1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
|
\section{The Show}
\subsection{Show the constructions of some lines \tkzcname{tkzShowLine}}
\begin{NewMacroBox}{tkzShowLine}{\oarg{local options}\parg{pt1,pt2} or \parg{pt1,pt2,pt3}}%
These constructions concern mediatrices, perpendicular or parallel lines passing through a given point and bisectors. The arguments are therefore lists of two or three points. Several options allow the adjustment of the constructions. The idea of this macro comes from \tkzimp{Yves Combe}.
\medskip
\begin{tabular}{lll}%
\toprule
options & default & definition \\
\midrule
\TOline{mediator}{mediator}{displays the constructions of a mediator}
\TOline{perpendicular}{mediator}{constructions for a perpendicular}
\TOline{orthogonal}{mediator}{idem}
\TOline{bisector}{mediator}{constructions for a bisector}
\TOline{K}{1}{circle within a triangle }
\TOline{length}{1}{in cm, length of a arc}
\TOline{ratio} {.5}{arc length ratio}
\TOline{gap}{2}{placing the point of construction}
\TOline{size}{1}{radius of an arc (see bisector)}
\bottomrule
\end{tabular}
You have to add, of course, all the styles of \TIKZ\ for tracings\dots
\end{NewMacroBox}
\subsubsection{Example of \tkzcname{tkzShowLine} and \tkzname{parallel}}
\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}
\tkzDefPoints{-1.5/-0.25/A,1/-0.75/B,-1.5/2/C}
\tkzDrawLine(A,B)
\tkzDefLine[parallel=through C](A,B) \tkzGetPoint{c}
\tkzShowLine[parallel=through C](A,B)
\tkzDrawLine(C,c) \tkzDrawPoints(A,B,C,c)
\end{tikzpicture}
\end{tkzexample}
\subsubsection{Example of \tkzcname{tkzShowLine} and \tkzname{perpendicular}}
\begin{tkzexample}[latex=5cm,small]
\begin{tikzpicture}
\tkzDefPoints{0/0/A, 3/2/B, 2/2/C}
\tkzDefLine[perpendicular=through C,K=-.5](A,B) \tkzGetPoint{c}
\tkzShowLine[perpendicular=through C,K=-.5,gap=3](A,B)
\tkzDefPointBy[projection=onto A--B](c)\tkzGetPoint{h}
\tkzMarkRightAngle[fill=lightgray](A,h,C)
\tkzDrawLines[add=.5 and .5](A,B C,c)
\tkzDrawPoints(A,B,C,h,c)
\end{tikzpicture}
\end{tkzexample}
\subsubsection{Example of \tkzcname{tkzShowLine} and \tkzname{bisector}}
\begin{tkzexample}[latex=7 cm,small]
\begin{tikzpicture}[scale=1.25]
\tkzDefPoints{0/0/A, 4/2/B, 1/4/C}
\tkzDrawPolygon(A,B,C)
\tkzSetUpCompass[color=brown,line width=.1 pt]
\tkzDefLine[bisector](B,A,C) \tkzGetPoint{a}
\tkzDefLine[bisector](C,B,A) \tkzGetPoint{b}
\tkzInterLL(A,a)(B,b) \tkzGetPoint{I}
\tkzDefPointBy[projection = onto A--B](I)
\tkzGetPoint{H}
\tkzShowLine[bisector,size=2,gap=3,blue](B,A,C)
\tkzShowLine[bisector,size=2,gap=3,blue](C,B,A)
\tkzDrawCircle[radius,color=blue,%
line width=.2pt](I,H)
\tkzDrawSegments[color=red!50](I,tkzPointResult)
\tkzDrawLines[add=0 and -0.3,color=red!50](A,a B,b)
\end{tikzpicture}
\end{tkzexample}
\subsubsection{Example of \tkzcname{tkzShowLine} and \tkzname{mediator}}
\begin{tkzexample}[latex=7 cm,small]
\begin{tikzpicture}
\tkzDefPoint(2,2){A}
\tkzDefPoint(5,4){B}
\tkzDrawPoints(A,B)
\tkzShowLine[mediator,color=orange,length=1](A,B)
\tkzGetPoints{i}{j}
\tkzDrawLines[add=-0.1 and -0.1](i,j)
\tkzDrawLines(A,B)
\tkzLabelPoints[below =3pt](A,B)
\end{tikzpicture}
\end{tkzexample}
\subsection{Constructions of certain transformations \addbs{tkzShowTransformation}}
\begin{NewMacroBox}{tkzShowTransformation}{\oarg{local options}\parg{pt1,pt2} or \parg{pt1,pt2,pt3}}%
These constructions concern orthogonal symmetries, central symmetries, orthogonal projections and translations. Several options allow the adjustment of the constructions. The idea of this macro comes from \tkzimp{Yves Combe}.
\medskip
\begin{tabular}{lll}%
\toprule
options & default & definition \\
\midrule
\TOline{reflection= over pt1--pt2}{reflection}{constructions of orthogonal symmetry}
\TOline{symmetry=center pt}{reflection}{constructions of central symmetry}
\TOline{projection=onto pt1--pt2}{reflection}{constructions of a projection}
\TOline{translation=from pt1 to pt2}{reflection}{constructions of a translation}
\TOline{K}{1}{circle within a triangle }
\TOline{length}{1}{arc length}
\TOline{ratio} {.5}{arc length ratio}
\TOline{gap}{2}{placing the point of construction}
\TOline{size}{1}{radius of an arc (see bisector)}
\end{tabular}
\end{NewMacroBox}
\subsubsection{Example of the use of \tkzcname{tkzShowTransformation}}
\begin{tkzexample}[latex=6cm,small]
\begin{tikzpicture}[scale=.6]
\tkzDefPoint(0,0){O} \tkzDefPoint(2,-2){A}
\tkzDefPoint(70:4){B} \tkzDrawPoints(A,O,B)
\tkzLabelPoints(A,O,B)
\tkzDrawLine[add= 2 and 2](O,A)
\tkzDefPointBy[translation=from O to A](B)
\tkzGetPoint{C}
\tkzDrawPoint[color=orange](C) \tkzLabelPoints(C)
\tkzShowTransformation[translation=from O to A,%
length=2](B)
\tkzDrawSegments[->,color=orange](O,A B,C)
\tkzDefPointBy[reflection=over O--A](B) \tkzGetPoint{E}
\tkzDrawSegment[blue](B,E)
\tkzDrawPoint[color=blue](E)\tkzLabelPoints(E)
\tkzShowTransformation[reflection=over O--A,size=2](B)
\tkzDefPointBy[symmetry=center O](B) \tkzGetPoint{F}
\tkzDrawSegment[color=green](B,F)
\tkzDrawPoint[color=green](F)\tkzLabelPoints(F)
\tkzShowTransformation[symmetry=center O,%
length=2](B)
\tkzDefPointBy[projection=onto O--A](C)
\tkzGetPoint{H}
\tkzDrawSegments[color=magenta](C,H)
\tkzDrawPoint[color=magenta](H)\tkzLabelPoints(H)
\tkzShowTransformation[projection=onto O--A,%
color=red,size=3,gap=-2](C)
\end{tikzpicture}
\end{tkzexample}
\subsubsection{Another example of the use of \tkzcname{tkzShowTransformation}}
You'll find this figure again, but without the construction features.
\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}[scale=.6]
\tkzDefPoints{0/0/A,8/0/B,3.5/10/I}
\tkzDefMidPoint(A,B) \tkzGetPoint{O}
\tkzDefPointBy[projection=onto A--B](I)
\tkzGetPoint{J}
\tkzInterLC(I,A)(O,A) \tkzGetPoints{M'}{M}
\tkzInterLC(I,B)(O,A) \tkzGetPoints{N}{N'}
\tkzDrawSemiCircle[diameter](A,B)
\tkzDrawSegments(I,A I,B A,B B,M A,N)
\tkzMarkRightAngles(A,M,B A,N,B)
\tkzDrawSegment[style=dashed,color=blue](I,J)
\tkzShowTransformation[projection=onto A--B,
color=red,size=3,gap=-3](I)
\tkzDrawPoints[color=red](M,N)
\tkzDrawPoints[color=blue](O,A,B,I)
\tkzLabelPoints(O)
\tkzLabelPoints[above right](N,I)
\tkzLabelPoints[below left](M,A)
\end{tikzpicture}
\end{tkzexample}
%<---------------------------------------------------------------------->
\section{Different points}
%<---------------------------------------------------------------------->
\subsection{\tkzcname{tkzDefEquiPoints}}
This macro makes it possible to obtain two points on a straight line equidistant from a given point.
\begin{NewMacroBox}{tkzDefEquiPoints}{\oarg{local options}\parg{pt1,pt2}}%
\begin{tabular}{lll}%
arguments & default & definition \\
\midrule
\TAline{(pt1,pt2)}{no default}{unordered list of two items}
\bottomrule
\end{tabular}
\medskip
\begin{tabular}{lll}%
\toprule \\
options & default & definition \\
\midrule
\TOline{dist} {2 cm} {half the distance between the two points}
\TOline{from=pt} {no default} {reference point}
\TOline{show} {false} {if true displays compass traces}
\TOline{/compass/delta} {0} {compass trace size }
\end{tabular}
\end{NewMacroBox}
\subsubsection{Using \tkzcname{tkzDefEquiPoints} with options}
\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}
\tkzSetUpCompass[color=purple,line width=1pt]
\tkzDefPoint(0,1){A}
\tkzDefPoint(5,2){B}
\tkzDefPoint(3,4){C}
\tkzDefEquiPoints[from=C,dist=1,show,
/tkzcompass/delta=20](A,B)
\tkzGetPoints{E}{H}
\tkzDrawLines[color=blue](C,E C,H A,B)
\tkzDrawPoints[color=blue](A,B,C)
\tkzDrawPoints[color=red](E,H)
\tkzLabelPoints(E,H)
\tkzLabelPoints[color=blue](A,B,C)
\end{tikzpicture}
\end{tkzexample}
\endinput
|