1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
|
\section{Definition of polygons}
\subsection{Defining the points of a square} \label{def_square}
We have seen the definitions of some triangles. Let us look at the definitions of some quadrilaterals and regular polygons.
\begin{NewMacroBox}{tkzDefSquare}{\parg{pt1,pt2}}%
The square is defined in the forward direction. From two points, two more points are obtained such that the four taken in order form a square. The square is defined in the forward direction. \\The results are in \tkzname{tkzFirstPointResult} and \tkzname{tkzSecondPointResult}.\\
We can rename them with \tkzcname{tkzGetPoints}.
\medskip
\begin{tabular}{lll}%
\toprule
Arguments & example & explanation \\
\midrule
\TAline{\parg{pt1,pt2}}{\tkzcname{tkzDefSquare}\parg{A,B}}{The square is defined in the direct direction.}
\end{tabular}
\end{NewMacroBox}
\subsubsection{Using \tkzcname{tkzDefSquare} with two points}
Note the inversion of the first two points and the result.
\begin{tkzexample}[latex=4cm,small]
\begin{tikzpicture}[scale=.5]
\tkzDefPoint(0,0){A} \tkzDefPoint(3,0){B}
\tkzDefSquare(A,B)
\tkzDrawPolygon[new](A,B,tkzFirstPointResult,%
tkzSecondPointResult)
\tkzDefSquare(B,A)
\tkzDrawPolygon(B,A,tkzFirstPointResult,%
tkzSecondPointResult)
\end{tikzpicture}
\end{tkzexample}
We may only need one point to draw an isosceles right-angled triangle so we use \\ \tkzcname{tkzGetFirstPoint} or \tkzcname{tkzGetSecondPoint}.
\subsubsection{Use of \tkzcname{tkzDefSquare} to obtain an isosceles right-angled triangle}
\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}[scale=1]
\tkzDefPoint(0,0){A}
\tkzDefPoint(3,0){B}
\tkzDefSquare(A,B) \tkzGetFirstPoint{C}
\tkzDrawSegment(A,B)
\tkzDrawSegments[new](A,C B,C)
\tkzMarkRightAngles(A,B,C)
\tkzDrawPoints(A,B) \tkzDrawPoint[new](C)
\tkzLabelPoints(A,B)
\tkzLabelPoints[new,above](C)
\end{tikzpicture}
\end{tkzexample}
\subsubsection{Pythagorean Theorem and \tkzcname{tkzDefSquare} }
\begin{tkzexample}[latex=8cm,small]
\begin{tikzpicture}[scale=.5]
\tkzDefPoint(0,0){C}
\tkzDefPoint(4,0){A}
\tkzDefPoint(0,3){B}
\tkzDefSquare(B,A)\tkzGetPoints{E}{F}
\tkzDefSquare(A,C)\tkzGetPoints{G}{H}
\tkzDefSquare(C,B)\tkzGetPoints{I}{J}
\tkzDrawPolygon(A,B,C)
\tkzDrawPolygon(A,C,G,H)
\tkzDrawPolygon(C,B,I,J)
\tkzDrawPolygon(B,A,E,F)
\tkzLabelSegment(A,C){$a$}
\tkzLabelSegment[right](C,B){$b$}
\tkzLabelSegment[swap](A,B){$c$}
\end{tikzpicture}
\end{tkzexample}
\subsection{Defining the points of a rectangle}
.
\begin{NewMacroBox}{tkzDefRectangle}{\parg{pt1,pt2}}%
The rectangle is defined in the forward direction. From two points, two more points are obtained such that the four taken in order form a rectangle. The two points passed in arguments are the ends of a diagonal of the rectangle. The sides are parallel to the axes.\\
The results are in \tkzname{tkzFirstPointResult} and \tkzname{tkzSecondPointResult}.\\
We can rename them with \tkzcname{tkzGetPoints}.
\medskip
\begin{tabular}{lll}%
\toprule
Arguments & example & explanation \\
\midrule
\TAline{\parg{pt1,pt2}}{\tkzcname{tkzDefRectangle}\parg{A,B}}{The rectangle is defined in the direct direction.}
\end{tabular}
\end{NewMacroBox}
\subsubsection{Example of a rectangle definition}
\begin{tkzexample}[latex=7 cm,small]
\begin{tikzpicture}
\tkzDefPoints{0/0/A,5/2/C}
\tkzDefRectangle(A,C) \tkzGetPoints{B}{D}
\tkzDrawPolygon[fill=teal!15](A,...,D)
\end{tikzpicture}
\end{tkzexample}
\subsection{Definition of parallelogram}
Defining the points of a parallelogram. It is a matter of completing three points in order to obtain a parallelogram.
\begin{NewMacroBox}{tkzDefParallelogram}{\parg{pt1,pt2,pt3}}%
\begin{tabular}{lll}%
\toprule
arguments & default & definition \\
\midrule
\TAline{\parg{pt1,pt2,pt3}}{no default}{Three points are necessary}
\bottomrule
\end{tabular}
\end{NewMacroBox}
From three points, another point is obtained such that the four taken in order form a parallelogram.
\\ The result is in \tkzname{tkzPointResult}. \\
We can rename it with the name \tkzcname{tkzGetPoint}...
\subsubsection{Example of a parallelogram definition}
\begin{tkzexample}[latex=7 cm,small]
\begin{tikzpicture}[scale=1]
\tkzDefPoints{0/0/A,3/0/B,4/2/C}
\tkzDefParallelogram(A,B,C)
% or \tkzDefPointWith[colinear= at C](B,A)
\tkzGetPoint{D}
\tkzDrawPolygon(A,B,C,D)
\tkzLabelPoints(A,B)
\tkzLabelPoints[above right](C,D)
\tkzDrawPoints(A,...,D)
\end{tikzpicture}
\end{tkzexample}
\subsection{The golden rectangle}
\begin{NewMacroBox}{tkzDefGoldenRectangle}{\parg{point,point}}%
The macro determines a rectangle whose size ratio is the number $\Phi$.\\
The created points are in \tkzname{tkzFirstPointResult} and \tkzname{tkzSecondPointResult}. \\
They can be obtained with the macro \tkzcname{tkzGetPoints}. The following macro is used to draw the rectangle.
\begin{tabular}{lll}%
\toprule
arguments & example & explanation \\
\midrule
\TAline{\parg{pt1,pt2}}{\parg{A,B}}{If C and D are created then $AB/BC=\Phi$.}
\end{tabular}
\tkzcname{tkzDefGoldenRectangle} or \tkzcname{tkzDefGoldRectangle}
\end{NewMacroBox}
\subsubsection{Golden Rectangles}
\begin{tkzexample}[latex=6 cm,small]
\begin{tikzpicture}[scale=.6]
\tkzDefPoint(0,0){A} \tkzDefPoint(8,0){B}
\tkzDefGoldRectangle(A,B) \tkzGetPoints{C}{D}
\tkzDefGoldRectangle(B,C) \tkzGetPoints{E}{F}
\tkzDefGoldRectangle(C,E) \tkzGetPoints{G}{H}
\tkzDrawPolygon(A,B,C,D)
\tkzDrawSegments(E,F G,H)
\end{tikzpicture}
\end{tkzexample}
\subsubsection{Construction of the golden rectangle }
Without the previous macro here is how to get the golden rectangle.
\begin{tkzexample}[latex=8cm,small]
\begin{tikzpicture}[scale=.5]
\tkzDefPoint(0,0){A}
\tkzDefPoint(8,0){B}
\tkzDefMidPoint(A,B)
\tkzGetPoint{I}
\tkzDefSquare(A,B)\tkzGetPoints{C}{D}
\tkzInterLC(A,B)(I,C)\tkzGetPoints{G}{E}
\tkzDefPointWith[colinear= at C](E,B)
\tkzGetPoint{F}
\tkzDefPointBy[projection=onto D--C ](E)
\tkzGetPoint{H}
\tkzDrawArc[style=dashed](I,E)(D)
\tkzDrawPolygon(A,B,C,D)
\tkzDrawPoints(C,D,E,F,H)
\tkzLabelPoints(A,B,C,D,E,F,H)
\tkzLabelPoints[above](C,D,F,H)
\tkzDrawSegments[style=dashed,color=gray]%
(E,F C,F B,E F,H H,C E,H)
\end{tikzpicture}
\end{tkzexample}
\subsection{Regular polygon}
\begin{NewMacroBox}{tkzDefRegPolygon}{\oarg{local options}\parg{pt1,pt2}}%
From the number of sides, depending on the options, this macro determines a regular polygon according to its center or one side.
\begin{tabular}{lll}%
\toprule
arguments & example & explanation \\
\midrule
\TAline{\parg{pt1,pt2}}{\parg{O,A}}{with option \code{center}, $O$ is the center of the polygon.}
\TAline{\parg{pt1,pt2}}{\parg{A,B}}{with option \code{side}, $[AB]$ is a side.}
\end{tabular}
\medskip
\begin{tabular}{lll}%
\toprule
options & default & example \\
\midrule
\TOline{name}{P}{The vertices are named $P1$,$P2$,\dots}
\TOline{sides}{5}{number of sides.}
\TOline{center}{center}{The first point is the center.}
\TOline{side}{center}{The two points are vertices.}
\TOline{Options TikZ}{...}{}
\end{tabular}
\end{NewMacroBox}
\subsubsection{Option \tkzname{center}}
\begin{tkzexample}[latex=7cm, small]
\begin{tikzpicture}
\tkzDefPoints{0/0/P0,0/0/Q0,2/0/P1}
\tkzDefMidPoint(P0,P1) \tkzGetPoint{Q1}
\tkzDefRegPolygon[center,sides=7](P0,P1)
\tkzDefMidPoint(P1,P2) \tkzGetPoint{Q1}
\tkzDefRegPolygon[center,sides=7,name=Q](P0,Q1)
\tkzFillPolygon[teal!20](Q0,Q1,P2,Q2)
\tkzDrawPolygon(P1,P...,P7)
\foreach \j in {1,...,7} {%
\tkzDrawSegment[black](P0,Q\j)}
\end{tikzpicture}
\end{tkzexample}
\subsubsection{Option \tkzname{side}}
\begin{tkzexample}[latex=7cm, small]
\begin{tikzpicture}[scale=1]
\tkzDefPoints{-4/0/A, -1/0/B}
\tkzDefRegPolygon[side,sides=5,name=P](A,B)
\tkzDrawPolygon[thick](P1,P...,P5)
\end{tikzpicture}
\end{tkzexample}
\endinput
|