1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
|
\documentclass{article}
\usepackage{listings,color,parskip,booktabs,longtable,array,
hyperref,multirow,multicol,url,amsmath,amssymb,framed,lualinalg,tikz,tikz-3dplot}
\usepackage[top=1in, bottom=1in, left=1in, right=1in]{geometry}
\usetikzlibrary{calc,3d,arrows}
\hypersetup{colorlinks,urlcolor=blue}
\lstset{frame=none,
language=[LaTeX]{TeX},
aboveskip=3mm,
belowskip=3mm,
showstringspaces=false,
columns=flexible,
basicstyle={\ttfamily},
numbers=none,
numberstyle=\tiny\color{gray},
stringstyle=\color{mauve},
breaklines=true,
breakatwhitespace=true,
tabsize=1,
upquote=true
}
\begin{document}
\title{The lualinalg Package}
\author{Chetan Shirore\thanks{Email id: mathsbeauty@gmail.com} \space and Ajit Kumar}
\maketitle
\section{Introduction}
The \verb|lualinalg| package is developed to perform operations on vectors and matrices defined over the field of real or complex numbers inside LaTeX documents. It provides flexible ways for defining and displaying vectors and matrices. No particular environment of LaTeX is required to use commands in the package. The package is written in Lua, and tex file is to be compiled with the LuaLaTeX engine. The time required for calculations is not an issue while compiling with LuaLaTeX. There is no need to install Lua on the user's system as TeX distributions (TeXLive or MikTeX) come bundled with LuaLaTeX. It may also save users' efforts to copy vectors and matrices from other software (which may not be in latex-compatible format) and to use them in a tex file. The vectors and matrices of reasonable size can be handled with ease. The package can be modified or extended by writing custom Lua programs (Section \ref{customuse}).
The package supports fractions; numerators and denominators must be integers. A fraction can be specified with the Lua function: \verb|lfrac|. This function has the syntax \verb|lfrac(n,d,mode)|: \(n\) is an integer and \(d\) is a non-zero integer. The mode is optional. It can be \verb|fracs| or \verb|nofracs|. The default mode is \verb|fracs|. If fractions are input, the package will display vectors and matrices in fraction mode wherever possible. The package does not attempt to convert floats into fractions. If fractions are expected, then the input should contain fractions. If fractions are input and answers are expected in numbers, the mode can be specified as \verb|nofracs|.
The Lua function \verb|lcomplex| defines the complex numbers. It has the syntax \verb|lcomplex(x,y)|, where \(x\) is a real part, and \(y\) is an imaginary part. \(x\) and \(y\) can also be fractions (numerators and denominators should be integers). The package has a command \verb|\imUnit| which provides typesetting for the imaginary unit. Its default value is \verb|\mathrm{i}|. It can be redefined. For example, one can redefine it as \verb|\renewcommand{\imUnit}{j}}|.
\section{Installation and License}
The installation of the \verb|lualinalg| package is similar to the plain latex package, where the \verb|.sty| file is in the LaTeX directory of the texmf tree. The package can be included with \verb|\usepackage{lualinalg}| command in the preamble of the LaTeX document.
The \verb|lualinalg| package is released under the LaTeX Project Public License v1.3c or later. The complete license text is available at \url{http://www.latex-project.org/lppl.txt}. It is developed in Lua. Lua is available as a certified open-source software. Its license is simple and liberal, which is compatible with GPL. The package makes use of \verb|complex.lua| file which is available on \url{https://github.com/davidm/lua-matrix/blob/master/lua/complex.lua}. It is available under the same licensing as that of Lua. The package also loads the \href{https://ctan.org/pkg/luamaths}{luamaths} package, which is available under the LaTeX Project Public License v1.3c or later. This package is loaded to use the standard mathematical functions and for computations on real numbers while performing operations on vectors and matrices.
\section{Defining vectors and performing operations on vectors}
\subsection{Defining Vectors} Vectors are defined with the \verb|\vectornew| command.
\begin{lstlisting}
\vectorNew{vector name}{coordinates}
\end{lstlisting}
This command has two compulsory arguments: \verb|vector name| and \verb|coordinates|. Coordinates of vectors are enclosed in curly braces. A comma separates coordinates. The following are a few valid ways of defining vectors.
\begin{lstlisting}
\vectorNew{v1}{{1,2,3,4,5,6}}
\vectorNew{v2}{{3,6,lcomplex(6,6)}}
\end{lstlisting}
The standard vector of dimension \(n \) with \(i^{th}\) coordinate \(1\) and zero vectors can also be produced by using the command \verb|\vectorNew|. For example, the following commands
\begin{lstlisting}
\vectorNew{e_1}{3,'e',1}
\(e_1=\left(\vectorPrint{e}\right)\)
\vectorNew{O}{3,'zero'}
\(O=\left(\vectorPrint{O}\right)\)
\end{lstlisting}
output to \vectorNew{e_1}{3,'e',1}
\(e_1=\left(\vectorPrint{e_1}\right)\)
\vectorNew{O}{3,'zero'}
\(O=\left(\vectorPrint{O}\right)\)
\subsection{Commands for operations on vectors}
Table \ref{tbl:luavector} lists commands for operations on vectors.
\begin{longtable}{m{7cm}m{8.2cm}}
\toprule
\multicolumn{1}{c}{\textcolor{blue}{Command Format}} & \multicolumn{1}{c}{\textcolor{blue}{Description}} \\
\toprule
\begin{lstlisting}
\vectorPrint[truncate]{vector}
\end{lstlisting} & Prints vector. Accepts one \emph{optional} argument: \verb|truncate|. It specifies the number of digits up to which vector coordinates must be truncated. The value of \verb|truncate| may be 0,1,2,\ldots\\
\midrule
\begin{lstlisting}
\vectorGetCoordinate{vector}{i}
\end{lstlisting}
&
Gives the \(i\)th coordinate of vector. \\
\midrule
\begin{lstlisting}
\vectorSetCoordinate
{vector}{i}{val}
\end{lstlisting}
&
Sets the \(i\)th coordinate of vector as \verb|val|. \\
\midrule
\begin{lstlisting}
\vectorCopy{v}{w}
\end{lstlisting}&
Defines a new vector \(v\) obtained by copying coordinates of vector \(w\). \\
\midrule
\begin{lstlisting}
\vectorEql{v}{w}
\end{lstlisting}&
Returns true if \(v = w\), otherwise returns false. \\
\midrule
\begin{lstlisting}
\vectorAdd{vector}{v1}{v2}
\end{lstlisting}&
Defines a new vector as the addition of vectors \(v1\) and \(v2\). Both vectors \(v1\) and \(v2\) should be of the same dimension. The addition is done coordinate-wise.\\
\midrule
\begin{lstlisting}
\vectorSub{vector}{v1}{v2}
\end{lstlisting}&
Defines a new vector as the subtraction of vectors \(v1\) and \(v2\). Both vectors \(v1\) and \(v2\) should be of the same dimension. The subtraction is done coordinate-wise. \\
\midrule
\begin{lstlisting}
\vectorMulNum{vector}{v}{num}
\end{lstlisting}&
Defines a new vector obtained by multiplying each coordinate of a vector by number \verb|num|. It can be a real or complex number (scalar). \\
\midrule
\begin{lstlisting}
\vectorDot{v}{w}
\end{lstlisting}&
Gives the dot product of two vectors: \(v\) and \(w\). If \(v=\left(v_1, \ldots, v_n \right)\) and \(w =\left(w_1, \ldots, w_n \right)\) are defined over the field of real numbers, then it is evaluated as \(v_1\cdot w_1 + \cdots + v_n \cdot w_n\). If they are defined over the field of complex numbers, then it is evaluated as \(v_1\cdot \bar{w_1} + \cdots + v_n \cdot \bar{w_n}\). \(\bar{w_i}\) denotes the complex conjugate of complex number \(w_i\). \\
\midrule
\begin{lstlisting}
\vectorCross{vector}{v}{w}
\end{lstlisting}&
Defines a new vector obtained by taking the cross product of vectors \(v\) and \(w\) of dimension 3. If \(v=\left(v_1, v_2, v_3 \right)\) and \(w =\left(w_1, w_2, w_3 \right)\), then the cross product of these two vectors is the vector \((v_2w_3-v_3w_2, v_3w_1-v_1w_3,\) \( v_1w_2-v_2w_1 ) \). \\
\midrule
\begin{lstlisting}
\vectorSumNorm{v}
\end{lstlisting}&
Calculates the sum norm of a vector \(v\). If \(v=\left(v_1, \ldots, v_n \right)\) then it is given by \(|v_1| + \cdots + |v_n| \). \\
\midrule
\begin{lstlisting}
\vectorEuclidNorm{v}
\end{lstlisting}&
Calculates the Euclidean norm of a vector \(v\). If \(v=\left(v_1, \ldots, v_n \right)\) then it is given by \(\sqrt{|v_1|^2 + \cdots + |v_n|^2} \). \\
\midrule
\begin{lstlisting}
\vectorpNorm{v}
\end{lstlisting}&
Calculates the \(p\) \((p > 1)\) norm of a vector \(v\). If \(v=\left(v_1, \ldots, v_n \right)\) then it is given by \(\sqrt[\leftroot{-2}\uproot{2} p]{|v_1|^p + \cdots + |v_n|^p} \). \\
\midrule
\begin{lstlisting}
\vectorSupNorm{v}
\end{lstlisting}&
Calculates the sup norm of a vector \(v\). If \(v=\left(v_1, \ldots, v_n \right)\) then it is given by \(\max\{|v_1| , \ldots , |v_n| \} \). \\
\midrule
\begin{lstlisting}
\vectorCreateRandom{v}{n}{a}{b}
\end{lstlisting}&
Creates a new vector \(v\) of dimension \(n\) with coordinates as random numbers from the interval \([a,b]\). \\
\midrule
\begin{lstlisting}
\vectorOp{vector}{expression}
\end{lstlisting}&
Defines a new vector obtained by evaluating an expression. The expression supports all standard operations such as \(+,-,* \). \\
\midrule
\begin{lstlisting}
\vectorGetAngle{v}{w}
\end{lstlisting}&
Gives the angle between two vectors \(v\) and \(w\) in radians. If \(v\) and \(w \) are defined over the field of real numbers, then it is evaluated as \(\cos^{-1}\left(\frac{v \cdot w}{|v| |w|}\right)\). If they are defined over the field of complex numbers, then it is evaluated as \(\cos^{-1}\left(\frac{\Re (v \cdot w) }{|v| |w|}\right)\). Here \(v \cdot w\) denotes the dot product of vectors \(v\) and \(w\), \(\Re (v \cdot w)\) denotes real part of the dot product \(v \cdot w\), and \(|v|\) and \(|w|\) denote Euclidean norms of vectors \(v\) and \(w\) respectively. \\
\midrule
\begin{lstlisting}
\vectorParse{vector}
\end{lstlisting}&
Parses the coordinates of a vector defined over the field of real numbers. The command helps to plot vectors with different packages. \\
\midrule
\begin{lstlisting}
\vectorGramSchmidt[brckt,
truncate]{list of vectors}
\end{lstlisting} & Performs Gram Schmidt orthogonalisation process on a list of vectors. Accepts two \emph{optional} arguments: \verb|brckt| and \verb|truncate|. The \verb|brckt| is type of parenthesis to be used for displaying vectors. It can be `round', `square' or `curly'. The truncate is number of digits up to which vector coordinates are to be truncated. The value of \verb|truncate| can be 0,1,2,\ldots\\
\midrule
\begin{lstlisting}
\vectorGramSchmidtSteps[brckt,
truncate]{list of vectors}
\end{lstlisting} & Performs Gram Schmidt orthogonalisation process on a list of vectors in a step-by-step manner. Accepts two \emph{optional} arguments: \verb|brckt| and \verb|truncate|. The \verb|brckt| is type of parenthesis to be used for displaying vectors. It can be `round', `square' or `curly'. The truncate is number of digits up to which vector coordinates are to be truncated. The value of \verb|truncate| can be 0,1,2,\ldots\\
\bottomrule \\
\caption{Commands for operations on vectors}
\label{tbl:luavector}
\end{longtable}
\subsection{Illustrations of commands for operations on vectors}
The following commands define vectors \(v,w,x,\) and \(y\).
\begin{lstlisting}
\vectorNew{v}{{1,2,lcomplex(3,3)}}
\vectorNew{w}{{3,6,lcomplex(6,6)}}
\vectorNew{x}{{1.12345678,6,lcomplex(6,6)}}
\vectorNew{y}{{1,2,3}}
\end{lstlisting}
Table \ref{tbl:illluavector} illustrates various operations on vectors \(v,w,x\) and \(y\).
\vectorNew{v}{{1,2,lcomplex(3,3)}}
\vectorNew{w}{{3,6,lcomplex(6,6)}}
\vectorNew{x}{{1.12345678,6,lcomplex(6,6)}}
\vectorNew{y}{{1,2,3}}
\begin{longtable}{lp{6.5cm}}
\toprule
Commands & Output Produced\\
\toprule
\begin{lstlisting}
\(v=\left(\vectorPrint{v}\right)\)
\(w=\left(\vectorPrint{w}\right)\)
\end{lstlisting} &
\(v=\left(\vectorPrint{v}\right)\) \newline
\(w=\left(\vectorPrint{w}\right)\)
\\
\midrule
\begin{lstlisting}
\(x=\left(\vectorPrint
[truncate=3]{x}\right)\)
\end{lstlisting} &
\(x=\left(\vectorPrint
[truncate=3]{x}\right)\)
\\
\midrule
\begin{lstlisting}
third coordinate of vector
\(v = \vectorGetCoordinate{v}{3}\)
\end{lstlisting} &
third coordinate of vector
\(v = \vectorGetCoordinate{v}{3}\)
\\
\midrule
\begin{lstlisting}
\(\vectorCopy{z}{w}\)
\(z = \left(\vectorPrint{z}\right)\)
\end{lstlisting} &
\(\vectorCopy{z}{w}\)
\(z = \left(\vectorPrint{z}\right)\)
\\
\midrule
\begin{lstlisting}
\vectorEql{z}{w}
\end{lstlisting} &
\vectorEql{z}{w}
\\
\midrule
\begin{lstlisting}
new third coordinate of vector
\(z = \vectorSetCoordinate{z}{3}{9.3}\)
\(z=\left(\vectorPrint{z}\right)\)
\end{lstlisting} &
new third coordinate of vector
\(z = \vectorSetCoordinate{z}{3}{9.3}\) \newline
\(z=\left(\vectorPrint{z}\right)\)
\\
\midrule
\begin{lstlisting}
\vectorAdd{v1}{v}{w}
\(v1 = v+w =\left(\vectorPrint{v1}\right)\)
\end{lstlisting} &
\vectorAdd{v1}{v}{w}
\(v1 = v+w =\left(\vectorPrint{v1}\right)\)
\\
\midrule
\begin{lstlisting}
\vectorSub{v2}{v}{w}
\(v2 = v-w =\left(\vectorPrint{v2}\right)\)
\end{lstlisting} &
\vectorSub{v2}{v}{w}
\(v2 = v-w =\left(\vectorPrint{v2}\right)\)
\\
\midrule
\begin{lstlisting}
\vectorMulNum{v3}{v}{complex('3+i')}
\(v3 = 3v =\left(\vectorPrint{v3}\right)\)
\end{lstlisting} &
\vectorMulNum{v3}{v}{complex('3+i')}
\(v3 = 3v =\left(\vectorPrint{v3}\right)\)
\\
\midrule
\begin{lstlisting}
\(v \cdot w =\vectorDot{v}{w}\)
\end{lstlisting} &
\(v \cdot w =\vectorDot{v}{w}\)
\\
\midrule
\begin{lstlisting}
\vectorCross{v4}{v}{w}
\(v \times w =\left(\vectorPrint{v4}\right)\)
\end{lstlisting} &
\vectorCross{v4}{v}{w}
\(v \times w =\left(\vectorPrint{v4}\right)\)
\\
\midrule
\begin{lstlisting}
Sum norm of a vector \(v = \vectorSumNorm{v}\)
\end{lstlisting} &
Sum norm of a vector \(v = \vectorSumNorm{v}\)
\\
\midrule
\begin{lstlisting}
Euclidean norm of a vector
\(v = \vectorEuclidNorm{v}\)
\end{lstlisting} &
Euclidean norm of a vector
\(v = \vectorEuclidNorm{v}\)
\\
\midrule
\begin{lstlisting}
p norm of a vector \(v = \vectorpNorm{v}{3}\)
\end{lstlisting} &
p norm of a vector \(v = \vectorpNorm{v}{3}\)
\\
\midrule
\begin{lstlisting}
Sup norm of a vector \(v = \vectorSupNorm{v}\)
\end{lstlisting} &
Sup norm of a vector \(v = 4.2426406871193\)
\\
\midrule
\begin{lstlisting}
\vectorCreateRandom{v5}{3}{9}{90}
\(v5 =\left(\vectorPrint{v5}\right)\)
\end{lstlisting} &
\vectorCreateRandom{v5}{3}{9}{90}
\(v5 =\left(\vectorPrint{v5}\right)\)
\\
\midrule
\begin{lstlisting}
\vectorOp{v6}{v+w-2*v}
\(v6 =\left(\vectorPrint{v6}\right)\)
\end{lstlisting} &
\vectorOp{v6}{v+w-2*v}
\(v6 =\left(\vectorPrint{v6}\right)\)
\\
\midrule
\begin{lstlisting}
angle between vector \(v\) and \(w\) is
\( \vectorGetAngle{v}{w}\).
\end{lstlisting} &
angle between vector \(v\) and \(w\) is
\( \vectorGetAngle{v}{w}\).
\\
\midrule
\begin{lstlisting}
\vectorParse{y}
\end{lstlisting} &
\vectorParse{y}
\\
\bottomrule \\
\caption{Illustration of commands for operations on vectors}
\label{tbl:illluavector}
\end{longtable}
The package has commands for performing Gram Schmidt Orthogonalisation process. It can also produce the computations in a step-by step manner.
\begin{framed}
\begin{lstlisting}[label={code:luavecgs}, caption={Gram Schmidt Orthogonalisation process in the lualinalgpackage}]
\vectorNew{v1}{{1,2,3}}
\vectorNew{v2}{{4,5,6}}
\vectorNew{v3}{{7,8,90}}
\[v1=\left(\vectorPrint{v1}\right)\]
\[v2=\left(\vectorPrint{v2}\right)\]
\[v3=\left(\vectorPrint{v3}\right)\]
Gram Schmidt on \(v1,v2,v3\): \vectorGramSchmidt[brckt=round,truncate=3]{{'v1','v2','v3'}}
\vectorGramSchmidtSteps[brckt=round,truncate=3]{{'v1','v2','v3'}}
\end{lstlisting}
\end{framed}
Listing \ref{code:luavecgs} outputs the following.
\begin{framed}
\vectorNew{v1}{{1,2,3}}
\vectorNew{v2}{{4,5,6}}
\vectorNew{v3}{{7,8,90}}
\[v1=\left(\vectorPrint{v1}\right)\]
\[v2=\left(\vectorPrint{v2}\right)\]
\[v3=\left(\vectorPrint{v3}\right)\]
Gram Schmidt on \(v1,v2,v3\): \vectorGramSchmidt[brckt=round,truncate=3]{{'v1','v2','v3'}}
\vectorGramSchmidtSteps[brckt=round,truncate=3]{{'v1','v2','v3'}}
\end{framed}
In addition to \verb|\mathRound|, the command \verb|complexRound| is also available. It has the following syntax.
\begin{verbatim}
\complexRound{complex number}{number of decimal places}
\end{verbatim}
This command has two compulsory arguments. The complex number and number of decimal places to which number should be rounded off. For example,
\verb| \complexRound{lcomplex(3.3333666, 6.777666)}{3}| outputs to \(\complexRound{lcomplex(3.3333666, 6.777666)}{3}\). This command can be nested with other commands in the package.
\subsection{Plotting vectors}
The \verb|lualinalg| package can be used with other packages that have facility to plot vectors defined over the field of real numbers in 2 or 3 dimensions. Listing \ref{code:luavecplot} illustrates plotting of vectors in 2-D plane by using \verb|lualinalg| and \verb|tikz| package.
\begin{lstlisting}[label={code:luavecplot}, caption={Plotting vectors in 2-dimensions with the lualinalg and tikz packages}]
\tdplotsetmaincoords{0}{0}
\begin{tikzpicture}[scale=1,
tdplot_main_coords,
axis/.style={->,blue,thick},
vector/.style={-stealth,red,very thick},
vector guide/.style={dashed,red,thick}]
\vectorNew{o}{{0,0}}
\vectorNew{e1}{{4,0}}
\vectorNew{e2}{{0,4}}
\vectorNew{f}{{2,1}}
\vectorNew{g}{{1,2}}
% Axes
\draw [axis] \vectorParse{o}-- \vectorParse{e1} node [below left] {$x$};
\draw [axis] \vectorParse{o}-- \vectorParse{e2} node [right] {$y$};
% Plotting Vectors
\draw [vector] \vectorParse{o} --\vectorParse{f};
\draw [vector] \vectorParse{o} --\vectorParse{g};
\vectorOp{h}{f+g}
\draw [vector] \vectorParse{o} --\vectorParse{h};
\draw [vector,dashed,black] \vectorParse{f} --\vectorParse{h};
\draw [vector,dashed,black] \vectorParse{g} --\vectorParse{h};
% Labels
\node [below right] at \vectorParse{f} {$f$};
\node [above left] at \vectorParse{g} {$g$};
\node [above left] at \vectorParse{h} {$f+g$};
\draw[vector guide, black] \vectorParse{h} -- (\vectorGetCoordinate{h}{1},0) node [below] {$x=\vectorGetCoordinate{h}{1}$};
\draw[vector guide, black] \vectorParse{h} -- (0,\vectorGetCoordinate{h}{2}) node [left] {$y=\vectorGetCoordinate{h}{2}$};
\end{tikzpicture}
\end{lstlisting}
Listing \ref{code:luavecplot} produces figure \ref{fig:2dvecplot}.
\begin{figure}
\centering
\tdplotsetmaincoords{0}{0}
\begin{tikzpicture}[scale=1,
tdplot_main_coords,
axis/.style={->,blue,thick},
vector/.style={-stealth,red,very thick},
vector guide/.style={dashed,red,thick}]
\vectorNew{o}{{0,0}}
\vectorNew{e1}{{4,0}}
\vectorNew{e2}{{0,4}}
\vectorNew{f}{{2,1}}
\vectorNew{g}{{1,2}}
% Axes
\draw [axis] \vectorParse{o}-- \vectorParse{e1} node [below left] {$x$};
\draw [axis] \vectorParse{o}-- \vectorParse{e2} node [right] {$y$};
% Plotting Vectors
\draw [vector] \vectorParse{o} --\vectorParse{f};
\draw [vector] \vectorParse{o} --\vectorParse{g};
\vectorOp{h}{f+g}
\draw [vector] \vectorParse{o} --\vectorParse{h};
\draw [vector,dashed,black] \vectorParse{f} --\vectorParse{h};
\draw [vector,dashed,black] \vectorParse{g} --\vectorParse{h};
% Labels
\node [below right] at \vectorParse{f} {$f$};
\node [above left] at \vectorParse{g} {$g$};
\node [above left] at \vectorParse{h} {$f+g$};
\draw[vector guide, black] \vectorParse{h} -- (\vectorGetCoordinate{h}{1},0) node [below] {$x=\vectorGetCoordinate{h}{1}$};
\draw[vector guide, black] \vectorParse{h} -- (0,\vectorGetCoordinate{h}{2}) node [left] {$y=\vectorGetCoordinate{h}{2}$};
\end{tikzpicture}
\caption{Plotting 2-D Vectors with lualinalg and tikz packages}
\label{fig:2dvecplot}
\end{figure}
Listing \ref{code:luavecplot2} illustrates plotting of vectors in 3-D plane by using \verb|lualinalg| and \verb|tikz| package.
\begin{lstlisting}[label={code:luavecplot2}, caption={Plotting vectors in 3-dimensions with the lualinalg and tikz packages}]
\documentclass{article}
\usepackage{tikz,tikz-3dplot,lualinalg}
\begin{document}
\tdplotsetmaincoords{60}{120}
\begin{tikzpicture}[scale=1,
tdplot_main_coords,
axis/.style={->,blue,thick},
vector/.style={-stealth,red,very thick},
vector guide/.style={dashed,red,thick}]
\vectorNew{o}{{0,0,0}}
\vectorNew{e1}{{3,0,0}}
\vectorNew{e2}{{0,5,0}}
\vectorNew{e3}{{0,0,4}}
\vectorNew{f}{{2,2,0}}
\vectorNew{g}{{-1,2,2}}
% Axes
\draw [axis] \vectorParse{o}-- \vectorParse{e1} node [below left] {$x$};
\draw [axis] \vectorParse{o}-- \vectorParse{e2} node [right] {$y$};
\draw [axis] \vectorParse{o}-- \vectorParse{e3} node [above] {$z$};
% Plotting Vectors
\draw [vector] \vectorParse{o} --\vectorParse{f};
\draw [vector] \vectorParse{o} --\vectorParse{g};
\vectorOp{h}{f+g}
\draw [vector] \vectorParse{o} --\vectorParse{h};
% Labels
\node [below right] at \vectorParse{f} {$f$};
\node [above left] at \vectorParse{g} {$g$};
\node [right] at \vectorParse{h} {$f+g$};
\draw[vector guide, black] \vectorParse{h} -- (\vectorGetCoordinate{h}{1},0,0) node [left] {$x=\vectorGetCoordinate{h}{1}$};
\draw[vector guide, black] \vectorParse{h} -- (0,\vectorGetCoordinate{h}{2},0) node [below] {$y=\vectorGetCoordinate{h}{2}$};
\draw[vector guide, black] \vectorParse{h} -- (0,0,\vectorGetCoordinate{h}{3}) node [left] {$z=\vectorGetCoordinate{h}{3}$};
\end{tikzpicture}
\end{document}
\end{lstlisting}
Listing \ref{code:luavecplot2} produces figure \ref{fig:3dvecplot}.
\begin{figure}
\centering
\tdplotsetmaincoords{60}{120}
\begin{tikzpicture}[scale=1,
tdplot_main_coords,
axis/.style={->,blue,thick},
vector/.style={-stealth,red,very thick},
vector guide/.style={dashed,red,thick}]
\vectorNew{o}{{0,0,0}}
\vectorNew{e1}{{3,0,0}}
\vectorNew{e2}{{0,5,0}}
\vectorNew{e3}{{0,0,4}}
\vectorNew{f}{{2,2,0}}
\vectorNew{g}{{-1,2,2}}
% Axes
\draw [axis] \vectorParse{o}-- \vectorParse{e1} node [below left] {$x$};
\draw [axis] \vectorParse{o}-- \vectorParse{e2} node [right] {$y$};
\draw [axis] \vectorParse{o}-- \vectorParse{e3} node [above] {$z$};
% Plotting Vectors
\draw [vector] \vectorParse{o} --\vectorParse{f};
\draw [vector] \vectorParse{o} --\vectorParse{g};
\vectorOp{h}{f+g}
\draw [vector] \vectorParse{o} --\vectorParse{h};
% Labels
\node [below right] at \vectorParse{f} {$f$};
\node [above left] at \vectorParse{g} {$g$};
\node [right] at \vectorParse{h} {$f+g$};
\draw[vector guide, black] \vectorParse{h} -- (\vectorGetCoordinate{h}{1},0,0) node [left] {$x=\vectorGetCoordinate{h}{1}$};
\draw[vector guide, black] \vectorParse{h} -- (0,\vectorGetCoordinate{h}{2},0) node [below] {$y=\vectorGetCoordinate{h}{2}$};
\draw[vector guide, black] \vectorParse{h} -- (0,0,\vectorGetCoordinate{h}{3}) node [left] {$z=\vectorGetCoordinate{h}{3}$};
\end{tikzpicture}
\caption{Plotting 3-D Vectors with lualinalg and tikz packages}
\label{fig:3dvecplot}
\end{figure}
\section{Defining matrices and operations on matrices}
Matrices are defined with the \verb|\matrixNew| command.
\begin{lstlisting}
\matrixNew{matrix name}{row entries}
\end{lstlisting}
This command has two compulsory arguments: \verb|matrix name| and \verb|row entries|. Each row of the matrix is enclosed in curly brackets. A comma separates numbers in rows. Rows are also separated by a comma. The whole matrix is then enclosed in curly brackets. The following are a few valid ways of defining matrices.
\begin{lstlisting}
\def\n{{{1,2,3},{4,5,6},{7,8,lcomplex(9,3)}}}
\def\s{{{1,2,3},{4,5,6},{7,8,10}}}
\matrixNew{m}{\n}
\matrixNew{n}{\s}
% an alternative way
\matrixNew{m}{{{1,2,3},{4,5,6},{7,8,lcomplex(9,3)}}}
\matrixNew{n}{{{1,2,3},{4,5,6},{7,8,10}}}
\end{lstlisting}
The identity and zero matrices can be defined as well by using the \verb|\matrixNew| command. For example, the following commands
\begin{lstlisting}
\matrixNew{mtx}{3,'I'}
I = \(\matrixPrint{mtx}\)
\matrixNew{O}{3,4,'zero'}
O = \(\matrixPrint{O}\)
\end{lstlisting}
output to
\matrixNew{mtx}{3,'I'}
I = \(\matrixPrint{mtx}\)
\matrixNew{O}{3,4,'zero'}
O = \(\matrixPrint{O}\)
\subsection{Commands for operations on matrices}
Table \ref{tbl:luamtxcmd} lists all commands for operations on matrices in the \verb|lualinalg| package.
\begin{longtable}{m{7cm}m{7.5cm}}
\toprule
\multicolumn{1}{c}{\textcolor{blue}{Command Format}} & \multicolumn{1}{c}{\textcolor{blue}{Description}} \\
\toprule
\multicolumn{2}{c}{Printing Matrices}\\
\midrule
\begin{lstlisting}
\matrixPrint[type,truncate]{mtx}
\end{lstlisting} & Prints matrix. Accepts two \emph{optional} arguments: \verb|type| and \verb|truncate|. The \verb|type| may be one of the values \verb|pmatrix,bmatrix, vmatrix,Vmatrix|.
The default type is \verb|bmatrix|. The \verb|truncate| specifies the number of digits up to which matrix entries are to be truncated. The value of \verb|truncate| may be 0,1,2,\ldots.\\
\midrule
\multicolumn{2}{c}{Some parameters of defined matrices} \\
\midrule
\begin{lstlisting}
\matrixNumRows{matrix}
\end{lstlisting} &
Gives the number of rows in a matrix.\\
\midrule
\begin{lstlisting}
\matrixNumCols{matrix}
\end{lstlisting}&
Gives the number of columns in a matrix.\\
\midrule
\begin{lstlisting}
\matrixGetElement{matrix}{i}{j}
\end{lstlisting}
&
Gives an entry of matrix in the \(i\)th row and the \(j\)th column. \\
\midrule
\multicolumn{2}{c}{Algebraic operations on matrices} \\
\midrule
\begin{lstlisting}
\matrixAdd{matrix}{m1}{m2}
\end{lstlisting}&
Defines a new matrix as the addition of matrices m1 and m2. The second matrix may have more rows and\textbackslash or columns.\\
\midrule
\begin{lstlisting}
\matrixSub{matrix}{m1}{m2}
\end{lstlisting}&
Defines a new matrix as the subtraction of matrices m1 and m2. The second matrix may have more rows and\textbackslash or columns.\\
\midrule
\begin{lstlisting}
\matrixMulNum{matrix}{number}{m1}
\end{lstlisting}&
Defines a new matrix obtained by multiplying each entry of matrix m1 by s real or complex number. \\
\midrule
\begin{lstlisting}
\matrixMul{matrix}{m1}{m2}
\end{lstlisting}&
Defines a new matrix obtained by multiplying matrix m1 by matrix m2. The number of rows in matrix m2 must equal the number of columns in matrix m1.\\
\midrule
\begin{lstlisting}
\matrixPow{matrix}{m1}{power}
\end{lstlisting}&
Defines a new matrix obtained by taking the \(i\)th power of matrix m1 (multiplying matrix m1 \(i\) times with itself). \\
\midrule
\begin{lstlisting}
\matrixInvert{matrix}{matrix1}
\end{lstlisting}&
Defines a new matrix obtained by taking the inverse of matrix1. It throws an error if matrix is not invertible. \\
\midrule
\begin{lstlisting}
\matrixTrace{matrix}
\end{lstlisting}&
Gives the trace (sum of diagonal entries) of a square matrix. It throws an error if the matrix is not square. \\
\midrule
\begin{lstlisting}
\matrixConjugate{matrix}{m1}
\end{lstlisting}&
Defines a new matrix obtained by taking the complex conjugate of each entry of matrix m1. \\
\midrule
\begin{lstlisting}
\matrixConjugateT{matrix}{m1}
\end{lstlisting}&
Defines a new matrix obtained by taking the transpose of matrix m1 and then the complex conjugate of each matrix entry. \\
\midrule
\begin{lstlisting}
\matrixNormOne{matrix}
\end{lstlisting}&
Calculates the norm1 of a matrix. For matrix \(A\) of size \(m \times n\), it is given by
\[ \|A\|_{1}=\max _{1 \leqslant j \leqslant n} \sum_{i=1}^{m}\left|a_{i j}\right| \] \\
\midrule
\begin{lstlisting}
\matrixNormInfty{matrix}
\end{lstlisting}&
Calculates the infinity norm of a matrix. For matrix \(A\) of size \(m \times n\), it is given by
\[ \|A\|_{\infty}=\max _{1 \leqslant i \leqslant m} \sum_{j=1}^{n}\left|a_{i j}\right| \] \\
\midrule
\begin{lstlisting}
\matrixNormMax{matrix}
\end{lstlisting}&
Calculates the max norm of a matrix. For matrix \(A\) of size \(m \times n\), it is given by
\[ \|A\|_{\max }=\max _{i,j}\left|a_{i j}\right| \] \\
\midrule
\begin{lstlisting}
\matrixNormF{matrix}
\end{lstlisting}&
Calculates the Frobenius norm of a matrix. For matrix \(A\) of size \(m \times n\), it is given by
\[\|A\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}} \] \\
\midrule
\begin{lstlisting}
\matrixRank{matrix}
\end{lstlisting}&
Gives the rank of matrix \(m\). It also supports matrices of complex numbers. \\
\midrule
\begin{lstlisting}
\matrixDet{matrix}
\end{lstlisting}&
Gives the determinant of matrix \(m\). It also supports matrices of complex numbers. \\
\midrule
\begin{lstlisting}
\matrixTranspose{matrix}{m1}
\end{lstlisting}&
Defines a new matrix obtained by taking the transpose of matrix m1. \\
\midrule
\begin{lstlisting}
\matrixSetElement{matrix}{i}{j}{val}
\end{lstlisting}
&
Set entry of a matrix in the \(i\)th row and \(j\)th column as \verb|val|. \\
\midrule
\begin{lstlisting}
\matrixSubmatrix{sm}{m}{i}{j}{k}{l}
\end{lstlisting}&
Defines a new matrix sm obtained by taking a submatrix of matrix m. Here \(i,j\) denotes the start row and start column, and \(k,l\) denotes the end row and end column for obtaining the submatrix. \\
\midrule
\begin{lstlisting}
\matrixConcatH{matrix}{m1}{m2}
\end{lstlisting}&
Defines a new matrix obtained by augmenting matrix m1 with matrix m2 horizontally. \\
\midrule
\begin{lstlisting}
\matrixConcatV{matrix}{m1}{m2}
\end{lstlisting}&
Defines a new matrix obtained by augmenting matrix m1 with matrix m2 vertically. \\
\midrule
\begin{lstlisting}
\matrixOp{matrix}{expression}
\end{lstlisting}&
Defines a new matrix obtained by evaluating an expression. The expression supports all standard operations such as \(+,*, \) \^ \ . \\
\midrule
\begin{lstlisting}
\matrixCopy{matrix}{matrix1}
\end{lstlisting}&
Defines a new matrix obtained by copying values from matrix1. \\
\midrule
\begin{lstlisting}
\matrixEql{m1}{m2}
\end{lstlisting}&
Returns true if m1 = m2, otherwise returns false. \\
\midrule
\begin{lstlisting}
\matrixCreateRandom
{m}{i}{j}{k}{l}
\end{lstlisting}&
Creates a new matrix m with random numbers. Here \(i, j\) denotes the number of rows and columns, and \(k, l\) denotes the start and end integers between which random numbers are generated. \\
\midrule
\multicolumn{2}{c}{Elementary row operations on matrices} \\
\midrule
\begin{lstlisting}
\matrixSwapRows{mtx}{m1}{i}{j}
\end{lstlisting}&
Defines a new matrix mtx obtained by swapping the \(i\)th and \(j\)th rows of matrix m1. \\
\midrule
\begin{lstlisting}
\matrixMulRow{matrix}{m}{i}{no}
\end{lstlisting}&
Defines a new matrix obtained by multiplying the \(i\)th row of matrix1 by a real or complex number. \\
\midrule
\begin{lstlisting}
\matrixMulAddRow{mtx}{m}{i}{no}{j}
\end{lstlisting}&
Defines a new matrix mtx obtained by multiplying the \(i\)th row of matrix1 by a real or complex number and adding it to the \(j\)th row. \\
\midrule
\multicolumn{2}{c}{Elementary column operations on matrices} \\
\midrule
\begin{lstlisting}
\matrixSwapCols{mtx}{m}{i}{j}
\end{lstlisting}&
Defines a new matrix mtx obtained by swapping the \(i\)th and \(j\)th columns of matrix m. \\
\midrule
\begin{lstlisting}
\matrixMulCol{matrix}{m}{i}{no}
\end{lstlisting}&
Defines a new matrix obtained by multiplying the \(i\)th column of matrix1 by a real or complex number. \\
\midrule
\begin{lstlisting}
\matrixMulAddCol{mtx}{m}{i}{no}{j}
\end{lstlisting}&
Defines a new matrix mtx obtained by multiplying the \(i\)th column of matrix1 by a real or complex number and adding it to the \(j\)th column. \\
\midrule
\multicolumn{2}{c}{Reduced row echelon form of matrix} \\
\midrule
\begin{lstlisting}
\matrixRREF{matrix}{matrix1}
\end{lstlisting}&
Defines a new matrix obtained by taking the reduced row echelon form of matrix1. It supports matrices of complex numbers as well. \\
\midrule
\begin{lstlisting}
\matrixRREFSteps[type,truncate]
{matrix}
\end{lstlisting}&
Obtains reduced row echelon form of matrix in a step-by-step manner. The command has two optional parameters \verb|type| and \verb|truncate|. It supports matrices with complex numbers as well. \verb|type| may be one of the values \verb|pmatrix,bmatrix, vmatrix,Vmatrix|.
The default type is \verb|bmatrix|. \verb|truncate| specifies number of digits up to which matrix entries are to be truncated. \verb|truncate| may be 0,1,2,\ldots. \\
\midrule
\multicolumn{2}{c}{Gauss-Jordan Elimination} \\
\midrule
\begin{lstlisting}
\matrixGaussJordan{matrix}
{m1}{m2}
\end{lstlisting}&
Defines new matrix obtained by performing Gauss-Jordan elimination on augmented matrix \(m1|m2\). \\
\midrule
\begin{lstlisting}
\matrixGaussJordanSteps[type,truncate]
{matrix}{m1}{m2}
\end{lstlisting}&
Defines new matrix obtained by performing Gauss-Jordan elimination on augmented matrix \(m1|m2\) in a step-by-step manner. The command has two optional parameters \verb|type| and \verb|truncate|. \verb|type| may be one of the values \verb|pmatrix, bmatrix, vmatrix,| \verb |Vmatrix|. The default type is \verb|bmatrix|. \verb|truncate| specifies number of digits up to which matrix entries are to be truncated. \verb|truncate| may be 0,1,2,\ldots. \\
\bottomrule \\
\caption{Commands for operations on matrices}
\label{tbl:luamtxcmd}
\end{longtable}
\subsection{Illustrations of matrix operations}
The following commands define matrices \(m,n,\) and \(r\).
\begin{lstlisting}
\def\r{{{1,2,3},{4,5,6},{7,8,lcomplex(9,3)}}}
\def\s{{{1,2,3},{4,5,6},{7,8,10}}}
\def\t{{{1,2,3},{4,5,6},{7,8,9}}}
\def\u{{{1},{2},{3}}}
\def\z{{{lfrac(1,2),lcomplex(2,3),3},{4,5,6},{7,8,9}}}
\matrixNew{m}{\r}
\matrixNew{n}{\s}
\matrixNew{p}{\t}
\matrixNew{q}{\u}
\matrixNew{r}{\z}
\end{lstlisting}
\def\r{{{1,2,3},{4,5,6},{7,8,lcomplex(9,3)}}}
\def\s{{{1,2,3},{4,5,6},{7,8,10}}}
\def\t{{{1,2,3},{4,5,6},{7,8,9}}}
\def\u{{{1},{2},{3}}}
\def\z{{{lfrac(1,2),lcomplex(2,3),3},{4,5,6},{7,8,9}}}
\matrixNew{m}{\r}
\matrixNew{n}{\s}
\matrixNew{p}{\t}
\matrixNew{q}{\u}
\matrixNew{r}{\z}
Table \ref{tbl:illluamatrix} illustrates various operations on matrices \(m,n,p,\) and \(q\).
\begin{center}
\begin{longtable}{lc}
\toprule
Commands & Output Produced\\
\toprule
\multicolumn{2}{c}{Printing matrices}\\
\midrule
\begin{lstlisting}
\(m=\matrixPrint{m}\)
\end{lstlisting} &
\(m=\matrixPrint{m}\)
\\
\midrule
\begin{lstlisting}
\(m=\matrixPrint[type=pmatrix]{m}\)
\end{lstlisting} &
\(m=\matrixPrint[type=pmatrix]{m}\)
\\
\midrule
\multicolumn{2}{c}{Some parameters of defined matrices}\\
\midrule
\begin{lstlisting}
No. or rows in matrix \(m
= \matrixNumRows{m}\)
\end{lstlisting} &
No. or rows in matrix \(m
= \matrixNumRows{m}\)\\
\midrule
\begin{lstlisting}
No. or columns in matrix \(m
= \matrixNumCols{m}\)
\end{lstlisting} &
No. or columns in matrix \(m
= \matrixNumCols{m}\)\\
\midrule
\begin{lstlisting}
Element of matrix \(m\) at \((3,3) =
\matrixGetElement{m}{3}{3}\)
\end{lstlisting} &
Element of matrix \(m\) at \((3,3) =
\matrixGetElement{m}{3}{3}\)\\
\midrule
\multicolumn{2}{c}{Algebraic operations on matrices}\\
\midrule
\begin{lstlisting}
\matrixAdd{m1}{m}{p}
\(m1 = \matrixPrint{m1}\)
\end{lstlisting} &
\matrixAdd{m1}{m}{p}
\matrixAdd{m1}{m}{p}
\(m1 = \matrixPrint{m1}\)\\
\midrule
\begin{lstlisting}
\matrixSub{m2}{m}{p}
\(m2 = \matrixPrint{m2}\)
\end{lstlisting} &
\matrixSub{m2}{m}{p}
\(m2 = \matrixPrint{m2}\)\\
\midrule
\begin{lstlisting}
\matrixMulNum{m3}{3}{m}
\(m3 = \matrixPrint{m3}\)
\end{lstlisting} &
\matrixMulNum{m3}{3}{m}
\(m3 = \matrixPrint{m3}\)\\
\midrule
\begin{lstlisting}
\matrixMul{m4}{m}{p}
\(m4 = \matrixPrint{m4}\)
\end{lstlisting} &
\matrixMul{m4}{m}{p}
\(m4 = \matrixPrint{m4}\)\\
\midrule
\begin{lstlisting}
\matrixPow{m5}{m}{2}
\(m5 = \matrixPrint{m5}\)
\end{lstlisting} &
\matrixPow{m5}{m}{2}
\(m5 = \matrixPrint{m5}\)\\
\midrule
\begin{lstlisting}
\matrixInvert{m6}{m}
\(m6 = \matrixPrint[truncate=2]{m6}\)
\end{lstlisting} &
\matrixInvert{m6}{m}
\(m6 = \matrixPrint[truncate=2]{m6}\)\\
\midrule
\begin{lstlisting}
Rank of matrix \(m =\matrixRank{m}\)
\end{lstlisting} &
Rank of matrix \(m =\matrixRank{m}\)\\
\midrule
\begin{lstlisting}
Determinant of matrix \(m =\matrixDet{m}\)
\end{lstlisting} &
Determinant of matrix \(m =\matrixDet{m}\)\\
\midrule
\begin{lstlisting}
\matrixTranspose{m7}{m}
\(m7 = \matrixPrint{m7}\)
\end{lstlisting} &
\matrixTranspose{m7}{m}
\(m7 = \matrixPrint{m7}\)\\
\midrule
\begin{lstlisting}
\matrixSetElement{n}{3}{3}{300}
\(n= \matrixPrint{n}\)
\end{lstlisting} &
\matrixSetElement{n}{3}{3}{300}
\(n= \matrixPrint{n}\)\\
\midrule
\begin{lstlisting}
\matrixSubmatrix{m8}{m}{1}{2}{2}{3}
\(m8 = \matrixPrint{m8}\)
\end{lstlisting} &
\matrixSubmatrix{m8}{m}{1}{2}{2}{3}
\(m8 = \matrixPrint{m8}\)\\
\midrule
\begin{lstlisting}
\matrixConcatH{m9}{m}{q}
\(m9= \matrixPrint{m9}\)
\end{lstlisting} &
\matrixConcatH{m9}{m}{q}
\(m9= \matrixPrint{m9}\)\\
\midrule
\begin{lstlisting}
\matrixConcatV{m10}{m}{n}
\(m10= \matrixPrint{m10}\)
\end{lstlisting} &
\matrixConcatV{m10}{m}{n}
\(m10= \matrixPrint{m10}\)\\
\midrule
\begin{lstlisting}
\matrixOp{m11}{m*m+2*m}
\(\matrixPrint[truncate=4]{m11}\)
\end{lstlisting} &
\matrixOp{m11}{m*m+2*m}
\(\matrixPrint[truncate=4]{m11}\)\\
\midrule
\begin{lstlisting}
\matrixCopy{m12}{m}
\(m12 = \matrixPrint{m12}\)
\end{lstlisting} &
\matrixCopy{m12}{m}
\(m12 = \matrixPrint{m12}\)\\
\midrule
\begin{lstlisting}
\matrixEql{m12}{m}
\end{lstlisting} &
\matrixEql{m12}{m}\\
\midrule
\begin{lstlisting}
trace of matrix \( m = \matrixTrace{m}\)
\end{lstlisting} &
trace of matrix \( m = \matrixTrace{m}\) \\
\midrule
\begin{lstlisting}
\matrixConjugate{mc}{m}
\(mc = \matrixPrint{mc}\)
\end{lstlisting} &
\matrixConjugate{mc}{m}
\(mc = \matrixPrint{mc}\)\\
\midrule
\begin{lstlisting}
\matrixConjugateT{mct}{m}
\(mct = \matrixPrint{mct}\)
\end{lstlisting} &
\matrixConjugateT{mct}{m}
\(mct = \matrixPrint{mct}\)\\
\midrule
\begin{lstlisting}
\(\matrixNormOne{m}\)
\end{lstlisting} &
\(\matrixNormOne{m}\) \\
\midrule
\begin{lstlisting}
\(\matrixNormInfty{m}\)
\end{lstlisting} &
\(\matrixNormInfty{m}\) \\
\midrule
\begin{lstlisting}
\(\matrixNormMax{m}\)
\end{lstlisting} &
\(\matrixNormMax{m}\) \\
\midrule
\begin{lstlisting}
\(\matrixNormF{m}\)
\end{lstlisting} &
\(\matrixNormF{m}\) \\
\midrule
\multicolumn{2}{c}{Elementary row operations on matrices}\\
\midrule
\begin{lstlisting}
\matrixSwapRows{m13}{m}{2}{3}
\(m13 = \matrixPrint{m13}\)
\end{lstlisting} &
\matrixSwapRows{m13}{m}{2}{3}
\(m13 = \matrixPrint{m13}\)\\
\midrule
\begin{lstlisting}
\matrixMulRow{m14}{m}{3}{300}
\(m14 = \matrixPrint{m14}\)
\end{lstlisting} &
\matrixMulRow{m14}{m}{3}{300}
\(m14 = \matrixPrint{m14}\)\\
\midrule
\begin{lstlisting}
\matrixMulAddRow{m15}{m}{2}{10}{3}
\(m15 = \matrixPrint{m15}\)
\end{lstlisting} &
\matrixMulAddRow{m15}{m}{2}{10}{3}
\(m15 = \matrixPrint{m15}\)\\
\midrule
\multicolumn{2}{c}{Elementary column operations on matrices}\\
\midrule
\begin{lstlisting}
\matrixSwapCols{m16}{m}{2}{3}
\(m16 = \matrixPrint{m16}\)
\end{lstlisting} &
\matrixSwapCols{m16}{m}{2}{3}
\(m16 = \matrixPrint{m16}\)\\
\midrule
\begin{lstlisting}
\matrixMulCol{m17}{m}{3}{300}
\(m17 = \matrixPrint{m17}\)
\end{lstlisting} &
\matrixMulCol{m17}{m}{3}{300}
\(m17 = \matrixPrint{m17}\)\\
\midrule
\begin{lstlisting}
\matrixMulAddCol{m18}{m}{2}{10}{3}
\(m18 = \matrixPrint{m18}\)
\end{lstlisting} &
\matrixMulAddCol{m18}{m}{2}{10}{3}
\(m18 = \matrixPrint{m18}\)\\
\midrule
\multicolumn{2}{c}{Reduced row echelon form of a matrix}\\
\midrule
\begin{lstlisting}
\matrixRREF{m19}{p}
\(m19 = \matrixPrint{m19}\)
\end{lstlisting} &
\matrixRREF{m19}{p}
\(m19 = \matrixPrint{m19}\)\\
\midrule
\begin{lstlisting}
\matrixRREF{m20}{m}
\(m20 = \matrixPrint{m20}\)
\end{lstlisting} &
\matrixRREF{m20}{m}
\(m20 = \matrixPrint{m20}\)\\
\bottomrule \\
\caption{Illustration of commands for operations on matrices}
\label{tbl:illluamatrix}
\end{longtable}
\end{center}
The package has command \verb|\matrixRREFSteps| to produce step-by-step computation of reduced row echelon form of a matrix. The command \verb|\matrixRREFSteps{r}| outputs the following.
\renewcommand*{\arraystretch}{1.5}
\begin{framed}
\matrixRREFSteps{r}
\end{framed}
\renewcommand*{\arraystretch}{1.0}
The command \verb|\matrixGaussJordan| is used to obtain Gauss-Jordan elimination of an augmented matrix.
\begin{lstlisting}
\def\a{{{lfrac(1,2),1,1},{2,-1,-1},{1,-1,1}}}
\def\b{{{3},{3},{9}}}
\matrixNew{S}{\a}
\matrixNew{T}{\b}
\matrixConcatH{W}{S}{T}
$$W = \matrixPrint{W}$$
\matrixGaussJordan{U}{S}{T}
$$U = \matrixPrint{U}$$
\end{lstlisting}
The above code produces the following output.
\def\a{{{lfrac(1,2),1,1},{2,-1,-1},{1,-1,1}}}
\def\b{{{3},{3},{9}}}
\matrixNew{S}{\a}
\matrixNew{T}{\b}
\matrixConcatH{W}{S}{T}
\renewcommand{\arraystretch}{1.5}
\begin{framed}
$$W = \matrixPrint{W}$$
\matrixGaussJordan{U}{S}{T}
$$U = \matrixPrint{U}$$
\end{framed}
The package also has a command \verb|\matrixGaussJordanSteps| to produce step-by-step computation of Gauss-Jordan elimination of an augmented matrix. The command \verb|\matrixGaussJordanSteps{S}{T}| produces the following output.
\begin{framed}
\matrixGaussJordanSteps{S}{T}
\end{framed}
\renewcommand{\arraystretch}{1.0}
\section{Customized usage}\label{customuse}
The commands available in the package can be used for performing further operations on vectors and matrices. The command \verb|\vectorAdd| can be extended to add more than two vectors. The latex document (listing \ref{code:custluavec}) provides some instances of such usage.
\begin{lstlisting}[label={code:custluavec}, caption={Customized usage of the lualinalg package}]
\documentclass{article}
\usepackage{lualinalg}
\begin{document}
\begin{luacode*}
function sumcoordinates(v1)
local sum = 0
for i = 1,#v1 do
sum = sum + v1[i]
end
return sum
end
function vector.addmulti(...)
p=table.pack(...)
s=vector(p[1])
for i=2,#p do
s=vector.add(s,vector(p[i]))
end
return s
end
\end{luacode*}
\vectorNew{v}{{1,2,lcomplex(3,3)}}
The sum of coordinates of vector
\(v = \directlua{tex.sprint(tostring( sumcoordinates(vectors['v'])))}\).
\newcommand\vectorAddmulti[2]{%
\directlua{%
vectors['#1'] = vector.addmulti(#2)
}%
}
\vectorNew{w}{{3,6,lcomplex(6,6)}}
\vectorNew{x}{{9,12,lcomplex(12,12)}}
\vectorAddmulti{y}{vectors['v'],vectors['w'],vectors['x']}
The sum of vectors \(v,w \text{ and } x =\left( \vectorPrint{y} \right)\).
\end{document}
\end{lstlisting}
The latex document (listing \ref{code:custluavec}) outputs the following on compilation.
\begin{framed}
The sum of coordinates of vector \(v = 6 + 3\mathrm{i}\).
The sum of vectors \(v,w \text{ and } x = \left(13, 20, 21 + 21\mathrm{i} \right) \).
\end{framed}
The command \verb|\matrixAdd| can be extended to add more than two matrices. The latex document (listing \ref{code:custluamtx}) provides some instances of such usage.
\begin{lstlisting}[label={code:custluamtx}, caption={Customized usage of the lualinalg package}]
\documentclass{article}
\usepackage{lualinalg}
\begin{document}
\begin{luacode}
function squareDiagEntries(m1)
if #m1 ~= #m1[1] then error( "matrix not square") end
local sum = 0
for i = 1,#m1 do
for j = 1,#m1[1] do
if i == j then sum = sum + (m1[i][j])^2 end
end
end
return complex.round(sum)
end
function matrix.addmulti(...)
p=table.pack(...)
s=matrix(p[1])
for i=2,#p do
s=matrix.add(s,matrix(p[i]))
end
return s
end
\end{luacode}
\def\r{{{1,2,3},{4,5,6},{7,8,lcomplex(9,3)}}}
\matrixNew{m}{\r}
The sum of squares of diagonal entries of matrix
\(m = \directlua{tex.sprint(tostring(squareDiagEntries(matrices['m'])))}\).
\def\s{{{1,2,3},{4,5,lcomplex(6,6)}}}
\def\t{{{10,20,30},{40,50,lcomplex(60,60)}}}
\def\u{{{100,200,300},{400,500,lcomplex(600,600)}}}
\matrixNew{m1}{\s}
\matrixNew{m2}{\t}
\matrixNew{m3}{\u}
\newcommand\matrixAddmulti[2]{%
\directlua{%
matrices['#1'] = matrix.addmulti(#2)
}%
}
\matrixAddmulti{m4}{matrices['m1'],matrices['m2'],matrices['m3']}
The sum of matrices \(m1,m2 \text{ and } m3 = \matrixPrint{m4}\).
\end{document}
\end{lstlisting}
The latex document (listing \ref{code:custluamtx}) outputs the following on compilation.
\begin{framed}
The sum of squares of diagonal entries of matrix \(m = 98 + 54\mathrm{i}\).
The sum of matrices \(m1,m2 \text{ and } m3 =\begin{bmatrix} 111 & 222 & 333 \\ 444 & 555 & 666+666\mathrm{i} \end{bmatrix} \).
\end{framed}
\end{document}
|