1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
|
% $Id: __TPslifonts.tex,v 1.4 2002/11/14 20:46:00 hansfn Exp $
%
% TeXPower bundle - dynamic online presentations with LaTeX
% Copyright (C) 1999-2002 Stephan Lehmke
%
% This program is free software; you can redistribute it and/or
% modify it under the terms of the GNU General Public License
% as published by the Free Software Foundation; either version 2
% of the License, or (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
%-----------------------------------------------------------------------------------------------------------------
% File: __TPslifonts.tex
%
% Code for the slifonts example for the package texpower.sty.
%
% This file is input by others. Don't compile it separately.
%
%-----------------------------------------------------------------------------------------------------------------
% Author: Stephan Lehmke <Stephan.Lehmke@cs.uni-dortmund.de>
%
% v0.1 Nov 14, 2002: First version for the pre-alpha release of TeXPower.
%
% v0.2 Jan 07, 2003: Adapted to tpslifonts v0.4 (added support for cmbright).
%
% v0.4 May 28, 2003: Adapted to tpslifonts v0.6.
%
\newcommand{\textbfsl}[1]{\textbf{\textsl{#1}}}
\newcommand{\textbfit}[1]{\textbf{\textit{#1}}}
\newcommand{\textbfsc}[1]{\textbf{\textsc{#1}}}
\newcommand{\textcsl}[1]{\textc{\textsl{#1}}}
\newcommand{\textsbsl}[1]{\textsb{\textsl{#1}}}
\newcommand{\textsbc}[1]{{\fontseries{sbc}\selectfont#1}}
\newcommand{\textb}[1]{{\fontseries{b}\selectfont#1}}
\newcommand{\textsb}[1]{{\fontseries{sb}\selectfont#1}}
\newcommand{\textc}[1]{{\fontseries{c}\selectfont#1}}
\newcommand{\textui}[1]{{\fontshape{ui}\selectfont#1}}
\newcommand{\textff}[1]{{\fontfamily{cmfr}\selectfont#1}}
\newcommand{\textffi}[1]{{\fontfamily{cmfr}\textit{#1}}}
\newcommand{\textdh}[1]{{\fontfamily{cmdh}\selectfont#1}}
\newcommand{\textfib}[1]{{\fontfamily{cmfib}\selectfont#1}}
\newcommand{\textfibsl}[1]{{\fontfamily{cmfib}\selectfont\textsl{#1}}}
\makeatletter
\@namedef{TextFontNamelcmssOT1}{SliTeX Sans Serif (\code{lcmss})}
\@namedef{TextFontNameShortlcmssOT1}{\code{lcmss}}
\@namedef{TextItFontNamelcmssOT1}{SliTeX Sans-Serif Slanted (\code{lcmssi})}
\@namedef{TextFontslcmssOT1}%
{%
{SliTeX Sans Serif (\code{lcmss})}\textnormal,%
{SliTeX Sans-Serif Slanted (\code{lcmssi})}\textsl,%
{SliTeX Sans-Serif bold (\code{lcmssb})}\textbf%
}
\@namedef{TextFontNamelcmssT1}{European Computer Modern Sans Serif Quotation (\code{eclq})}
\@namedef{TextFontNameShortlcmssT1}{\code{eclq}}
\@namedef{TextItFontNamelcmssT1}{European Computer Modern Sans Serif Quotation Inclined (\code{ecli})}
\@namedef{TextFontslcmssT1}%
{%
{European Computer Modern Sans Serif Quotation (\code{eclq})}\textnormal,%
{European Computer Modern Sans Serif Quotation Inclined (\code{ecli})}\textsl,%
{European Computer Modern Sans Serif Quotation Bold (\code{eclb})}\textbf,%
{European Computer Modern Sans Serif Quotation Bold Oblique (\code{eclo})}\textbfsl%
}
\@namedef{TextFontNamecmrOT1}{Computer Modern Roman (\code{cmr})}
\expandafter\let\csname TextFontNamecmrmOT1\expandafter\endcsname\csname TextFontNamecmrOT1\endcsname
\@namedef{TextFontNameShortcmrOT1}{\code{cmr}}
\expandafter\let\csname TextFontNameShortcmrmOT1\expandafter\endcsname\csname TextFontNameShortcmrOT1\endcsname
\@namedef{TextItFontNamecmrOT1}{Computer Modern Text Italic (\code{cmti})}
\@namedef{TextFontscmrOT1}%
{%
{Computer Modern Roman (\code{cmr})}\textnormal,%
{Computer Modern Slanted Roman (\code{cmsl})}\textsl,%
{Computer Modern Text Italic (\code{cmti})}\textit,%
{Computer Modern Roman Caps and Small Caps (\code{cmcsc})}\textsc,%
{Computer Modern Unslanted Italic (\code{cmu})}\textui,%
{Computer Modern Bold Roman (\code{cmb})}\textb,%
{Computer Modern Bold Extended Roman (\code{cmbx})}\textbf,%
{Computer Modern Bold Extended Slanted Roman (\code{cmbxsl})}\textbfsl,%
{Computer Modern Bold Extended Text Italic (\code{cmbxti})}\textbfit,%
{Computer Modern Funny Roman (\code{cmff})}\textff,%
{Computer Modern Funny Italic (\code{cmfi})}\textffi,%
{Computer Modern Dunhill Roman (\code{cmdunh})}\textdh,%
{Computer Modern Roman Fibonacci Font (\code{cmfib})}\textfib%
}
\@namedef{TextFontNamecmrT1}{European Computer Modern Roman Medium (\code{ecrm})}
\expandafter\let\csname TextFontNamecmrmT1\expandafter\endcsname\csname TextFontNamecmrT1\endcsname
\@namedef{TextFontNameShortcmrT1}{\code{ecrm}}
\expandafter\let\csname TextFontNameShortcmrmT1\expandafter\endcsname\csname TextFontNameShortcmrT1\endcsname
\@namedef{TextItFontNamecmrT1}{European Computer Modern Text Italic (\code{ecti})}
\@namedef{TextFontscmrT1}%
{%
{European Computer Modern Roman Medium (\code{ecrm})}\textnormal,%
{European Computer Modern Roman Slanted (\code{ecsl})}\textsl,%
{European Computer Modern Text Italic (\code{ecti})}\textit,%
{European Computer Modern Caps and Small Caps (\code{eccc})}\textsc,%
{European Computer Modern Bold Extend Roman (\code{ecbx})}\textbf,%
{European Computer Modern Roman Bold (Non-Extended) (\code{ecrb})}\textb,%
{European Computer Modern Bold Extended Text Italic (\code{ecbi})}\textbfit,%
{European Computer Modern Bold Extended Slanted Roman (\code{ecbl})}\textbfsl,%
{European Computer Modern Bold Extended Caps and Small Caps (\code{ecxc})}\textbfsc,%
{European Computer Modern Unslanted Italic (\code{ecui})}\textui,%
% {European Computer Modern Funny Roman (\code{ecff})}\textff,% unable to make tfm ?!?
% {European Computer Modern Funny Italic (\code{ecfi})}\textffi,%
{European Computer Modern Dunhill Roman (\code{ecdh})}\textdh,%
{European Computer Modern Fibonacci Font (\code{ecfb})}\textfib,%
{European Computer Modern Fibonacci Slanted Font (\code{ecfs})}\textfibsl%
}
\@namedef{TextFontNamecmssOT1}{Computer Modern Sans Serif (\code{cmss})}
\@namedef{TextFontNameShortcmssOT1}{\code{cmss}}
\@namedef{TextItFontNamecmssOT1}{Computer Modern Slanted Sans Serif (\code{cmssi})}
\@namedef{TextFontscmssOT1}%
{%
{Computer Modern Sans Serif (\code{cmss})}\textnormal,%
{Computer Modern Slanted Sans Serif (\code{cmssi})}\textsl,%
{Computer Modern Sans Serif Demibold Condensed (\code{cmssdc})}\textsbc,%
{Computer Modern Sans Serif Bold Extended (\code{cmssbx})}\textbf%
}
\@namedef{TextFontNamecmssT1}{European Computer Modern Sans Serif (\code{ecss})}
\@namedef{TextFontNameShortcmssT1}{\code{ecss}}
\@namedef{TextItFontNamecmssT1}{European Computer Modern Sans Serif Inclined (\code{ecsi})}
\@namedef{TextFontscmssT1}%
{%
{European Computer Modern Sans Serif (\code{ecss})}\textnormal,%
{European Computer Modern Sans Serif Inclined (\code{ecsi})}\textsl,%
{European Computer Modern Sans Serif Bold Extended (\code{ecsx})}\textbf,%
{European Computer Modern Sans Serif Bold Extended Oblique (\code{ecso})}\textbfsl,%
{European Computer Modern Sans Serif Demi Condensed (\code{ecssdc})}\textsbc%
}
\@namedef{TextFontNamecmbrOT1}{Computer Modern Bright (\code{cmbr})}
\expandafter\let\csname TextFontNamecmbrmtOT1\expandafter\endcsname\csname TextFontNamecmbrOT1\endcsname
\@namedef{TextFontNameShortcmbrOT1}{\code{cmbr}}
\expandafter\let\csname TextFontNameShortcmbrmtOT1\expandafter\endcsname\csname TextFontNameShortcmbrOT1\endcsname
\@namedef{TextItFontNamecmbrOT1}{Computer Modern Bright Slanted (\code{cmbrsl})}
\@namedef{TextFontscmbrOT1}%
{%
{Computer Modern Bright (\code{cmbr})}\textnormal,%
{Computer Modern Bright Slanted (\code{cmbrsl})}\textsl,%
{Computer Modern Bright Bold Extended (\code{cmbrbx})}\textbf%
}
\@namedef{TextFontNamecmbrT1}{European Computer Modern Bright medium regular (\code{ebmr})}
\expandafter\let\csname TextFontNamecmbrmtT1\expandafter\endcsname\csname TextFontNamecmbrT1\endcsname
\@namedef{TextFontNameShortcmbrT1}{\code{ebmr}}
\expandafter\let\csname TextFontNameShortcmbrmtT1\expandafter\endcsname\csname TextFontNameShortcmbrT1\endcsname
\@namedef{TextItFontNamecmbrT1}{European Computer Modern Bright medium oblique (\code{ebmo})}
\@namedef{TextFontscmbrT1}%
{%
{European Computer Modern Bright medium regular (\code{ebmr})}\textnormal,%
{European Computer Modern Bright medium oblique (\code{ebmo})}\textsl,%
{European Computer Modern Bright semibold regular (\code{ebsr})}\textsb,%
{European Computer Modern Bright semibold oblique (\code{ebso})}\textsbsl%
}
\@namedef{TextFontNameccrOT1}{Concrete Roman (\code{ccr})}
\@namedef{TextFontNameShortccrOT1}{\code{ccr}}
\@namedef{TextItFontNameccrOT1}{Concrete Text Italic (\code{ccti})}
\@namedef{TextFontsccrOT1}%
{%
{Concrete Roman (\code{ccr})}\textnormal,%
{Concrete Slanted Roman (\code{ccsl})}\textsl,%
{Concrete Text Italic (\code{ccti})}\textit,%
{Concrete Roman Caps and Small Caps (\code{cccsc})}\textsc,%
{Concrete Slanted Condensed Roman (\code{ccslc})}\textcsl,%
{Computer Modern Sans Serif Bold Extended (\code{cmssbx}) as a replacement for `bold' ccr}\textbf%
}
\@namedef{TextFontNameccrT1}{European Concrete Roman (\code{eorm})}
\@namedef{TextFontNameShortccrT1}{\code{eorm}}
\@namedef{TextItFontNameccrT1}{European Computer Concrete Text Italic (\code{eoti})}
\@namedef{TextFontsccrT1}%
{%
{European Concrete Roman (\code{eorm})}\textnormal,%
{European Computer Concrete Slanted (\code{eosl})}\textsl,%
{European Computer Concrete Text Italic (\code{eoti})}\textit,%
{European Concrete Roman Caps and Small Caps (\code{eocc})}\textsc,%
{European Computer Modern Sans Serif Bold Extended (\code{ecsx}) as a replacement for `bold' ccr}\textbf,%
{European Computer Modern Sans Serif Bold Extended Oblique (\code{ecso}) as a replacement for `bold slanted' ccr}%
\textbfsl%
}
\@namedef{TTFontNamelcmssOT1}{Computer Modern Typewriter Text (\code{cmtt})}
\@namedef{TTItFontNamelcmssOT1}{Computer Modern Italic Typewriter Text (\code{cmitt})}
\@namedef{TTFontslcmssOT1}%
{%
{Computer Modern Typewriter Text (\code{cmtt})}\textnormal,%
{Computer Modern Italic Typewriter Text (\code{cmitt})}\textit,%
{Computer Modern Slanted Typewriter Text (\code{cmsltt})}\textsl,%
{Computer Modern Typewriter Caps and Small Caps (\code{cmtcsc})}\textsc%
}
\@namedef{TTFontNamelcmssT1}{European Computer Modern LaTeX Typewriter (\code{ecltt})}
\@namedef{TTItFontNamelcmssT1}{European Computer Modern Italic Typewriter Text (\code{ecit})}
\@namedef{TTFontslcmssT1}%
{%
{European Computer Modern LaTeX Typewriter (\code{ecltt})}\textnormal,%
{European Computer Modern Italic Typewriter Text (\code{ecit})}\textit,%
{European Computer Modern Slanted Typewriter Text (\code{ecst})}\textsl,%
{European Computer Modern Typewritr Caps and Small Caps (\code{ectc})}\textsc%
}
\@namedef{TTFontNamecmrOT1}{Computer Modern Typewriter Text (\code{cmtt})}
\@namedef{TTItFontNamecmrOT1}{Computer Modern Italic Typewriter Text (\code{cmitt})}
\@namedef{TTFontscmrOT1}%
{%
{Computer Modern Typewriter Text (\code{cmtt})}\textnormal,%
{Computer Modern Italic Typewriter Text (\code{cmitt})}\textit,%
{Computer Modern Slanted Typewriter Text (\code{cmsltt})}\textsl,%
{Computer Modern Typewriter Caps and Small Caps (\code{cmtcsc})}\textsc%
}
\@namedef{TTFontNamecmrT1}{European Computer Modern Typewriter (\code{ectt})}
\@namedef{TTItFontNamecmrT1}{European Computer Modern Italic Typewriter Text (\code{ecit})}
\@namedef{TTFontscmrT1}%
{%
{European Computer Modern Typewriter (\code{ectt})}\textnormal,%
{European Computer Modern Italic Typewriter Text (\code{ecit})}\textit,%
{European Computer Modern Slanted Typewriter Text (\code{ecst})}\textsl,%
{European Computer Modern Typewritr Caps and Small Caps (\code{ectc})}\textsc%
}
\expandafter\let\csname TTFontscmssOT1\expandafter\endcsname\csname TTFontscmrOT1\endcsname
\expandafter\let\csname TTFontscmssT1\expandafter\endcsname\csname TTFontscmrT1\endcsname
\expandafter\let\csname TTFontNamecmssOT1\expandafter\endcsname\csname TTFontNamecmrOT1\endcsname
\expandafter\let\csname TTFontNamecmssT1\expandafter\endcsname\csname TTFontNamecmrT1\endcsname
\expandafter\let\csname TTItFontNamecmssOT1\expandafter\endcsname\csname TTItFontNamecmrOT1\endcsname
\expandafter\let\csname TTItFontNamecmssT1\expandafter\endcsname\csname TTItFontNamecmrT1\endcsname
\@namedef{TTFontNamecmbrOT1}{CM Typewriter Light (\code{cmtl})}
\@namedef{TTItFontNamecmbrOT1}{CM Typewriter Light Slanted (\code{cmsltl})}
\@namedef{TTFontscmbrOT1}%
{%
{CM Typewriter Light (\code{cmtl})}\textnormal,%
{CM Typewriter Light Slanted (\code{cmsltl})}\textsl%
}
\@namedef{TTFontNamecmbrT1}{EC Typewriter Light (\code{ebtl})}
\@namedef{TTItFontNamecmbrT1}{EC Typewriter Light oblique (\code{ebto})}
\@namedef{TTFontscmbrT1}%
{%
{EC Typewriter Light (\code{ebtl})}\textnormal,%
{EC Typewriter Light oblique (\code{ebto})}\textsl%
}
\expandafter\let\csname TTFontsccrOT1\expandafter\endcsname\csname TTFontscmrOT1\endcsname
\expandafter\let\csname TTFontsccrT1\expandafter\endcsname\csname TTFontscmrT1\endcsname
\expandafter\let\csname TTFontNameccrOT1\expandafter\endcsname\csname TTFontNamecmrOT1\endcsname
\expandafter\let\csname TTFontNameccrT1\expandafter\endcsname\csname TTFontNamecmrT1\endcsname
\expandafter\let\csname TTItFontNameccrOT1\expandafter\endcsname\csname TTItFontNamecmrOT1\endcsname
\expandafter\let\csname TTItFontNameccrT1\expandafter\endcsname\csname TTItFontNamecmrT1\endcsname
\@namedef{MathFontNamecmm}{Computer Modern Math}
\@namedef{MathFontNameccm}{Concrete Math}
\@namedef{MathFontNameeuler}{Euler}
\@namedef{MathFontNamecmbrm}{Computer Modern Bright Math}
\@namedef{MathLetterFontNamecmm}{Computer Modern Math Italic (\code{cmmi})}
\@namedef{MathLetterFontNameccm}{Concrete Math Italic (\code{xccmi})}
\@namedef{MathLetterFontNameeuler}{Euler Roman Medium (\code{eurm})}
\@namedef{MathLetterFontNamecmbrm}{Computer Modern Bright Math Slanted (\code{cmbrmi})}
\@namedef{MathSymbolFontNamecmm}{Computer Modern Math Symbols (\code{cmsy})}
\@namedef{MathSymbolFontNameccm}{Concrete Math Symbols (\code{xccsy})}
\@namedef{MathSymbolFontNameeuler}{Euler Script Medium (\code{eusm})}
\@namedef{MathSymbolFontNamecmbrm}{Computer Modern Bright Math Symbols (\code{cmbrmi})}
\@namedef{MathExtensionFontNamecmm}{Computer Modern Math Extension (\code{cmex})}
\@namedef{MathExtensionFontNameccm}{Concrete Math Extension (\code{xccex})}
\@namedef{MathExtensionFontNameeuler}{Euler Extension (\code{euex})}
\expandafter\let\csname MathExtensionFontNamecmbrm\expandafter\endcsname\csname MathExtensionFontNamecmm\endcsname
\newcommand{\listdescriptions}[1]
{%
\expandafter\expandafter\expandafter\@listdescriptions\expandafter\expandafter\expandafter
{\csname#1\endcsname}%
}
\newcommand{\@listdescriptions}[1]{\@for\temp := #1 \do {\expandafter\mkdescription\temp}}
\newcommand{\mkdescription}[2]{}
\newcommand{\TextFontName}{\@nameuse{TextFontName\TPSFTextfont\encodingdefault}}
\newcommand{\TextFontNameShort}{\@nameuse{TextFontNameShort\TPSFTextfont\encodingdefault}}
\let\nameuse\@nameuse
\makeatother
%-----------------------------------------------------------------------------------------------------------------
%
\makeslidetitle{\TeX Power Example: Package \code{tpslifonts}}\label{Sec:tpslifonts}
This is the demonstration document for \code{tpslifonts}, \TeX Power's slide fonts configuration package.
Beamer and overhead presentations are often viewed under peculiar circumstances. Especially for presentations which are
projected directly `out of the computer', low power of the beamer, low resolution and an abundance of colors can lead to
severe readability problems.
It is therefore of utmost importance to optimize font selection as much as possible towards \emph{readability}.
The package \code{tpslifonts} offers a couple of `harmonising' combinations of text and math fonts from the (distant)
relatives of \concept{computer modern} fonts, with a couple of extras for optimising readability.
\newpage
The package offers the following features:
\begin{enumerate}
\item Text fonts from \concept{computer modern roman}, \concept{computer modern sans serif}, \concept{Sli\TeX{} computer
modern sans serif}, \concept{computer modern bright}, or \concept{concrete roman}.
\item Math fonts from \concept{computer modern math}, \concept{computer modern bright math}, or \concept{Euler fonts}.
\item Support of additional symbol fonts like \concept{AMS symbols} or \concept{doublestroke}.
\item All fonts configured for `smooth scaling' (like in the \code{type1cm} package).
\item Avoiding fonts not freely available in \concept{Type 1} format.
\item Careful \concept{design size} selection for optimum readability.
\end{enumerate}
\newpage
In the following, the fonts configured by this package are listed, augmented by font samples and some larger examples
which hopefully allow to review the configuration parameters.
Note that there are a couple of options and parameter settings in the preamble of \code{slifontsexample.tex} which allow
to try different configuration variants.
This document has been typeset using \encodingdefault{} font encoding.
\section{Text Fonts}
Package \code{tpslifonts} has configured the following \concept{text fonts}:
\renewcommand{\mkdescription}[2]
{%
\medskip\pagebreak[3]
\hrule
#1:\\ #2{The quick brown fox jumps over the lazy dog.}
}%
\listdescriptions{TextFonts\TPSFTextfont\encodingdefault}
\medskip
\hrule
\medskip
\section{Typewriter Fonts}
\ifthenelse{\isundefined{\TPSFttscale}}{}
{%
\ifthenelse{\equal{\TPSFTextfont}{lcmss}}
{For harmonising better with \ifthenelse{\equal{\encodingdefault}{OT1}}{\code{lcmss}}{\code{eclq}}, t}
{T}%
ypewriter fonts are scaled up by a factor of $\TPSFttscale$.
}%
Package \code{tpslifonts} has configured the following \concept{typewriter fonts}:
\renewcommand{\mkdescription}[2]
{%
\medskip\pagebreak[3]
\hrule
#1:\\ #2{\texttt{The quick brown fox jumps over the lazy dog.}}
}%
\listdescriptions{TTFonts\TPSFTextfont\encodingdefault}
\medskip
\hrule
\medskip
\section{Math Fonts}
\ifthenelse{\equal{\TPSFMathfont}{euler}}
{%
The main math fonts are derived from the \concept{\MathFontNameeuler} fonts. Operators%
\ifthenelse{\boolean{TPSFeulerdigits}}{}{ and digits} are taken from \TextFontName.
}%
{%
The main math fonts are derived from the \concept{\nameuse{MathFontName\TPSFMathfont}} fonts.
\ifthenelse{\boolean{TPSFtextops}}%
{Operators, digits, and upper case greek letters are taken from \TextFontName.}
{}%
}
\ifthenelse{\isundefined{\TPSFmathscale}}{}
{%
\ifthenelse{\equal{\TPSFTextfont}{lcmss}}
{For harmonising better with \ifthenelse{\equal{\encodingdefault}{OT1}}{\code{lcmss}}{\code{eclq}}, m}
{M}%
ath fonts are scaled up by a factor of $\TPSFmathscale$. %
\ifthenelse{\equal{\TPSFMathfont}{euler}} {Euler fonts are scaled up by a factor of $\TPSFeulerscale$. }
{}%
\ifthenelse{\equal{\TPSFMathfont}{cmbrm}}
{The cmbright math fonts are scaled up by a factor of $\TPSFcmbrscale$. }
{}%
}%
\medskip\pagebreak[3]
\hrule\nopagebreak
\ifthenelse{\equal{\TPSFMathfont}{euler}}
{%
Operators\ifthenelse{\boolean{TPSFeulerdigits}}{}{ and digits} are taken from \TextFontName:\\
$\min \max \sup \lim \ifthenelse{\boolean{TPSFeulerdigits}}{}{1 2 3 4 5}$
\medskip
\hrule
Latin and greek letters\ifthenelse{\boolean{TPSFeulerdigits}}{, digits,}{} and some symbols are taken from (virtual)
Euler Roman (\code{zeur}):\\
$abcd ABCD>/<\alpha \beta \gamma \delta\Phi \Pi \Gamma \Theta\ifthenelse{\boolean{TPSFeulerdigits}}{1 2 3 4 5}{}$
\medskip
\begin{samepage}
\hrule\nopagebreak
Symbols and calligraphic letters are taken from (virtual) Euler Script (\code{zeus}):\\
$ \mathcal{ABC} -*+ = \div\equiv \leq \forall \cap \cup \nabla \neq$
\par
\end{samepage}
\medskip
\hrule
\parbox{\linewidth-\widthof{$\displaystyle\left(\sum^{\left\{\bigcup\limits^\bigoplus\right\}}_{\left[\prod\limits_\biguplus\right]}\right)$}-1ex}
{%
Large and growing symbols are taken from (virtual) Euler Extension (\code{zeuex}).
}\hfill
$\displaystyle\left(\sum^{\left\{\bigcup\limits^\bigoplus\right\}}_{\left[\prod\limits_\biguplus\right]}\right)$
}
{%
Operators, digits, some symbols and upper case greek letters are taken from
\nameuse{TextFontName\TPSFOperatorfont OT1}%
:\\
$\min \max \sup \lim 1 2 3 4 5 + = \Phi \Pi \Gamma \Theta$
\medskip
\hrule
Latin and lower case greek letters and some symbols are taken from \nameuse{MathLetterFontName\TPSFMathfont}%
:\\
$abcd ABCD >/< \alpha \beta \gamma \delta$
\medskip
\begin{samepage}
\hrule\nopagebreak
Symbols and calligraphic letters are taken from \nameuse{MathSymbolFontName\TPSFMathfont}%
:\\
$\mathcal{ABC} -*\div\equiv \leq \forall \cap \cup \nabla \neq$
\par
\end{samepage}
\medskip
\begin{samepage}
\hrule\nopagebreak
\parbox{\linewidth-\widthof{$\displaystyle\left(\sum^{\left\{\bigcup\limits^\bigoplus\right\}}_{\left[\prod\limits_\biguplus\right]}\right)$}-1ex}
{%
Large and growing symbols are taken from \nameuse{MathExtensionFontName\TPSFMathfont}.
}\hfill
$\displaystyle\left(\sum^{\left\{\bigcup\limits^\bigoplus\right\}}_{\left[\prod\limits_\biguplus\right]}\right)$
\par
\end{samepage}
}
\medskip
\ifthenelse{\boolean{TPSFamsfonts}}
{%
\begin{samepage}
\hrule\nopagebreak
\ifthenelse{\equal{\TPSFMathfont}{cmbrm}}
{%
Fraktur letters are taken from Euler Fraktur (\code{eufm}):\\
$\mathfrak{abcdABCD}$
\par
\end{samepage}
\medskip
\begin{samepage}
\hrule\nopagebreak
Blackboard bold letters and a lot of additional math symbols are taken from the cmbright AMS math fonts
(\code{cmbras}, \code{cmbrbs}):\\
$\mathbb{NZQR} \Cap \boxtimes \succapprox \subseteqq \nsubseteq \curvearrowright \complement \varnothing$
}
{%
Fraktur letters, blackboard bold letters, and a lot of additional math symbols are taken from the AMS math fonts
(\code{msam}, \code{msbm}, \code{eufm}):\\
$\mathfrak{abcdABCD}\mathbb{NZQR} \Cap \boxtimes \succapprox \subseteqq \nsubseteq \curvearrowright \complement
\varnothing$
}
\par
\end{samepage}
\medskip
}%
{}
\ifthenelse{\boolean{TPSFlasy}\and\not\boolean{TPSFwasysym}}
{%
\begin{samepage}
\hrule\nopagebreak
A couple of additional math symbols are taken from the \LaTeX{} symbol font (\code{lasy}):\\
$\mho\Join\Box\leadsto\Diamond\sqsubset\sqsupset$
\par
\end{samepage}
\medskip
}%
{}
\ifthenelse{\boolean{TPSFstmaryrd}}
{%
\begin{samepage}
\hrule\nopagebreak
Additional math symbols are taken from St Mary's Road symbol font (\code{stmary}):\\
$\boxast \merge \nplus \varolessthan \subsetpluseq \lightning$
\par
\end{samepage}
\medskip
}%
{}
\ifthenelse{\boolean{TPSFwasysym}}
{%
\begin{samepage}
\hrule\nopagebreak
Additional symbols are taken from Waldis symbol font (\code{wasy}):\\
$\oiint$\space \permil\space \phone\space \diameter\space \smiley\space \venus\space \mars
\par
\end{samepage}
\medskip
}%
{}
\ifthenelse{\boolean{TPSFrsfs}}
{%
\begin{samepage}
\hrule\nopagebreak
Upper case script letters are taken from Ralph Smith Formal Script (\code{rsfs}):\\
$\mathscr{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$
\par
\end{samepage}
\medskip
}%
{}
\ifthenelse{\boolean{TPSFdstroke}}
{%
\begin{samepage}
\hrule\nopagebreak
Double stroke letters are taken from Doublestroke Font
(\ifthenelse{\equal{\TPSFOperatorfont}{cmr}}{\code{dsrom}}{\code{dsss}}):\\
$\mathds{ABCDEFGHIJKLMNOPQRSTUVWXYZ1hk}$
\par
\end{samepage}
\medskip
}%
{}
\hrule
\newpage
\subsection{Math Examples}
Next, some examples of math formulae so you can see how the fonts work together (translations from german done by me).
\ifthenelse{\isundefined{\align}}{}
{%
\medskip
\hrule
\begin{minipage}{\linewidth}
\underl{From The Book.}
\begin{presentbox}
\setlength{\abovedisplayskip}{.3\abovedisplayskip}%
\textbf{(D)}\quad The functions $f$ and $g$ fulfil the same functional equation:
$f\left(\frac{x}{2}\right)+f\left(\frac{x+1}{2}\right)=2f(x)$ and
$g\left(\frac{x}{2}\right)+g\left(\frac{x+1}{2}\right)=2g(x)$.
For $f(x)$, we obtain this from the addition formulas for the sine and cosine:
\begin{align*}
f\left(\textstyle\frac{x}{2}\right)+f\left(\textstyle\frac{x+1}{2}\right)
&=\pi
\left[\frac{\cos\frac{\pi x}{2}}{\sin\frac{\pi x}{2}}-\frac{\sin\frac{\pi x}{2}}{\cos\frac{\pi x}{2}}\right]
\\[1ex]
&=2\pi\frac{\cos\left(\frac{\pi x}{2}+\frac{\pi x}{2}\right)}{\sin\left(\frac{\pi x}{2}+\frac{\pi x}{2}\right)}
=2f(x)\text{.}
\end{align*}
The functional equation for $g$ follows from
\begin{displaymath}
g_N\left(\textstyle\frac{x}{2}\right)+g_N\left(\textstyle\frac{x+1}{2}\right)
=2g_{2N}(x)+\frac{2}{x+2N+1}\text{.}
\end{displaymath}
\end{presentbox}
\end{minipage}%
}
\ifthenelse{\boolean{TPSFdstroke}\and\not\isundefined{\align}}
{%
\newpage
\begin{minipage}{\linewidth}
\underl{From an undergrad book on calculus.}
\begin{presentbox}
\begin{align*}
c_k&=\frac{1}{2\pi}\int_{0}^{2\pi} f(x) e^{-\mathrm{i}kx}\,\mathrm{d}x
=\frac{1}{2\pi}\sum_{j=1}^{r}\int_{t_{j-1}}^{t_j} f(x) e^{-\mathrm{i}kx}\,\mathrm{d}x\\
&=\frac{-\mathrm{i}}{2\pi k}\int_{0}^{2\pi} \varphi(x) e^{-\mathrm{i}kx}\,\mathrm{d}x
=\frac{-\mathrm{i}\gamma_k}{k}\text{.}
\end{align*}
As for all $\alpha,\beta\in\mathds{C}$,
$\left|\alpha\beta\right|\leq\frac{1}{2}\left(\left|\alpha\right|^2+\left|\beta\right|^2\right)$, it holds that
\begin{displaymath}
\left|c_k\right|\leq\frac{1}{2}\left(\frac{1}{\left|k\right|^2}+\left|\gamma_k\right|^2\right)\text{.}
\end{displaymath}
From the convergence of $\sum\limits_{k=1}^{\infty}\frac{1}{k^2}$ and
$\sum\limits_{k=-\infty}^{\infty}\left|\gamma_k\right|^2$, it follows that
\begin{displaymath}
\sum_{k=-\infty}^{\infty}\left|c_k\right|<\infty\text{.}
\end{displaymath}
\end{presentbox}
\end{minipage}%
}
{}
\ifthenelse{\isundefined{\align}\or\isundefined{\extrarowheight}}{}
{%
\newpage
\begin{minipage}{\linewidth}
\underl{From an undergrad book on calculus (2nd volume).}
\begin{presentbox}
\small
By \name{Fubini}'s theorem,
\setcounter{equation}{8}%
\begin{equation}
\label{eq:GaussLemma1}
\int\limits_{Z_\varepsilon}\operatorname{div} F \,\mathrm{d}x
= \sum_{k=1}^{n}\,
\underbrace
{%
\int\limits_{Q'}
\left(
\int\limits^{h\left(x'\right)-\varepsilon}_{-\infty}\partial_kF_k\left(x',x_n\right)\,\mathrm{d}x_n
\right)
\,\mathrm{d}x'
}_{{}\mathrel{=:} I_k}
\text{.}
\end{equation}
Evaluation of $I_k$: Obviously,
\begin{displaymath}
I_n=\int\limits_{Q'}F_n\left(x',h(x'-\varepsilon)\right)\,\mathrm{d}x'\text{.}
\end{displaymath}
In the case $1\leq k \leq n-1$, we employ the identity
\begin{displaymath}
\partial_k
\left(
\int\limits^{h\left(x'\right)-\varepsilon}_{-\infty}\!\!\!\!\!\!F_k\left(x',x_n\right)\,\mathrm{d}x_n
\right)
=
\begin{array}[t]{@{}>{\displaystyle}l@{}}
\int\limits^{h\left(x'\right)-\varepsilon}_{-\infty}
\!\!\!\!\!\!\partial_kF_k\left(x',x_n\right)\,\mathrm{d}x_n\\
{}+F_k\left(x',h(x'-\varepsilon)\right)\cdot\partial_k h\left(x'\right)\text{.}
\end{array}
\end{displaymath}
\end{presentbox}
\end{minipage}%
}
\newpage
\ifthenelse{\isundefined{\align}\or\isundefined{\CD}}{}
{%
\begin{minipage}{\linewidth}
\underl{From a book on functional analysis.}
\begin{presentbox}
\textbf{Definition 25}\quad Let $\mathcal{C}$ and $\mathcal{D}$ be categories and $\mathcal{F}, \mathcal{G}$
functors from $\mathcal{C}$ into $\mathcal{D}$. A mapping
$\eta:\operatorname{Ob}\mathcal{C}\to\operatorname{Mor}\mathcal{D}$ is called a \concept{natural transformation
between $\mathcal{F}$ and $\mathcal{G}$} if
\begin{enumerate}
\item[(i)] $\forall
A\in\operatorname{Ob}\mathcal{C}:
\eta(A)\in\operatorname{Mor}_{\mathcal{D}}\left(\mathcal{F}(A),\mathcal{G}(A)\right)$
\item[(ii)] $\forall A,B\in\operatorname{Ob}\mathcal{C}\;\forall f\in\operatorname{Mor}_{\mathcal{C}}(A,B):$
\begin{align*}
\begin{CD}
\mathcal{F}(A)@>{\mathcal{F}(f)}>>\mathcal{F}(B)\\
@V{\eta(A)}VV @VV{\eta(B)}V\\
\mathcal{G}(A)@>>{\mathcal{G}(f)}>\mathcal{G}(B)\\
\end{CD}
&&\text{or}&&
\begin{CD}
\mathcal{F}(A)@<{\mathcal{F}(f)}<<\mathcal{F}(B)\\
@V{\eta(A)}VV @VV{\eta(B)}V\\
\mathcal{G}(A)@<<{\mathcal{G}(f)}<\mathcal{G}(B)\\
\end{CD}
\end{align*}
respectively, commute, if $\mathcal{F}, \mathcal{G}$ are covariant or contravariant, respectively.
\end{enumerate}
This is denoted as $\eta:\mathcal{F}\to \mathcal{G}$. Such a natural transformation is called a \concept{natural
equivalence between $\mathcal{F}$ and $\mathcal{G}$} if $\eta(A)$ is an isomorphism for every
$A\in\operatorname{Ob}\mathcal{C}$.
\end{presentbox}
\end{minipage}%
}
\ifthenelse{\boolean{TPSFamsfonts}\and\not\isundefined{\align}\and\not\isundefined{\MAT}}
{%
\newpage
\begin{minipage}{\linewidth}
\underl{From an undergrad book on linear algebra.}
\begin{presentbox}
\textit{Step 2.}\quad Determine an eigenvector $v_2$ for an eigenvalue $\lambda_2$ of $F_2$ ($\lambda_2$ is also
an eigenvalue of $F_1$). Next, determine a $j_2\in\{1,\dots,n\}$ such that
\begin{displaymath}
\mathfrak{B}_3 := (v_1,v_2,w_1,\dots,\widehat{w_{j_1}},\dots,\widehat{w_{j_2}},\dots,w_n)
\end{displaymath}
is a base of $V$.
Next, calculate
\vspace*{-\baselineskip}
\begin{displaymath}
M_{\mathfrak{B}_3}(F)=
\left(
\begin{MAT}(b){ccccccc}
\lambda_1&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot\\
0&\lambda_2&\cdot&\cdot&\cdot&\cdot&\cdot\\
\cdot&0&&&&&\\
\cdot&\cdot&&&&&\\
\cdot&\cdot&&&A_3&&\\
\cdot&\cdot&&&&&\\
0&0&&&&&
\addpath{(2,0,0)rrrrruuuuulllllddddd}\\
\end{MAT}
\right)\text{.}
\end{displaymath}
If $W_3:=\operatorname{Span}(w_1,\dots,\widehat{w_{j_1}},\dots,\widehat{w_{j_2}},\dots,w_n)$, then $A_3$
determines a linear mapping $F_3:W_3\to W_3$.
\end{presentbox}
\end{minipage}%
}
{}
\ifthenelse{\isundefined{\align}}{}
{%
\newpage
\begin{minipage}{\linewidth}
\underl{From an undergrad book on linear algebra (2nd volume).}
\begin{presentbox}
\DeclareRobustCommand{\with}{\;\vline\;}%
\DeclareRobustCommand{\Set}[2]{\left\{#1\with#2\right\}}%
\setlength{\abovedisplayskip}{.5\abovedisplayskip}%
\setlength{\belowdisplayskip}{.5\belowdisplayskip}%
\textit{Remark.}\quad If $\left(Y_i\right)_{i\in I}$ is a family of affine subspaces $Y_i$ of an affine space $X$,
then
\begin{displaymath}
Y := \bigcup_{i\in I} Y_i\subset X
\end{displaymath}
is again an affine subspace. If $Y\neq\emptyset$, then
\begin{displaymath}
T(Y)=\bigcup_{i\in I} T\left(Y_i\right)\text{.}
\end{displaymath}
\textit{Proof.}\quad For $Y=\emptyset$, nothing is to be proved. Otherwise, there is a fixed point $p_0\in Y$ such
that
\begin{align*}
T(Y)&=\Set{\overrightarrow{p_0q}\in T(X)}{q\in\bigcup_{i\in I} Y_i} \\
&= \bigcup_{i\in I}\Set{\overrightarrow{p_0q}\in T(X)}{q\in Y_i}=\bigcup_{i\in I} T\left(Y_i\right)\text{.}
\end{align*}
From this, both claims follow.
\end{presentbox}
\end{minipage}
}
\ifthenelse{\boolean{TPSFrsfs}\and\not\isundefined{\align}}
{%
\newpage
\begin{minipage}{\linewidth}
\underl{From a book on measure theory.}
\begin{presentbox}
Analogously, the general \concept{associativity} of $\sigma$-Algebra products is shown, that is
\begin{equation}
\tag{23.12}
\left(\bigotimes_{i=1}^{m}\mathscr{A}_i\right)\otimes\left(\bigotimes_{i=m+1}^{n}\mathscr{A}_i\right)
=\bigotimes_{i=1}^{n}\mathscr{A}_i
\makebox[0pt][l]{\normalcolor\quad($1\leq m<n$).}
\qquad\qquad\qquad\quad
\end{equation}
Statement (23.11) allows to prove the existence of the product measure for all $n\geq 2$ by induction.
\medskip
\textbf{23.9 Theorem}\quad\textit{For $\sigma$-finite measures $\mu_1,\dots,\mu_n$ on
$\mathscr{A}_1,\dots,\mathscr{A}_n$, there exists exactly one measure $\pi$ on
$\mathscr{A}_1\otimes\dots\otimes\mathscr{A}_n$ such that
\begin{equation}
\tag{23.13}
\pi\left(A_1\times\dots\times A_n\right)=\mu_1(A_1)\cdot\dots\cdot\mu_n(A_n)
\end{equation}
for all $A_i\in\mathscr{A}_i$ ($i=1,\dots,n$). Here, $\pi$ is also $\sigma$-finite.}
\end{presentbox}
\end{minipage}%
}
{}
\ifthenelse{\boolean{TPSFrsfs}\and\boolean{TPSFdstroke}\and\not\isundefined{\align}}
{%
\newpage
\begin{minipage}{\linewidth}
\underl{From a book on probability theory.}
\begin{presentbox}
\textbf{17.3 Lemma}\quad\textit{If\/ $T$ takes values exclusively from $\mathds{N}$, then $X_T$ is an
$\mathscr{F}_T$-measurable random variable with values in $\left(\Omega',\mathscr{A}'\right)$. If only
$P\left\{T<+\infty\right\}=1$ holds, then up to $P$-almost certain equality there exists exactly one
$\mathscr{F}_T$-measurable random variable $X^*$ with values in $\left(\Omega',\mathscr{A}'\right)$ which
fulfils the condition
\begin{equation}
\tag{17.7}
X^*(\omega)=X_{T(\omega)}(\omega)
\makebox[0pt][l]{\normalcolor\quad for all $\omega\in\{T<\infty\}$.}
\qquad\qquad
\end{equation}
}%
\smallskip
\textit{Proof.}\quad It suffices to treat the second case and provide an $\mathscr{F}_T$-measurable random
variable fulfilling the given condition. To this end, choose an arbitrary $\omega'\in\Omega'$. We set
\begin{displaymath}
X^*(\omega) :=
\begin{cases}
X_{T(\omega)}(\omega),&\omega\in\{T<\infty\}\text{,}\\
\omega',&\omega\in\{T=\infty\}\text{.}
\end{cases}
\end{displaymath}
For every $A'\in\mathscr{A}'$, it is to be proved that $A := \left\{X^*\in A'\right\}$ is an element of
$\mathscr{F}_T$.
\end{presentbox}
\end{minipage}%
}
{}
\ifthenelse{\isundefined{\align}\or\isundefined{\extrarowheight}}{}
{%
\newpage
\begin{minipage}{\linewidth}
\underl{From my MSc Thesis.}
\begin{presentbox}
\newcommand{\PV}{\operatorname{PV}}%
If we expand equations (4.102) and (4.103), we get
\begin{align*}
\lefteqn{\left(\sum_{q\in\PV}\max\left(M(q),M(\neg q)\right)\right)-\delta}\quad&\\[1ex]
&=
\begin{array}[t]{@{}>{\displaystyle}l@{}}
\sum_{\substack{q\in\PV\\q\neq p}}
\max
\left(
\begin{array}{@{}l@{}}
\frac{m}{M_{{>}s}'\left(\neg p\right)}\cdot M_{{>}s}'(q)
+\frac{m}{M_{s}'\left(p\right)}\cdot M_{s}'(q),\\[2ex]
\frac{m}{M_{{>}s}'\left(\neg p\right)}\cdot M_{{>}s}'(\neg q)
+\frac{m}{M_{s}'\left(p\right)}\cdot M_{s}'(\neg q)
\end{array}
\right)\\[6ex]
{}-\frac{m}{M_{{>}s}'\left(\neg p\right)}\cdot\delta_{{>}s}'
-\frac{m}{M_{s}'\left(p\right)}\cdot\delta_{s}'\\[3ex]
{}-\left(\frac{m}{M_{{>}s}'\left(\neg p\right)}-1\right)\cdot r_1
-\left(\frac{m}{M_{s}'\left(p\right)}-1\right)\cdot r_2\\[3ex]
{}-\max(r_1,r_2)+m
\end{array}
\end{align*}
\end{presentbox}
\end{minipage}%
}
\ifthenelse{\boolean{TPSFamsfonts}\and\not\isundefined{\align}}
{%
\newpage
\begin{minipage}{\linewidth}
\underl{From my PhD Thesis.}
\begin{presentbox}
\DeclareRobustCommand{\Lcap}{\ensuremath{\sqcap}}
\DeclareRobustCommand{\FPcapIcup}{\ensuremath{\uplus}}
\DeclareRobustCommand{\pFl}[1]{\ensuremath{\overline{#1}}}
\DeclareRobustCommand{\Lprimecup}{\ensuremath{\curlyvee}}
\def\FpFl(#1,#2)%
{%
\ensuremath{\mathord
{%
\mathchoice
{\sideset{^{#1}}{^{\,}}{\mathop{\displaystyle\pFl{#2}}}}%
{\sideset{^{#1}}{^{\,}}{\mathop{\pFl{#2}}}}%
{\sideset{^{\scriptscriptstyle#1}}{^{\,}}{\mathop{\scriptstyle\pFl{#2}}}}%
{\sideset{^{\scriptscriptstyle#1}}{^{\,}}{\mathop{\scriptscriptstyle\pFl{#2}}}}%
}}%
}
\DeclareRobustCommand{\Lprimesub}{\ensuremath{\preccurlyeq}}
\DeclareRobustCommand{\Lsub}{\ensuremath{\sqsubseteq}}
\DeclareRobustCommand{\FIsub}{\ensuremath{\subseteqq}}
By Lemma 2.2.7,
\begin{displaymath}
\FpFl(d,a)\FPcapIcup\FpFl(d',b)
=\FpFl({\left(d\Lprimecup \delta\left(\FpFl(d',b)\right)\right)},{a\Lcap \alpha\left(\FpFl(d',b)\right)}).
\end{displaymath}
Furthermore,
\begin{align*}
d&\Lprimesub d\Lprimecup \delta\left(\FpFl(d',b)\right),\\
a\Lcap \alpha\left(\FpFl(d',b)\right)&\Lsub a.
\end{align*}
From this,
\begin{displaymath}
\FpFl(d,a)\FIsub\FpFl(d,a)\FPcapIcup\FpFl(d',b)
\end{displaymath}
follows by (2.3).
\end{presentbox}
\end{minipage}%
}
{}
\newcounter{char}%
\newcounter{symcnt}%
\makeatletter
\newcommand{\charlist}[4]
{%
\begingroup
\setcounter{char}{#1}
\whiledo{\value{char}<#2}
{%
\medskip
\hrule
\hbox{\@for\charht := #3\do{\fontsize{\charht}{\charht}\selectfont#4}}%
\stepcounter{char}%
\hrule
}%
\endgroup
}%
\newcommand{\mksymline}[2]
{%
\begingroup
\medskip
\hrule
\hbox
{%
\@for\charht := #2\do
{%
\fontsize{\charht}{\charht}\selectfont
\setcounter{symcnt}{0}%
$%
\@for\thesymbol := #1\do
{%
\ifcase\value{symcnt}%
\ifthenelse{\equal{\TPSFMathfont}{euler}}{{\thesymbol}}{}%
\or\ifthenelse{\equal{\TPSFMathfont}{euler}}{\,\vrule\,{\thesymbol}}{}%
\or\ifthenelse{\equal{\TPSFMathfont}{euler}}{}{{\thesymbol}}%
\or\ifthenelse{\equal{\TPSFMathfont}{euler}}{}{\,\vrule\,{\thesymbol}}%
\or\ifthenelse{\equal{\TPSFMathfont}{euler}}{}{\,\vrule\,{\thesymbol}}%
\or\ifthenelse{\boolean{TPSFamsfonts}}{\,\vrule\,{\thesymbol}}{}%
\or\ifthenelse{\boolean{TPSFlasy}\and\not\boolean{TPSFwasysym}}{\,\vrule\,{\thesymbol}}{}%
\or\ifthenelse{\boolean{TPSFstmaryrd}}{\,\vrule\,{\thesymbol}}{}%
\or\ifthenelse{\boolean{TPSFwasysym}}{\,\vrule\,{\thesymbol}}{}%
\fi
\stepcounter{symcnt}%
}%
\;\vrule width1ex\;%
$%
}%
}%
\hrule
\endgroup
}%
\makeatother
\ifthenelse{\equal{\TPSFTextfont}{lcmss}}
{%
\newpage
\section{Comparison of Characters}
As mentioned before, \code{tpslifonts} does a little scaling and fiddling with design sizes to make the fonts harmonize
as much as possible.
The following scaling factors ate used in this document:
\begin{center}
\begin{tabular}{lll}
Name&Purpose&Value\\\hline
\macroname{TPSFttscale}&Typewriter fonts&\TPSFttscale\\\hline
\macroname{TPSFmathscale}&Math fonts related to cm math&\TPSFmathscale\\\hline
\macroname{TPSFeulerscale}&Euler math fonts&\TPSFeulerscale\\\hline
\macroname{TPSFcmbrscale}&Cmbright math fonts&\TPSFcmbrscale\\\hline
\end{tabular}
\end{center}
Unfortunately, the base font \TextFontName{} is quite excentric wrt the height ratio of upper case and lower case
letters; compare \TextFontNameShort{} \present{a\,A} with \nameuse{TextFontNameShortcmss\encodingdefault}
\present{\fontfamily{cmss}\selectfont a\,A}.
For this reason, no amount of scaling can make \TextFontNameShort{} harmonise completely with `normal' fonts.
In this section, you will see lists of similar characters from different fonts, arranged such that you can check how
good the sizes match. You then have to set your priorities and decide the respective scaling factors accordingly. See
the comments in the preamble of \code{slifontsexample.tex} for instructions on how to experiment with scaling.
To account for different design sizes, the character samples are shown in several sizes.
\subsection{Digits}
Digits from \TextFontName, \nameuse{TTFontName\TPSFTextfont\encodingdefault}%
\ifthenelse{\boolean{TPSFeulerdigits}}{, Euler Roman (\code{zeur})}{}%
\ifthenelse{\equal{\TPSFOperatorfont}{\TPSFTextfont}}{}{, \nameuse{TextFontName\TPSFOperatorfont OT1}},
\nameuse{TextItFontName\TPSFTextfont\encodingdefault}, and \nameuse{TTItFontName\TPSFTextfont\encodingdefault} are
listed in sizes 5pt, 6pt, 7pt, 8pt, 9pt, 10pt, 11pt, and 17pt.
\charlist{48}{58}{5,6,7,8,9,10,11,17}
{%
\char\value{char}\texttt{\char\value{char}}%
\ifthenelse
{%
\boolean{TPSFeulerdigits}\OR\not\equal{\TPSFOperatorfont}{\TPSFTextfont}%
}%
{$\char\value{char}$}{}%
\,\textit{\char\value{char}}\textit{\texttt{\char\value{char}}}
}
\subsection{Upper Case Letters}
Upper Case Letters from \TextFontName, \nameuse{TTFontName\TPSFTextfont\encodingdefault}%
\ifthenelse{\equal{\TPSFMathfont}{euler}}{, Euler Roman (\code{zeur})}{}%
\ifthenelse{\equal{\TPSFOperatorfont}{\TPSFTextfont}}{}{, \nameuse{TextFontName\TPSFOperatorfont OT1}}%
\ifthenelse{\equal{\TPSFMathfont}{euler}}{, Euler Script (\code{zeus}; for calligraphic letters)}{}%
\ifthenelse{\boolean{TPSFamsfonts}}
{%
, Euler Fraktur (\code{eufm})%
, \ifthenelse{\equal{\TPSFMathfont}{cmbrm}}{cmbright AMS math (\code{cmbrbs}}{AMS math (\code{msbm}}%
; for blackboard bold)%
}{}%
\ifthenelse{\boolean{TPSFdstroke}}
{, Doublestroke Font (\ifthenelse{\equal{cmr}{\TPSFTextfont}}{\code{dsrom}}{\code{dsss}})}{}%
, \nameuse{TextItFontName\TPSFTextfont\encodingdefault}, \nameuse{TTItFontName\TPSFTextfont\encodingdefault}%
\ifthenelse{\equal{\TPSFMathfont}{euler}}{}{, \nameuse{MathLetterFontName\TPSFMathfont}}%
\ifthenelse{\equal{\TPSFMathfont}{euler}}{}{, \nameuse{MathSymbolFontName\TPSFMathfont} for calligraphic letters}%
\ifthenelse{\boolean{TPSFrsfs}}{, Ralph Smith Formal Script (\code{rsfs})}{}
are listed in sizes 5pt, 7pt, and 10pt.
\charlist{65}{91}{5,6,7,10}
{%
\char\value{char}\texttt{\char\value{char}}%
\ifthenelse{\equal{\TPSFMathfont}{euler}}{$\char\value{char}$}{}%
\ifthenelse{\equal{\TPSFOperatorfont}{\TPSFTextfont}}{}
{$\operatorname{\char\value{char}}$}%
\ifthenelse{\equal{\TPSFMathfont}{euler}}{$\mathcal{\char\value{char}}$}{}%
\ifthenelse{\boolean{TPSFamsfonts}}{$\mathfrak{\char\value{char}}\mathbb{\char\value{char}}$}{}%
\ifthenelse{\boolean{TPSFdstroke}}{$\mathds{\char\value{char}}$}{}%
\,\textit{\char\value{char}}\textit{\texttt{\char\value{char}}}%
\ifthenelse{\equal{\TPSFMathfont}{euler}}{}{$\char\value{char}$}%
\ifthenelse{\equal{\TPSFMathfont}{euler}}{}{$\mathcal{\char\value{char}}$}%
\ifthenelse{\boolean{TPSFrsfs}}{$\mathscr{\char\value{char}}$}{}%
~
}
\subsection{Lower Case Letters}
Lower Case Letters from \TextFontName, \nameuse{TTFontName\TPSFTextfont\encodingdefault}%
\ifthenelse{\equal{\TPSFMathfont}{euler}}{, Euler Roman (\code{zeur})}{}%
\ifthenelse{\equal{\TPSFOperatorfont}{\TPSFTextfont}}{}{, \nameuse{TextFontName\TPSFOperatorfont OT1}}%
\ifthenelse{\boolean{TPSFamsfonts}}{, Euler Fraktur (\code{eufm})}{}%
, \nameuse{TextItFontName\TPSFTextfont\encodingdefault}, \nameuse{TTItFontName\TPSFTextfont\encodingdefault}%
\ifthenelse{\equal{\TPSFMathfont}{euler}}{}{, \nameuse{MathLetterFontName\TPSFMathfont}}
are listed in sizes 5pt, 7pt, 10pt, 12pt, and 14pt.
\charlist{97}{123}{5,7,10,12,14}
{%
\char\value{char}\texttt{\char\value{char}}%
\ifthenelse{\equal{\TPSFMathfont}{euler}}{$\char\value{char}$}{}%
\ifthenelse{\equal{\TPSFOperatorfont}{\TPSFTextfont}}{}
{$\operatorname{\char\value{char}}$}%
\ifthenelse{\boolean{TPSFamsfonts}}{$\mathfrak{\char\value{char}}$}{}%
\,\textit{\char\value{char}}\textit{\texttt{\char\value{char}}}%
\ifthenelse{\equal{\TPSFMathfont}{euler}}{}{$\char\value{char}$}%
~
}
\newpage
\subsection{Math Symbols}
The different math fonts define symbols of similar shape, which should look equally large. Symbols from
\ifthenelse{\equal{\TPSFMathfont}{euler}}
{Euler Roman (\code{zeur}), Euler Symbol (\code{zeus})}
{%
\nameuse{TextFontName\TPSFOperatorfont OT1}, \nameuse{MathLetterFontName\TPSFMathfont},
\nameuse{MathSymbolFontName\TPSFMathfont}%
}%
\ifthenelse{\boolean{TPSFamsfonts}}{, \ifthenelse{\equal{\TPSFMathfont}{cmbrm}}{cmbright }{}AMS math fonts}{}%
\ifthenelse{\boolean{TPSFlasy}\and\not\boolean{TPSFwasysym}}{, \LaTeX{} symbol font (\code{lasy})}{}%
\ifthenelse{\boolean{TPSFstmaryrd}}{, St Mary's Road symbol font (\code{stmary})}{}%
\ifthenelse{\boolean{TPSFwasysym}}{, Waldis symbol font (\code{wasy})}{}
are listed in sizes 5pt, 7pt, 10pt, and 12pt.
To make clear which characters stem from which font, they are separated by vertical bars.
\mksymline{\star,+,+,\star,\times,\divideontimes,,\moo,}{5,7,10,12}
\mksymline{,\cup,,,\cup,\Cup,,\nplus,}{5,7,10,12}
\mksymline{,\oplus,,,\oplus,\circledast,,\olessthan,\ocircle}{5,7,10,12}
\mksymline{,\vdash,,,\vdash,\Vdash,,,}{5,7,10,12}
\mksymline{,=,=,,\equiv,\doteqdot,,,}{5,7,10,12}
\mksymline{<,\leq,,<,\leq,\leqslant,\sqsubset,\trianglelefteqslant,\apprle}{5,7,10,12}
\mksymline{\leftharpoondown,\leftarrow,,\leftharpoondown,\leftarrow,\twoheadleftarrow,\leadsto,\leftarrowtriangle,\leadsto}{5,7,10,12}
}
{}
%%% Local Variables:
%%% mode: latex
%%% fill-column: 120
%%% TeX-master: "slifontsexample"
%%% End:
|