when\\
& & pair& pair& &
centered at given coordinate(s)\\\hline
\tt \verb|scaled|& picture& numeric& picture& \pageref{Dtranop}&
Scale all coordinates by the given\\
& path& & path& &
amount\\
& pair& & pair& &
\\
& pen& & pen& &
\\
& transform& & transform& &
\\\hline
\tt \verb|shifted|& picture& pair& picture& \pageref{Dtranop}&
Add the given shift amount to each\\
& path& & path& &
pair of coordinates\\
& pair& & pair& &
\\
& pen& & pen& &
\\
& transform& & transform& &
\\\hline
\tt \verb|sind|& --& numeric& numeric& \pageref{Dsind}&
Sine of an angle in degrees\\\hline
\tt \verb|slanted|& picture& numeric& picture& \pageref{Dtranop}&
Apply the slanting transformation\\
& path& & path& &
that maps $(x,y)$ into $(x+sy,y)$,\\
& pair& & pair& &
where $s$ is the numeric argument\\
& pen& & pen& &
\\
& transform& & transform& &
\\\hline
\tt \verb|sqrt|& --& numeric& numeric& \pageref{Dsqrt}&
Square root\\\hline
\tt \verb|str|& --& suffix& string& \pageref{Dstr}&
String representation for a suffix\\\hline
\end{tabular}
$$
\index{oct?\texttt{oct}}\index{odd?\texttt{odd}}\index{penoffset?\texttt{penoffset}}\index{postcontrol?\texttt{postcontrol}}%
\index{precontrol?\texttt{precontrol}}%
\label{optabC}
\end{table}
\begin{table}[htp]
\caption{Operators (Part 4)}
$$\begin{tabular}{|l|l|l|l|r|l|}
\hline
\multicolumn1{|c}{Name}& \multicolumn3{|c}{Argument/result types}&
\multicolumn1{|c}{Page}& \multicolumn1{|c|}{Explanation}\\
\cline{2-4}
& Left& Right& Result& & \\
\hline
\hline
\tt \verb|string|& --& any& boolean& \pageref{Dstrgop}&
Is the expression of type string?\\\hline
\tt \verb|subpath|& pair& path& path& \pageref{Dsubpth}&
Portion of a path for given range\\
\tt \verb|of|& & & & &
of time values\\\hline
\tt \verb|substring|& pair& string& string& \pageref{Dsubstr}&
Substring bounded by given indices\\
\tt \verb|of|& & & & &
\\\hline
\pl\tt \verb|top|& --& numeric& numeric& \pageref{Dtop}&
Top of current pen when centered\\
& & pair& pair& &
at the given coordinate(s)\\\hline
\tt \verb|transform|& --& any& boolean& \pageref{Dtrnfop}&
Is the argument of type transform?\\\hline
\tt \verb|transformed|& picture& transform& picture& \pageref{Dtrfrmd}&
Apply the given transform to all\\
& path& & path& &
coordinates\\
& pair& & pair& &
\\
& pen& & pen& &
\\
& transform& & transform& &
\\\hline
\tt \verb|ulcorner|& --& picture& pair& \pageref{Dcornop}&
Upper-left corner of bounding box\\
& & path& & &
\\
& & pen& & &
\\\hline
\tt \verb|uniform-|& --& numeric& numeric& --&
Random number between zero and\\
\tt \verb|deviate|& & & & &
the value of the argument\\\hline
\pl\tt \verb|unitvector|& --& pair& pair& \pageref{Duvec}&
Rescale a vector so its length is 1\\\hline
\tt \verb|unknown|& --& any& boolean& \pageref{Dunknwn}&
Is the value unknown?\\\hline
\tt \verb|urcorner|& --& picture& pair& \pageref{Dcornop}&
Upper-left corner of bounding box\\
& & path& & &
\\
& & pen& & &
\\\hline
\pl\tt \verb|whatever|& --& --& numeric& \pageref{Dwhatev}&
Create a new anonymous unknown\\\hline
\tt \verb|xpart|& --& pair& number& \pageref{Dxprt}&
$x$ or $t_x$ component\\
& & transform& & &
\\\hline
\tt \verb|xscaled|& picture& numeric& picture& \pageref{Dtranop}&
Scale all $x$ coordinates by the\\
& path& & path& &
given amount\\
& pair& & pair& &
\\
& pen& & pen& &
\\
& transform& & transform& &
\\\hline
\tt \verb|xxpart|& --& transform& number& \pageref{Dtrprt}&
$t_{xx}$ entry in transformation matrix\\\hline
\tt \verb|xypart|& --& transform& number& \pageref{Dtrprt}&
$t_{xy}$ entry in transformation matrix\\\hline
\tt \verb|ypart|& --& pair& number& \pageref{Dyprt}&
$y$ or $t_y$ component\\
& & transform& & &
\\\hline
\tt \verb|yscaled|& picture& numeric& picture& \pageref{Dtranop}&
Scale all $y$ coordinates by the\\
& path& & path& &
given amount\\
& pair& & pair& &
\\
& pen& & pen& &
\\
& transform& & transform& &
\\\hline
\tt \verb|yxpart|& --& transform& number& \pageref{Dtrprt}&
$t_{yx}$ entry in transformation matrix\\\hline
\tt \verb|yypart|& --& transform& number& \pageref{Dtrprt}&
$t_{yy}$ entry in transformation matrix\\\hline
\tt \verb|zscaled|& picture& pair& picture& \pageref{Dtranop}&
Rotate and scale all coordinates so\\
& path& & path& &
that $(1,0)$ is mapped into the\\
& pair& & pair& &
given pair; i.e., do complex\\
& pen& & pen& &
multiplication.\\
& transform& & transform& &
\\\hline
\end{tabular}
$$
\index{uniformdeviate?\texttt{uniformdeviate}}%
\label{optabD}
\end{table}
\begin{table}[htp]
\caption{Commands}
$$\begin{tabular}{|l|r|l|}
\hline
\multicolumn1{|c}{Name}& \multicolumn1{|c}{Page}& \multicolumn1{|c|}{Explanation}\\
\hline
\hline
\tt \verb|addto|& \pageref{sydraw}&
Low-level command for drawing and filling\\\hline
\tt \verb|clip|& \pageref{Dclip}&
Applies a clipping path to a picture\\\hline
\pl\tt \verb|cutdraw|& \pageref{Dctdraw}&
Draw with butt end caps\\\hline
\pl\tt \verb|draw|& \pageref{curves}&
Draw a line or a picture\\\hline
\pl\tt \verb|drawarrow|& \pageref{Ddrwarr}&
Draw a line with an arrowhead at the end\\\hline
\pl\tt \verb|drawdblarrow|& \pageref{Ddrwdar}&
Draw a line with arrowheads at both ends\\\hline
\pl\tt \verb|fill|& \pageref{Dfill}&
Fill inside a cyclic path\\\hline
\pl\tt \verb|filldraw|& \pageref{Dfildrw}&
Draw a cyclic path and fill inside it\\\hline
\tt \verb|interim|& \pageref{Dinterm}&
Make a local change to an internal variable\\\hline
\tt \verb|let|& --&
Assign one symbolic token the meaning of another\\\hline
\pl\tt \verb|loggingall|& \pageref{Dlogall}&
Turn on all tracing (log file only)\\\hline
\tt \verb|newinternal|& \pageref{Dnewint}&
Declare new internal variables\\\hline
\pl\tt \verb|pickup|& \pageref{Dpickup}&
Specify new pen for line drawing\\\hline
\tt \verb|save|& \pageref{Dsave}&
Make variables local\\\hline
\tt \verb|setbounds|& \pageref{Dsetbnd}&
Make a picture lie about its bounding box\\\hline
\tt \verb|shipout|& \pageref{Dship}&
Low-level command to output a figure\\\hline
\tt \verb|show|& \pageref{Dshow}&
print out expressions symbolically\\\hline
\tt \verb|showdependencies|& \pageref{Dshdep}&
print out all unsolved equations\\\hline
\tt \verb|showtoken|& \pageref{Dshtok}&
print an explanation of what a token is\\\hline
\tt \verb|showvariable|& \pageref{Dshvar}&
print variables symbolically\\\hline
\tt \verb|special|& \pageref{Dspecl}&
print a string directly in the PostScript output file\\\hline
\pl\tt \verb|tracingall|& \pageref{Dtall}&
Turn on all tracing\\\hline
\pl\tt \verb|tracingnone|& \pageref{Dtnone}&
Turn off all tracing\\\hline
\pl\tt \verb|undraw|& \pageref{Dundraw}&
Erase a line or a picture\\\hline
\pl\tt \verb|unfill|& \pageref{Dunfill}&
Erase inside a cyclic path\\\hline
\pl\tt \verb|unfilldraw|& \pageref{Dunfdrw}&
Erase a cyclic path and its inside\\\hline
\end{tabular}
$$
\index{let?\texttt{let}}%
\label{cmdtab}
\end{table}
\begin{table}[htp]
\caption{Function-Like Macros}
$$\begin{tabular}{|l|l|l|r|l|}
\hline
\multicolumn1{|c}{Name}& \multicolumn1{|c}{Arguments}&
\multicolumn1{|c}{Result}& \multicolumn1{|c}{Page}&
\multicolumn1{|c|}{Explanation}\\
\hline
\hline
\bx\tt \verb|boxit|& suffix, picture& --& \pageref{Dboxit}&
Define a box containing the picture\\\hline
\bx\tt \verb|boxit|& suffix, string& --& \pageref{Dsboxit}&
Define a box containing text\\\hline
\bx\tt \verb|boxit|& suffix, \tdescr{empty}& --& \pageref{Deboxit}&
Define an empty box\\\hline
\bx\tt \verb|boxjoin|& equations& --& \pageref{Dbxjoin}&
Give equations for connecting boxes\\\hline
\bx\tt \verb|bpath|& suffix& path& \pageref{Dbpath}&
A box's bounding circle or rectangle\\\hline
\pl\tt \verb|buildcycle|& list of paths& path& \pageref{buildcy}&
Build a cyclic path\\\hline
\bx\tt \verb|circleit|& suffix, picture& --& \pageref{Dcircit}&
Put picture in a circular box\\\hline
\bx\tt \verb|circleit|& suffix, picture& --& \pageref{Dcircit}&
Put a string in a circular box\\\hline
\bx\tt \verb|circleit|& suffix, \tdescr{empty}& --& \pageref{Dcircit}&
Define an empty circular box\\\hline
\pl\tt \verb|dashpattern|& on/off distances& picture& \pageref{Ddshpat}&
Create a pattern for dashed lines\\\hline
\pl\tt \verb|decr|& numeric variable& numeric& \pageref{Dincr}&
Decrement and return new value\\\hline
\pl\tt \verb|dotlabel|& suffix, picture, pair& --& \pageref{Ddotlab}&
Mark point and draw picture nearby\\\hline
\pl\tt \verb|dotlabel|& suffix, string, pair& --& \pageref{Ddotlab}&
Mark point and place text nearby\\\hline
\pl\tt \verb|dotlabels|& suffix, point numbers& --& \pageref{Ddotlbs}&
Mark {\tt z} points with their numbers\\\hline
\bx\tt \verb|drawboxed|& list of suffixes& --& \pageref{Ddrbxed}&
Draw the named boxes and their\\
& & & &
contents\\\hline
\bx\tt \verb|drawboxes|& list of suffixes& --& \pageref{Ddrbxes}&
Draw the named boxes\\\hline
\pl\tt \verb|drawoptions|& drawing options& --& \pageref{Ddropts}&
Set options for drawing commands\\\hline
\bx\tt \verb|drawunboxed|& list of suffixes& --& \pageref{Ddrunbx}&
Draw contents of named boxes\\\hline
\bx\tt \verb|fixpos|& list of suffixes& --& \pageref{Dfixpos}&
Solve for the size and position of the\\
& & & &
named boxes\\\hline
\bx\tt \verb|fixsize|& list of suffixes& --& \pageref{Dfixsiz}&
Solve for size of named boxes\\\hline
\pl\tt \verb|incr|& numeric variable& numeric& \pageref{Dincr}&
Increment and return new value\\\hline
\pl\tt \verb|label|& suffix, picture, pair& --& \pageref{Dlabel}&
Draw picture near given point\\\hline
\pl\tt \verb|label|& suffix, string, pair& --& \pageref{Dlabel}&
Place text near given point\\\hline
\pl\tt \verb|labels|& suffix, point numbers& --& \pageref{Dlabels}&
Draw {\tt z} point numbers; no dots\\\hline
\pl\tt \verb|max|& list of numerics& numeric& --&
Find the maximum\\\hline
\pl\tt \verb|max|& list of strings& string& --&
Find the lexicographically last string\\\hline
\pl\tt \verb|min|& list of numerics& numeric& --&
Find the minimum\\\hline
\pl\tt \verb|min|& list of strings& string& --&
Find the lexicographically first string\\\hline
\bx\tt \verb|pic|& suffix& picture& \pageref{Dpic}&
Box contents shifted into position\\\hline
\pl\tt \verb|thelabel|& suffix, picture, pair& picture& \pageref{Dthelab}&
Picture shifted as if to label a point\\\hline
\pl\tt \verb|thelabel|& suffix, string, pair& picture& \pageref{Dthelab}&
text positioned as if to label a point\\\hline
\pl\tt \verb|z|& suffix& pair& \pageref{Dzconv}&
The pair ${\tt x}\descr{suffix},{\tt y}\descr{suffix})$\\\hline
\end{tabular}
$$
\index{min?\texttt{min}}\index{max?\texttt{max}}%
\label{pseudotab}
\end{table}
\clearpage
\begin{figure}[htp]
\begin{ctabbing}
$\tt \descr{atom} \rightarrow \descr{variable} \;|\; \descr{argument}$\\
$\tt \qquad \;|\; \descr{number or fraction}$\\
$\tt \qquad \;|\; \descr{internal variable}$\\
$\tt \qquad \;|\; \hbox{\tt (}\descr{expression}\hbox{\tt )}$\\
$\tt \qquad \;|\; begingroup \descr{statement list} \descr{expression} endgroup$\\
$\tt \qquad \;|\; \descr{nullary op}$\\
$\tt \qquad \;|\; btex \descr{typesetting commands} etex$\\
$\tt \qquad \;|\; \descr{pseudo function}$\\
$\tt \descr{primary} \rightarrow \descr{atom}$\\
$\tt \qquad \;|\; \hbox{\tt (}\descr{numeric expression}\hbox{\tt ,} \descr{numeric expression}\hbox{\tt )}$\\
$\tt \qquad \;|\; \hbox{\tt (}\descr{numeric expression}\hbox{\tt ,} \descr{numeric expression}\hbox{\tt ,} \descr{numeric expression}\hbox{\tt )}$\\
$\tt \qquad \;|\; \descr{of operator} \descr{expression} of \descr{primary}$\\
$\tt \qquad \;|\; \descr{unary op} \descr{primary}$\\
$\tt \qquad \;|\; str \descr{suffix}$\\
$\tt \qquad \;|\; z \descr{suffix}$\\
$\tt \qquad \;|\; \descr{numeric atom}\hbox{\tt [}\descr{expression}\hbox{\tt ,}\descr{expression}\hbox{\tt ]}$\\
$\tt \qquad \;|\; \descr{scalar multiplication op} \descr{primary}$\\
$\tt \descr{secondary} \rightarrow \descr{primary}$\\
$\tt \qquad \;|\; \descr{secondary} \descr{primary binop} \descr{primary}$\\
$\tt \qquad \;|\; \descr{secondary} \descr{transformer}$\\
$\tt \descr{tertiary} \rightarrow \descr{secondary}$\\
$\tt \qquad \;|\; \descr{tertiary} \descr{secondary binop} \descr{secondary}$\\
$\tt \descr{subexpression} \rightarrow \descr{tertiary}$\\
$\tt \qquad \;|\; \descr{path expression} \descr{path join} \descr{path knot}$\\
$\tt \descr{expression} \rightarrow \descr{subexpression}$\\
$\tt \qquad \;|\; \descr{expression} \descr{tertiary binop} \descr{tertiary}$\\
$\tt \qquad \;|\; \descr{path subexpression} \descr{direction specifier}$\\
$\tt \qquad \;|\; \descr{path subexpression} \descr{path join} cycle$\\
$\tt $\\
$\tt \descr{path knot} \rightarrow \descr{tertiary}$\\
$\tt \descr{path join} \rightarrow --$\\
$\tt \qquad \;|\; \descr{direction specifier} \descr{basic path join} \descr{direction specifier}$\\
$\tt \descr{direction specifier} \rightarrow \descr{empty}$\\
$\tt \qquad \;|\; \char`\{curl \descr{numeric expression}\char`\}$\\
$\tt \qquad \;|\; \char`\{\descr{pair expression}\char`\}$\\
$\tt \qquad \;|\; \char`\{\descr{numeric expression}\hbox{\tt ,}\descr{numeric expression}\char`\}$\\
$\tt \descr{basic path join} \rightarrow \hbox{\tt ..} \;|\; \hbox{\tt ...} \;|\; \hbox{\tt ..}\descr{tension}\hbox{\tt ..} \;|\; \hbox{\tt ..}\descr{controls}\hbox{\tt ..}$\\
$\tt \descr{tension} \rightarrow tension \descr{numeric primary}$\\
$\tt \qquad \;|\; tension \descr{numeric primary} and \descr{numeric primary}$\\
$\tt \descr{controls} \rightarrow controls \descr{pair primary}$\\
$\tt \qquad \;|\; controls \descr{pair primary} and \descr{pair primary}$\\
$\tt $\\
$\tt \descr{argument} \rightarrow \descr{symbolic token}$\\
$\tt \descr{number or fraction} \rightarrow \descr{number}\hbox{\tt /}\descr{number}$\\
$\tt \qquad \;|\; \descr{number not followed by `\hbox{\tt /}\tdescr{number}'}$\\
$\tt \descr{scalar multiplication op} \rightarrow + \;|\; -$\\
$\tt \qquad \;|\; \descr{`\tdescr{number or fraction}' not followed by `\tdescr{add op}\tdescr{number}'}$
\end{ctabbing}
\caption{Part 1 of the syntax for expressions}
\index{expression?\tdescr{expression}}\index{nullary op?\tdescr{nullary op}}\index{of operator?\tdescr{of operator}}%
\index{path knot?\tdescr{path knot}}\index{primary?\tdescr{primary}}\index{primary binop?\tdescr{primary binop}}%
\index{secondary?\tdescr{secondary}}\index{secondary binop?\tdescr{secondary binop}}\index{suffix?\tdescr{suffix}}%
\index{tertiary?\tdescr{tertiary}}\index{tertiary binop?\tdescr{tertiary binop}}\index{unary op?\tdescr{unary op}}%
\label{syexpr1}
\end{figure}
\begin{figure}[htp]
\begin{ctabbing}
$\tt \descr{transformer} \rightarrow rotated \descr{numeric primary}$\\
$\tt \qquad \;|\; scaled \descr{numeric primary}$\\
$\tt \qquad \;|\; shifted \descr{pair primary}$\\
$\tt \qquad \;|\; slanted \descr{numeric primary}$\\
$\tt \qquad \;|\; transformed \descr{transform primary}$\\
$\tt \qquad \;|\; xscaled \descr{numeric primary}$\\
$\tt \qquad \;|\; yscaled \descr{numeric primary}$\\
$\tt \qquad \;|\; zscaled \descr{pair primary}$\\
$\tt \qquad \;|\; reflectedabout\hbox{\tt (}\descr{pair expression}\hbox{\tt ,} \descr{pair expression}\hbox{\tt )}$\\
$\tt \qquad \;|\; rotatedaround\hbox{\tt (}\descr{pair expression}\hbox{\tt ,} \descr{numeric expression}\hbox{\tt )}$\\
$\tt $\\
$\tt \descr{nullary op} \rightarrow false \;|\; normaldeviate \;|\; nullpicture \;|\; pencircle$\\
$\tt \qquad \;|\; true \;|\; whatever$\\
$\tt \descr{unary op} \rightarrow \descr{type}$\\
$\tt \qquad \;|\; abs \;|\; angle \;|\; arclength \;|\; ASCII \;|\; bbox \;|\; bluepart \;|\; bot \;|\; ceiling$\\
$\tt \qquad \;|\; center \;|\; char \;|\; cosd \;|\; cycle \;|\; decimal \;|\; dir \;|\; floor \;|\; fontsize$\\
$\tt \qquad \;|\; greenpart \;|\; hex \;|\; inverse \;|\; known \;|\; length \;|\; lft \;|\; llcorner$\\
$\tt \qquad \;|\; lrcorner\;|\; makepath \;|\; makepen \;|\; mexp \;|\; mlog \;|\; not \;|\; oct \;|\; odd$\\
$\tt \qquad \;|\; redpart \;|\; reverse \;|\; round \;|\; rt \;|\; sind \;|\; sqrt \;|\; top \;|\; ulcorner$\\
$\tt \qquad \;|\; uniformdeviate \;|\; unitvector \;|\; unknown \;|\; urcorner \;|\; xpart \;|\; xxpart$\\
$\tt \qquad \;|\; xypart \;|\; ypart \;|\; yxpart \;|\; yypart$\\
$\tt \descr{type} \rightarrow boolean \;|\; color \;|\; numeric \;|\; pair$\\
$\tt \qquad \;|\; path \;|\; pen \;|\; picture \;|\; string \;|\; transform$\\
$\tt \descr{primary binop} \rightarrow \hbox{\tt *} \;|\; \hbox{\tt /} \;|\; \hbox{\tt **} \;|\; and$\\
$\tt \qquad \;|\; dotprod \;|\; div \;|\; infont \;|\; mod$\\
$\tt \descr{secondary binop} \rightarrow + \;|\; - \;|\; ++ \;|\; +-+ \;|\; or$\\
$\tt \qquad \;|\; intersectionpoint \;|\; intersectiontimes$\\
$\tt \descr{tertiary binop} \rightarrow \hbox{\tt \&} \;|\; \hbox{\verb|<|} \;|\; \hbox{\verb|<=|} \;|\; \hbox{\verb|<>|} \;|\; \hbox{\tt =} \;|\; \hbox{\verb|>|} \;|\; \hbox{\verb|>=|}$\\
$\tt \qquad \;|\; cutafter \;|\; cutbefore$\\
$\tt \descr{of operator} \rightarrow arctime \;|\; direction \;|\; directiontime \;|\; directionpoint$\\
$\tt \qquad \;|\; penoffset \;|\; point \;|\; postcontrol \;|\; precontrol \;|\; subpath$\\
$\tt \qquad \;|\; substring$\\
$\tt $\\
$\tt \descr{variable} \rightarrow \descr{tag}\descr{suffix}$\\
$\tt \descr{suffix} \rightarrow \descr{empty} \;|\; \descr{suffix}\descr{subscript} \;|\; \descr{suffix}\descr{tag}$\\
$\tt \qquad \;|\; \descr{suffix parameter}$\\
$\tt \descr{subscript} \rightarrow \descr{number} \;|\; \hbox{\tt [}\descr{numeric expression}\hbox{\tt ]}$\\
$\tt $\\
$\tt \descr{internal variable} \rightarrow ahangle \;|\; ahlength \;|\; bboxmargin$\\
$\tt \qquad \;|\; charcode \;|\; day \;|\; defaultpen \;|\; defaultscale \;|\; labeloffset$\\
$\tt \qquad \;|\; linecap \;|\; linejoin \;|\; miterlimit \;|\; month \;|\; pausing$\\
$\tt \qquad \;|\; prologues \;|\; showstopping \;|\; time \;|\; tracingoutput$\\
$\tt \qquad \;|\; tracingcapsules \;|\; tracingchoices \;|\; tracingcommands$\\
$\tt \qquad \;|\; tracingequations \;|\; tracinglostchars \;|\; tracingmacros$\\
$\tt \qquad \;|\; tracingonline \;|\; tracingrestores \;|\; tracingspecs$\\
$\tt \qquad \;|\; tracingstats \;|\; tracingtitles \;|\; truecorners$\\
$\tt \qquad \;|\; warningcheck \;|\; year$\\
$\tt \qquad \;|\; \descr{symbolic token defined by {\tt newinternal}}$
\end{ctabbing}
\caption{Part 2 of the syntax for expressions}
\index{nullary op?\tdescr{nullary op}}\index{of operator?\tdescr{of operator}}\index{primary binop?\tdescr{primary binop}}%
\index{secondary binop?\tdescr{secondary binop}}\index{subscript?\tdescr{subscript}}\index{suffix?\tdescr{suffix}}%
\index{tertiary binop?\tdescr{tertiary binop}}\index{unary op?\tdescr{unary op}}%
\label{syexpr2}
\end{figure}
\begin{figure}[htp]
\begin{ctabbing}
$\tt \descr{pseudo function} \rightarrow min\hbox{\tt (}\descr{expression list}\hbox{\tt )}$\\
$\tt \qquad \;|\; max\hbox{\tt (}\descr{expression list}\hbox{\tt )}$\\
$\tt \qquad \;|\; incr\hbox{\tt (}\descr{numeric variable}\hbox{\tt )}$\\
$\tt \qquad \;|\; decr\hbox{\tt (}\descr{numeric variable}\hbox{\tt )}$\\
$\tt \qquad \;|\; dashpattern\hbox{\tt (}\descr{on\hbox{\tt /}off list}\hbox{\tt )}$\\
$\tt \qquad \;|\; interpath\hbox{\tt (}\descr{numeric expression}\hbox{\tt ,} \descr{path expression}\hbox{\tt ,} \descr{path expression}\hbox{\tt )}$\\
$\tt \qquad \;|\; buildcycle\hbox{\tt (}\descr{path expression list}\hbox{\tt )}$\\
$\tt \qquad \;|\; thelabel\descr{label suffix}\hbox{\tt (}\descr{expression}\hbox{\tt ,} \descr{pair expression}\hbox{\tt )}$\\
$\tt \descr{path expression list} \rightarrow \descr{path expression}$\\
$\tt \qquad \;|\; \descr{path expression list}\hbox{\tt ,} \descr{path expression}$\\
$\tt \descr{on\hbox{\tt /}off list} \rightarrow \descr{on\hbox{\tt /}off list}\descr{on\hbox{\tt /}off clause} \;|\; \descr{on\hbox{\tt /}off clause}$\\
$\tt \descr{on\hbox{\tt /}off clause} \rightarrow on \descr{numeric tertiary} \;|\; off \descr{numeric tertiary}$
\end{ctabbing}
\caption{The syntax for function-like macros}
\index{label suffix?\tdescr{label suffix}}%
\label{sypseudo}
\end{figure}
\begin{figure}[htp]
\begin{ctabbing}
$\tt \descr{boolean expression} \rightarrow \descr{expression}$\\
$\tt \descr{color expression} \rightarrow \descr{expression}$\\
$\tt \descr{numeric atom} \rightarrow \descr{atom}$\\
$\tt \descr{numeric expression} \rightarrow \descr{expression}$\\
$\tt \descr{numeric primary} \rightarrow \descr{primary}$\\
$\tt \descr{numeric tertiary} \rightarrow \descr{tertiary}$\\
$\tt \descr{numeric variable} \rightarrow \descr{variable} \;|\; \descr{internal variable}$\\
$\tt \descr{pair expression} \rightarrow \descr{expression}$\\
$\tt \descr{pair primary} \rightarrow \descr{primary}$\\
$\tt \descr{path expression} \rightarrow \descr{expression}$\\
$\tt \descr{path subexpression} \rightarrow \descr{subexpression}$\\
$\tt \descr{pen expression} \rightarrow \descr{expression}$\\
$\tt \descr{picture expression} \rightarrow \descr{expression}$\\
$\tt \descr{picture variable} \rightarrow \descr{variable}$\\
$\tt \descr{string expression} \rightarrow \descr{expression}$\\
$\tt \descr{suffix parameter} \rightarrow \descr{parameter}$\\
$\tt \descr{transform primary} \rightarrow \descr{primary}$
\end{ctabbing}
\caption{Miscellaneous productions needed to complete the BNF}
\label{sytypexpr}
\end{figure}
\begin{figure}[htp]
\begin{ctabbing}
$\tt \descr{program} \rightarrow \descr{statement list} end$\\
$\tt \descr{statement list} \rightarrow \descr{empty} \;|\; \descr{statement list} \hbox{\tt ;} \descr{statement}$\\
$\tt \descr{statement} \rightarrow \descr{empty}$\\
$\tt \qquad \;|\; \descr{equation} \;|\; \descr{assignment}$\\
$\tt \qquad \;|\; \descr{declaration} \;|\; \descr{macro definition}$\\
$\tt \qquad \;|\; \descr{compound} \;|\; \descr{pseudo procedure}$\\
$\tt \qquad \;|\; \descr{command}$\\
$\tt \descr{compound} \rightarrow begingroup \descr{statement list} endgroup$\\
$\tt \qquad \;|\; beginfig\hbox{\tt (}\descr{numeric expression}\hbox{\tt );} \descr{statement list}\hbox{\tt ;} endfig$\\
$\tt $\\
$\tt \descr{equation} \rightarrow \descr{expression} \hbox{\tt =} \descr{right-hand side}$\\
$\tt \descr{assignment} \rightarrow \descr{variable} \hbox{\tt :=} \descr{right-hand side}$\\
$\tt \qquad \;|\; \descr{internal variable} \hbox{\tt :=} \descr{right-hand side}$\\
$\tt \descr{right-hand side} \rightarrow \descr{expression} \;|\; \descr{equation} \;|\; \descr{assignment}$\\
$\tt $\\
$\tt \descr{declaration} \rightarrow \descr{type} \descr{declaration list}$\\
$\tt \descr{declaration list} \rightarrow \descr{generic variable}$\\
$\tt \qquad \;|\; \descr{declaration list}\hbox{\tt ,} \descr{generic variable}$\\
$\tt \descr{generic variable} \rightarrow \descr{symbolic token} \descr{generic suffix}$\\
$\tt \descr{generic suffix} \rightarrow \descr{empty} \;|\; \descr{generic suffix} \descr{tag}$\\
$\tt \qquad \;|\; \descr{generic suffix} \hbox{\tt []}$\\
$\tt $\\
$\tt \descr{macro definition} \rightarrow \descr{macro heading} \hbox{\tt =} \descr{replacement text} enddef$\\
$\tt \descr{macro heading} \rightarrow def \descr{symbolic token} \descr{delimited part} \descr{undelimited part}$\\
$\tt \qquad \;|\; vardef \descr{generic variable} \descr{delimited part} \descr{undelimited part}$\\
$\tt \qquad \;|\; vardef \descr{generic variable} \hbox{\verb|@#|} \descr{delimited part} \descr{undelimited part}$\\
$\tt \qquad \;|\; \descr{binary def} \descr{parameter} \descr{symbolic token} \descr{parameter}$\\
$\tt \descr{delimited part} \rightarrow \descr{empty}$\\
$\tt \qquad \;|\; \descr{delimited part}\hbox{\tt (}\descr{parameter type} \descr{parameter tokens}\hbox{\tt )}$\\
$\tt \descr{parameter type} \rightarrow expr \;|\; suffix \;|\; text$\\
$\tt \descr{parameter tokens} \rightarrow \descr{parameter} \;|\; \descr{parameter tokens}\hbox{\tt ,} \descr{parameter}$\\
$\tt \descr{parameter} \rightarrow \descr{symbolic token}$\\
$\tt \descr{undelimited part} \rightarrow \descr{empty}$\\
$\tt \qquad \;|\; \descr{parameter type} \descr{parameter}$\\
$\tt \qquad \;|\; \descr{precedence level} \descr{parameter}$\\
$\tt \qquad \;|\; expr \descr{parameter} of \descr{parameter}$\\
$\tt \descr{precedence level} \rightarrow primary \;|\; secondary \;|\; tertiary$\\
$\tt \descr{binary def} \rightarrow primarydef \;|\; secondarydef \;|\; tertiarydef$\\
$\tt $\\
$\tt \descr{pseudo procedure} \rightarrow drawoptions\hbox{\tt (}\descr{option list}\hbox{\tt )}$\\
$\tt \qquad \;|\; label\descr{label suffix}\hbox{\tt (}\descr{expression}\hbox{\tt ,} \descr{pair expression}\hbox{\tt )}$\\
$\tt \qquad \;|\; dotlabel\descr{label suffix}\hbox{\tt (}\descr{expression}\hbox{\tt ,} \descr{pair expression}\hbox{\tt )}$\\
$\tt \qquad \;|\; labels\descr{label suffix}\hbox{\tt (}\descr{point number list}\hbox{\tt )}$\\
$\tt \qquad \;|\; dotlabels\descr{label suffix}\hbox{\tt (}\descr{point number list}\hbox{\tt )}$\\
$\tt \descr{point number list} \rightarrow \descr{suffix} \;|\; \descr{point number list}\hbox{\tt ,} \descr{suffix}$\\
$\tt \descr{label suffix} \rightarrow \descr{empty} \;|\; lft \;|\; rt \;|\; top \;|\; bot \;|\; ulft \;|\; urt \;|\; llft \;|\; lrt$
\end{ctabbing}
\caption{Overall syntax for MetaPost programs}
\index{generic variable?\tdescr{generic variable}}\index{label suffix?\tdescr{label suffix}}\index{replacement text?\tdescr{replacement text}}%
\index{suffix?\tdescr{suffix}}%
\label{syprog}
\end{figure}
\begin{figure}[htp]
\begin{ctabbing}
$\tt \descr{command} \rightarrow clip \descr{picture variable} to \descr{path expression}$\\
$\tt \qquad \;|\; interim \descr{internal variable} \hbox{\tt :=} \descr{right-hand side}$\\
$\tt \qquad \;|\; let \descr{symbolic token} \hbox{\tt =} \descr{symbolic token}$\\
$\tt \qquad \;|\; newinternal \descr{symbolic token list}$\\
$\tt \qquad \;|\; pickup \descr{expression}$\\
$\tt \qquad \;|\; randomseed \hbox{\tt :=} \descr{numeric expression}$\\
$\tt \qquad \;|\; save \descr{symbolic token list}$\\
$\tt \qquad \;|\; setbounds \descr{picture variable} to \descr{path expression}$\\
$\tt \qquad \;|\; shipout \descr{picture expression}$\\
$\tt \qquad \;|\; special \descr{string expression}$\\
$\tt \qquad \;|\; \descr{addto command}$\\
$\tt \qquad \;|\; \descr{drawing command}$\\
$\tt \qquad \;|\; \descr{font metric command}$\\
$\tt \qquad \;|\; \descr{show command}$\\
$\tt \qquad \;|\; \descr{tracing command}$\\
$\tt $\\
$\tt \descr{show command} \rightarrow show \descr{expression list}$\\
$\tt \qquad \;|\; showvariable \descr{symbolic token list}$\\
$\tt \qquad \;|\; showtoken \descr{symbolic token list}$\\
$\tt \qquad \;|\; showdependencies$\\
$\tt $\\
$\tt \descr{symbolic token list} \rightarrow \descr{symbolic token}$\\
$\tt \qquad \;|\; \descr{symbolic token}\hbox{\tt ,} \descr{symbolic token list}$\\
$\tt \descr{expression list} \rightarrow \descr{expression} \;|\; \descr{expression list}\hbox{\tt ,} \descr{expression}$\\
$\tt $\\
$\tt \descr{addto command} \rightarrow$\\
$\tt \qquad addto \descr{picture variable} also \descr{picture expression} \descr{option list}$\\
$\tt \qquad \;|\; addto \descr{picture variable} contour \descr{path expression} \descr{option list}$\\
$\tt \qquad \;|\; addto \descr{picture variable} doublepath \descr{path expression} \descr{option list}$\\
$\tt \descr{option list} \rightarrow \descr{empty} \;|\; \descr{drawing option} \descr{option list}$\\
$\tt \descr{drawing option} \rightarrow withcolor \descr{color expression}$\\
$\tt \qquad \;|\; withpen \descr{pen expression} \;|\; dashed \descr{picture expression}$\\
$\tt $\\
$\tt \descr{drawing command} \rightarrow draw \descr{picture expression} \descr{option list}$\\
$\tt \qquad \;|\; \descr{fill type} \descr{path expression} \descr{option list}$\\
$\tt \descr{fill type} \rightarrow fill \;|\; draw \;|\; filldraw \;|\; unfill \;|\; undraw \;|\; unfilldraw$\\
$\tt \qquad \;|\; drawarrow \;|\; drawdblarrow \;|\; cutdraw$\\
$\tt $\\
$\tt \descr{tracing command} \rightarrow tracingall \;|\; loggingall \;|\; tracingnone$
\end{ctabbing}
\caption{The syntax for commands}
\index{option list?\tdescr{option list}}\index{picture variable?\tdescr{picture variable}}%
\label{sycmds}
\end{figure}
\begin{figure}[htp]
\begin{ctabbing}
$\tt \descr{if test} \rightarrow if \descr{boolean expression} \hbox{\tt :} \descr{balanced tokens} \descr{alternatives} fi$\\
$\tt \descr{alternatives} \rightarrow \descr{empty}$\\
$\tt \qquad \;|\; else\hbox{\tt :} \descr{balanced tokens}$\\
$\tt \qquad \;|\; elseif \descr{boolean expression} \hbox{\tt :} \descr{balanced tokens} \descr{alternatives}$\\
$\tt $\\
$\tt \descr{loop} \rightarrow \descr{loop header}\hbox{\tt :} \descr{loop text} endfor$\\
$\tt \descr{loop header} \rightarrow for \descr{symbolic token} \hbox{\tt =} \descr{progression}$\\
$\tt \qquad \;|\; for \descr{symbolic token} \hbox{\tt =} \descr{for list}$\\
$\tt \qquad \;|\; forsuffixes \descr{symbolic token} \hbox{\tt =} \descr{suffix list}$\\
$\tt \qquad \;|\; forever$\\
$\tt \descr{progression} \rightarrow \descr{numeric expression} upto \descr{numeric expression}$\\
$\tt \qquad \;|\; \descr{numeric expression} downto \descr{numeric expression}$\\
$\tt \qquad \;|\; \descr{numeric expression} step \descr{numeric expression} until \descr{numeric expression} $\\
$\tt \descr{for list} \rightarrow \descr{expression} \;|\; \descr{for list}\hbox{\tt ,} \descr{expression}$\\
$\tt \descr{suffix list} \rightarrow \descr{suffix} \;|\; \descr{suffix list}\hbox{\tt ,} \descr{suffix}$
\end{ctabbing}
\caption{The syntax for conditionals and loops}
\index{balanced tokens?\tdescr{balanced tokens}}\index{suffix?\tdescr{suffix}}%
\label{sycondloop}
\end{figure}
\clearpage
\let\topfraction=\svtopfrac % restore values from the start of this appendix
\let\textfraction=\svtxtfrac
\setcounter{topnumber}{\value{svtopnum}}
\setcounter{totalnumber}{\value{svtotnum}}
\section{MetaPost Versus METAFONT}
\label{MPvsMF}
Since the \MF\index{metafont?\MF} and MetaPost languages have so much in common, expert
users of \MF\ will want to skip most of the explanations in this document and
concentrate on concepts that are unique to MetaPost. The comparisons in this
appendix are intended to help experts that are familiar with {\it The\ \MF book}
as well as other users that want to benefit from Knuth's more detailed
explanations \cite{kn:c}.
Since \MF\ is intended for making \TeX\ fonts, it has a number of primitives for
generating the {\tt tfm}\index{tfm file?{\tt tfm} file}\index{files!tfm?{\tt tfm}} files that
\TeX\ needs for character dimensions, spacing information,
ligatures\index{ligatures} and kerning\index{kerning}. MetaPost can also be
used for generating fonts, and it also has \MF's primitives for making
{\tt tfm} files. These are listed in Table~\ref{tfmprim}. Explanations can be
found in the \MF\ documentation \cite{kn:c,kn:mf3}
\begin{table}[htp]
$$\begin{tabular}{|l|l|} \hline
commands& {\tt charlist}, {\tt extensible},
{\tt fontdimen}, {\tt headerbyte} \\
& {\tt kern}, {\tt ligtable} \\ \hline
ligtable operators& \verb!::!, \verb!=:!, \verb!=:|!, \verb!=:|>!,
\verb!|=:!, \verb!|=:>!, \\
& \verb!|=:|!, \verb!|=:|>!, \verb!|=:|>>!,
\verb!||:! \\ \hline
internal variables\index{internal variables}\index{variables!internal}&
{\tt boundarychar}, {\tt chardp},
{\tt charext}, {\tt charht}, \\
& {\tt charic}, {\tt charwd},
{\tt designsize}, {\tt fontmaking} \\ \hline
other operators& {\tt charexists} \\ \hline
\end{tabular}
$$
\caption{MetaPost primitives for making {\tt tfm} files.}
\label{tfmprim}
\end{table}
Even though MetaPost has the primitives for generating fonts, many of the
font-making primitives and internal variables that are part of Plain
\MF\index{metafont?\MF} are not defined in Plain MetaPost\index{Plain macros}. Instead,
there is a separate macro package called {\tt mfplain}\index{mfplain?\texttt{mfplain}} that
defines the macros required to allow MetaPost to process Knuth's Computer Modern
fonts as shown in Table~\ref{mfponly} \cite{kn:e}.
To load these macros, put ``\verb|&mfplain|'' before the name of the
input file. This can be done at the {\tt **} prompt after invoking the MetaPost
interpreter with no arguments, or on a command line that looks something like
this:\footnote{Command line syntax is system dependent. Quotes are needed on
most Unix\reg systems to protect special characters like {\tt\&}.}
$$ \hbox{\verb|mp '&mfplain' cmr10|} $$
The analog of a \MF\ command line like
$$ \hbox{\verb|mf '\mode=lowres; mag=1.2; input cmr10'|} $$
is
$$ \hbox{\verb|mp '&mfplain \mode=lowres; mag=1.2; input cmr10'|} $$
The result is a set of PostScript files, one for each character in the font.
Some editing would be required in order to merge them into a downloadable Type~3
PostScript font \cite{ad:red}.
\begin{table}[htp]
$$
\renewcommand{\FancyVerbFormatLine}[1]{\hbox{#1}\strut}
\begin{tabular}{|l|} \hline
\multicolumn 1{|c|}
{Defined in the {\tt mfplain} package} \\ \hline
\begin{verbatim}
beginchar font_identifier
blacker font_normal_shrink
capsule_def font_normal_space
change_width font_normal_stretch
define_blacker_pixels font_quad
define_corrected_pixels font_size
define_good_x_pixels font_slant
define_good_y_pixels font_x_height
define_horizontal_corrected_pixels italcorr
define_pixels labelfont
define_whole_blacker_pixels makebox
define_whole_pixels makegrid
define_whole_vertical_blacker_pixels maketicks
define_whole_vertical_pixels mode_def
endchar mode_setup
extra_beginchar o_correction
extra_endchar proofrule
extra_setup proofrulethickness
font_coding_scheme rulepen
font_extra_space smode
\end{verbatim}
\\ \hline
\multicolumn 1{|c|}
{Defined as no-ops in the {\tt mfplain} package}\\ \hline
\begin{verbatim}
cullit proofoffset
currenttransform screenchars
gfcorners screenrule
grayfont screenstrokes
hround showit
imagerules slantfont
lowres_fix titlefont
nodisplays unitpixel
notransforms vround
openit
\end{verbatim}
\\ \hline
\end{tabular}
\renewcommand{\FancyVerbFormatLine}[1]{#1}
$$
\caption{Macros and internal variables defined only in the {\tt mfplain} package.}
\label{mfponly}
\end{table}
Another limitation of the {\tt mfplain} package is that certain internal
variables from Plain \MF\index{metafont?\MF} cannot be given reasonable MetaPost
definitions. These include {\tt displaying}, {\tt currentwindow},
\verb|screen_rows|, and \verb|screen_cols| which depend on \MF's ability to
display images on the computer screen. In addition, \verb|pixels_per_inch| is
irrelevant since MetaPost uses fixed units of PostScript points.
The reason why some macros and
internal variables\index{internal variables}\index{variables!internal}
are not meaningful in MetaPost
is that \MF\ primitive commands {\tt cull}, {\tt display}, {\tt openwindow},
{\tt numspecial} and {\tt totalweight} are not implemented in MetaPost. Also not
implemented are a number of internal variables as well as the
\tdescr{drawing option} {\tt withweight}. Here is a complete listing of the
internal variables whose primitive meanings in \MF\ do not make sense in MetaPost:
$$\begin{verbatim}
autorounding fillin proofing tracingpens xoffset
chardx granularity smoothing turningcheck yoffset
chardy hppp tracingedges vppp
\end{verbatim}
$$
There is also one \MF\ primitive that has a slightly different meaning in
MetaPost. Both languages allow statements of the
form\index{special?\texttt{special}}\label{Dspecl}
$$ {\tt special}\, \descr{string expression} \hbox{\tt;} $$
but \MF\ copies the string into its ``generic font'' output file, while
MetaPost interprets the string as a sequence of PostScript commands that are
to be placed at the beginning of the next output file.
All the other differences between \MF\ and MetaPost are features found only in
MetaPost. These are listed in Table~\ref{mponly}. The only commands listed
in this table that the preceding sections do not discuss are
\verb|extra_beginfig|\index{extra_beginfig?\texttt{extra\_beginfig}}\label{Dxbfig},
\verb|extra_endfig|\index{extra_endfig?\texttt{extra\_endfig}}\label{Dxefig}, and {\tt mpxbreak}.
The first two are strings that contain extra commands to be processed
by {\tt beginfig}\index{beginfig?\texttt{beginfig}} and {\tt endfig}\index{endfig?\texttt{endfig}}
just as \verb|extra_beginchar| and \verb|extra_endchar| are processed by
{\tt beginchar} and {\tt endchar}.
(The file {\tt boxes.mp}\index{boxes.mp?\texttt{boxes.mp}} uses these features).
The other new feature listed in Table~\ref{mponly} not listed in the index
is {\tt mpxbreak}\index{mpxbreak?\texttt{mpxbreak}}. This is used to separate blocks of
translated \TeX\index{TeX?\TeX} or troff\index{troff} commands in
{\tt mpx}\index{files!mpx?{\tt mpx}} files. It should be of no concern to
users since {\tt mpx} files are generated automatically.
\begin{table}[htp]
$$
\renewcommand{\FancyVerbFormatLine}[1]{\hbox{#1}\strut}
\begin{tabular}{|l|} \hline
\multicolumn 1{|c|}
{MetaPost primitives not found in \MF} \\ \hline
$\begin{verbatim}
bluepart infont redpart
btex linecap setbounds
clip linejoin tracinglostchars
color llcorner truecorners
dashed lrcorner ulcorner
etex miterlimit urcorner
fontsize mpxbreak verbatimtex
greenpart prologues withcolor
\end{verbatim}
$ \\ \hline
\multicolumn 1{|c|}
{Variables and Macros defined only in Plain MetaPost}\\ \hline
$\begin{verbatim}
ahangle cutbefore extra_beginfig
ahlength cuttings extra_endfig
background dashpattern green
bbox defaultfont label
bboxmargin defaultpen labeloffset
beginfig defaultscale mitered
beveled dotlabel red
black dotlabels rounded
blue drawarrow squared
buildcycle drawdblarrow thelabel
butt drawoptions white
center endfig
cutafter evenly
\end{verbatim}
$ \\ \hline
\end{tabular}
\renewcommand{\FancyVerbFormatLine}[1]{#1}
$$
\caption{Macros and internal variables defined in MetaPost but not \MF.}
\label{mponly}
\end{table}
\bibliographystyle{plain}
\bibliography{mpman}
\printindex
\end{document}
% Copyright 1990 - 1995 by AT&T Bell Laboratories.
% Permission to use, copy, modify, and distribute this software
% and its documentation for any purpose and without fee is hereby
% granted, provided that the above copyright notice appear in all
% copies and that both that the copyright notice and this
% permission notice and warranty disclaimer appear in supporting
% documentation, and that the names of AT&T Bell Laboratories or
% any of its entities not be used in advertising or publicity
% pertaining to distribution of the software without specific,
% written prior permission.
% AT&T disclaims all warranties with regard to this software,
% including all implied warranties of merchantability and fitness.
% In no event shall AT&T be liable for any special, indirect or
% consequential damages or any damages whatsoever resulting from
% loss of use, data or profits, whether in an action of contract,
% negligence or other tortious action, arising out of or in
% connection with the use or performance of this software.
% In addition, John Hobby, the original author of MetaPost and this
% manual, makes the following requests:
% - I request that it remain clear that I am the author of
% "A User's Manual for MetaPost" and "Drawing Graphs with MetaPost".
% - I request to be consulted before significant changes are made.
|