1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
|
%
% untitled
%
% Created by Peter M. Gerdes on 2010-10-14.
% Copyright (c) 2010 . All rights reserved.
%
\documentclass[11pt,oneside]{article}
\usepackage{amsfonts}
\usepackage{rec-thy}
\usepackage{multirow}
\usepackage{booktabs}
\usepackage{xtab}
\newcommand{\tab}{\hspace{1cm}}
% Uncomment some of the following if you use the features
%
% Running Headers and footers
%\usepackage{fancyhdr}
%\usepackage[parfill]{parskip}
%\usepackage{setspace}
% Multipart figures
%\usepackage{subfigure}
% Surround parts of graphics with box
%\usepackage{boxedminipage}
% Package for including code in the document
%\usepackage{listings}
% If you want to generate a toc for each chapter (use with book)
%\usepackage{minitoc}
%\usepackage[pdftex]{graphicx}
%\DeclareGraphicsExtensions{.pdf, .jpg, .tif}
\title{The rec-thy Package}
\author{Peter M. Gerdes (gerdes@invariant.org)}
\date{2010-10-14: Version 1.0}
\begin{document}
\maketitle
\begin{abstract}
The rec-thy package is designed to help mathematicians publishing papers in the area of recursion theory (aka Computability Theory) easily use standard notation. This includes easy commands to denote Turing reductions, Turing functionals, \ce sets, stagewise computations, forcing and syntactic classes.
\end{abstract}
\section{Introduction}
This package aims to provide a useful set of \LaTeX { }macros covering basic computability theory notation. Given the variation in usage in several areas this package had to pick particular notational conventions. The package author would like to encourage uniformity in these conventions but has included a multitude of package options to allow individual authors to choose alternative conventions or exclude that part of the package. Some effort has been made to align the semantic content of documents created with this package with the \LaTeX { }source. The author hopes that eventually this package may be incorporated into some larger package for typesetting papers in mathematical logic.
While computability theory is now the more popular name for the subject also known as recursion theory the author deliberately choose to title this package rec-thy to avoid confusion with the proliferation of packages for typesetting computer science related disciplines. While the subject matter of computability theory and theoretical computer science overlap significantly the notational conventions often differ.
Comments, patches, suggestions etc.. are all welcome.
\section{Usage}
Include the package in your document by placing \verb=\usepackage{rec-thy}= into your preamble after placing rec-thy.sty somewhere \TeX{ } can find it. The commands in this package have been divided into related groups. The commands in a given section can be disabled by passing the appropriate package option. For instance to disable the commands in the general mathematics section and the delimiters section you would include the following in your preamble \verb=\usepackage[nomath,nodelim]{rec-thy}=. The commands in each subsection along with their results are listed below and the options to disable the commands in each grouping or modify their behavior are listed in that subsection. Aliases and variants of a command are listed below the initial version of a command and aliases are indented.
Significant use is made in this package of optional arguments delimited either by square brackets or parenthesis. Users of the package should take care to wrap arguments that may themselves include brackets or parenthesis in braces. For example \verb=\REset(\REset(X){e}){i}= should be fixed to \verb=\REset({\REset(X){e}}){i}=.
\section{Commands}
A few general conventions are usually followed in the commands. Whenever an operator can be used as a binary operator (as in \( X \union Y \)) and as an operation on some collection \( \Union_{i \in \omega} X_i \) the binary operator will begin with a lowercase letter \verb=\union= and the operation on the collection will begin with a capital letter \verb=\Union=. If the first letter is already capitalized then the second letter is used instead.
Objects that have a natural stagewise approximation generally admit an optional argument in brackets to specify a stage. For instance \( \verb=\REset[s]{e}= \) yields \( \REset[s]{e} \). An optional argument in parenthesis is used for relativization. For instance \( \verb=\REset(X){e}= \) produces \( \REset(X){e} \). A notable exception to this rule are the formula classes where square brackets are used to indicate an oracle to be placed in the superscript, e.g., \( \verb=\pizn[X]{2}= \) yields \( \pizn[X]{2} \), so as not to generate confusion with the alternative notion \( \pizn{2}(X) \). Also a lowercase first letter in a formula class indicates the lightface version while a capital first letter indicates the boldface version.
Unless indicated otherwise all macros are to be used inside math mode. Indented commands indicate an alias for the command on the line above
\subsection{Main Commands}
\begin{xtabular}{l | l | l}\toprule
\verb=\murec{x}{f(x)>1}= & \( \murec{x}{f(x)>1} \) & Least \( x \) satisfying condition. \\ \midrule
\verb=\recfnl{e}{Y}{x}= & \( \recfnl{e}{Y}{x} \) &\multirow{4}{*}{Computable functions/functionals} \\[6pt]
\verb=\recfnl[s]{e}{Y}{x}= & \( \recfnl[s]{e}{Y}{x} \) & \\[6pt]
\verb=\recfnl{e}{Y}{}= & \( \recfnl{e}{Y}{} \) & \\[6pt]
\verb=\recfnl{e}{}{x}= & \( \recfnl{e}{}{x} \) & \\[6pt]
\verb=\recfnl{e}{}{}= & \( \recfnl{e}{}{} \) & \\ \midrule
\verb=\recfnl{e}{}{} \cequiv \recfnl{i}{}{}= & \( \recfnl{e}{}{} \cequiv \recfnl{i}{}{} \) & Equivalent computations\\ \midrule
\verb=\recfnl{e}{}{} \ncequiv \recfnl{i}{}{}= & \( \recfnl{e}{}{} \ncequiv \recfnl{i}{}{} \) & Inequivalent computations\\ \midrule
\verb=\recfnl{e}{}{x}\conv= & \( \recfnl{e}{}{x}\conv \) &\multirow{2}{*}{Convergence} \\[6pt]
\tab \verb=\recfnl{e}{}{x}\conv[s]= & \( \recfnl{e}{}{x}\conv[s] \) & \\ \midrule
\verb=\recfnl{e}{}{x}\nconv= & \( \recfnl{e}{}{x}\nconv \) &\multirow{2}{*}{Divergence} \\[6pt]
\tab \verb=\recfnl{e}{}{x}\nconv[s]= & \( \recfnl{e}{}{x}\nconv[s] \) & \\ \midrule
\verb=\use{\recfnl{e}{Y}{x}}= & \( \use{\recfnl{e}{Y}{x}} \) & Use of a computation. \\ \midrule
\verb=\REset{e}= & \( \REset{e} \) & \multirow{4}{*}{c.e. sets} \\[6pt]
\verb=\REset[s]{e}= & \( \REset[s]{e} \) & \\[6pt]
\verb=\REset(X){e}= & \( \REset(X){e} \) & \\[6pt]
\verb=\REset[s](X){e}= & \( \REset[s](X){e} \) & \\ \midrule
\verb=\iREAop{e}(\eset)= & \multirow{2}{*}{\( \iREAop{e}(\eset) \)} &\multirow{2}{*}{1-REA operator} \\
\tab \verb=\reaop*{e}(\eset)= & & \\ \midrule
\verb=\alphaREAop{\alpha}(\eset)= & \multirow{2}{*}{\( \alphaREAop{\alpha}(\eset) \)} &\multirow{2}{*}{\( \alpha \)-REA operator} \\[6pt]
\tab \verb=\reaop{\alpha}(\eset)= & & \\[6pt]
\verb=\alphaREAop[f]{\alpha}(\eset)= & \multirow{2}{*}{\( \alphaREAop[f]{\alpha}(\eset) \)} & \multirow{2}{*}{with particular witness to uniformity}\\[6pt]
\tab \verb=\reaop[f]{\alpha}(\eset)= & & \\ \midrule
\verb=\Tdeg{d}= & \( \Tdeg{d} \) & Turing degree \\ \midrule
\verb=\Tjump{X}= & \multirow{2}{*}{\( \Tjump{X} \)} & \multirow{2}{*}{Turing jump} \\
\tab \verb=\jump{X}= & & \\ \midrule
\verb=\jjump{X}= & \( \jjump{X} \) & \\ \midrule
\verb=\jumpn{X}{n}= & \( \jumpn{X}{n} \) & \\ \midrule
\verb=\Tzero= & \( \Tzero \) & Computable degree \\ \midrule
\verb=\zeroj= & \( \zeroj \) & \\ \midrule
\verb=\zerojj= & \( \zerojj \) & \\ \midrule
\verb=\zerojjj= & \( \zerojjj \) & \\ \midrule
\verb=\zeron{n}= & \( \zeron{n} \) & \\ \midrule
\verb=X \Tequiv Y= & \multirow{2}{*}{\( X \Tequiv Y \)} & \multirow{2}{*}{Turing equivalence}\\
\tab \verb=X \Teq Y= & & \\ \midrule
\verb=X \nTequiv Y= & \multirow{2}{*}{\( X \nTequiv Y \)} & \multirow{2}{*}{Turing inequivalence} \\
\tab \verb=X \nTeq Y= & & \\ \midrule
\verb=X \Tlneq Y= & \( X \Tlneq Y \) & \\ \midrule
\verb=X \Tleq Y= & \( X \Tleq Y \) & \\ \midrule
\verb=X \Tgneq Y= & \( X \Tgneq Y \) & \\ \midrule
\verb=X \Tgeq Y= & \( X \Tgeq Y \) & \\ \midrule
\verb=X \Tgtr Y= & \( X \Tgtr Y \) & \\ \midrule
\verb=X \Tless Y= & \( X \Tless Y \) & \\ \midrule
\verb=X \nTleq Y= & \( X \nTleq Y \) & \\ \midrule
\verb=X \nTgeq Y= & \( X \nTgeq Y \) & \\ \midrule
\verb=\Tdeg{d} \Tdegjoin \Tdeg{d'}= & \( \Tdeg{d} \Tdegjoin \Tdeg{d'} \) & Join of degrees\\ \midrule
\verb=\Tdeg{d} \Tdegmeet \Tdeg{d'}= & \multirow{2}{*}{\( \Tdeg{d} \Tdegmeet \Tdeg{d'} \)} & \multirow{2}{*}{Meet of degrees (when defined)} \\
\tab \verb=\Tdeg{d} \Tmeet \Tdeg{d'}= & & \\ \midrule
\verb=X \Tplus Y= & \multirow{2}{*}{\( X \Tplus Y \)} & \multirow{4}{*}{Effective join of sets} \\
\tab \verb=X \Tjoin Y= & & \\
\verb=\TPlus_{i \in \omega} X_i= & \multirow{2}{*}{\( \TPlus_{i \in \omega} X_i \)} & \\
\tab \verb=\TJoin_{i \in \omega} X_i= & & \\ \midrule
% \verb=\ttSYM= & \( \ttSYM \) & \\ \midrule
\verb=X \ttlneq Y= & \( X \ttlneq Y \) & Truth table reducibilities\\ \midrule
\verb=X \ttleq Y= & \( X \ttleq Y \) & \\ \midrule
\verb=X \ttgneq Y= & \( X \ttgneq Y \) & \\ \midrule
\verb=X \ttgeq Y= & \( X \ttgeq Y \) & \\ \midrule
\verb=X \ttgtr Y= & \( X \ttgtr Y \) & \\ \midrule
\verb=X \ttless Y= & \( X \ttless Y \) & \\ \midrule
\verb=X \ttTleq Y= & \( X \ttTleq Y \) & \\ \midrule
\verb=X \ttTgeq Y= & \( X \ttTgeq Y \) & \\
\bottomrule
\end{xtabular} \\
\subsection{General Math Commands}
To disable these commands pass the option \verb=nomath=. \\
\begin{tabular}{l | l | l}\toprule
\verb=\eqdef= & \( \eqdef \) & Definitional equals\\ \midrule
\verb=\iffdef= & \( \iffdef \) & Definitional equivalence\\ \midrule
\verb=\aut= & \( \aut \) & Automorphisms of some structure\\ \midrule
\verb=\Ord= & \( \Ord \) & Set of ordinals\\\midrule
\verb=x \meet y= & \( x \meet y \) & \multirow{2}{*}{Meet operation} \\[6pt]
\verb=\Meet_{i\in \omega} x_i= & \( \Meet_{i\in \omega} x_i \) & \\ \midrule
\verb=x \join y= & \(x \join y \) & \multirow{2}{*}{Join operation} \\[6pt]
\verb=\Join_{i\in \omega} x_i= & \( \Join_{i\in \omega} x_i \) & \\ \midrule
\verb=\abs{x}= & \( \abs{x} \) & Absolute value\\ \midrule
\verb=\dom= & \( \dom \) & Domain \\ \midrule
\verb=\rng= & \( \rng \) & Range\\ \midrule
\verb=f\restr{X}= & \( f\restr{X} \) & Restriction\\ \midrule
\verb=\ordpair{x}{y}= & \( \ordpair{x}{y} \)& Ordered Pair\\ \midrule
\verb=f\map{X}{Y}= & \( f\map{X}{Y} \) & \multirow{2}{*}{Function specification} \\
\verb=\functo{f}{X}{Y}= & \( \functo{f}{X}{Y} \) &\\ \midrule
\verb=f \compfunc g= & \multirow{3}{*}{\( f \compose g \)} & \multirow{3}{*}{Function composition}\\
\tab \verb=f \funcomp g= & &\\
\tab \verb=f \compose g= & &\\ \midrule
\verb=\( \ensuretext{blah} \)= & \multirow{2}{*}{\( \ensuretext{blah} \)}& \multirow{2}{*}{Types argument in text mode} \\
\tab \verb=\ensuretext{blah}= & & \\
\bottomrule
\end{tabular} \\
\newpage
\subsection{Set Notation}
To disable these commands pass the option \verb=nosets=.\\
\begin{tabular}{l | l | l}\toprule
\verb=\set{(x,y)}{x > y}= & \( \set{(x,y)}{x > y} \) & \multirow{2}{*}{Set notation} \\[6pt]
\verb=\set{(x,y)}}{}= & \( \set{(x,y)}{} \) & \\ \midrule
\verb=\card{X}= & \( \card{X} \) & Cardinality \\ \midrule
\verb=X \union Y= & \( X \union Y \) & \multirow{2}{*}{Union} \\[6pt]
\verb=\Union_{i \in \omega} X_i= & \( \Union_{i \in \omega} X_i \) & \\ \midrule
\verb=X \isect Y= & \( X \isect Y \) & \multirow{2}{*}{Intersection} \\[6pt]
\verb=\Isect_{i \in \omega} X_i= & \( \Isect_{i \in \omega} X_i \) & \\ \midrule
\verb=X \cross Y= & \( X \cross Y \) & \multirow{2}{*}{Cartesian product (Cross Product)} \\[6pt]
\verb=\Cross_{i \in \omega} X_i= & \( \Cross_{i \in \omega} X_i \) & \\ \midrule
\verb=\powset{\omega}= & \( \powset{\omega} \) & Powerset \\ \midrule
\verb=\eset= & \( \eset \) & Emptyset abbreviation\\ \midrule
\verb=x \nin A= & \( x \nin A \) & not an element\\ \midrule
\verb=\setcmp{X}= & \( \setcmp{X} \) & Set compliment\\[6pt]
& \( \setminuscmp{X} \) & With option \verb=minussetcmp= \\ \midrule
\verb=X \setminus Y= & \( X \setminus Y \) & Set difference \\ \midrule
\verb=X \symdiff Y= & \( X \symdiff Y \) & Symmetric difference \\ \midrule
\verb=\interior X= & \( \interior X \) & Interior \\ \midrule
\verb=\closure X= & \( \closure X \) & Closure \\ \midrule
\bottomrule
\end{tabular} \\
\subsection{Delimiters}
To disable these commands pass the option \verb=nodelim=. \\
\begin{tabular}{l | l | l}\toprule
\verb=\gcode{\phi}= & \multirow{3}{*}{\( \gcode{\phi} \)} & \multirow{3}{*}{Godel Code/Corner Quotes}\\
\tab \verb=\godelnum{\phi}= & &\\
\tab \verb=\cornerquote{\phi}= & &\\ \midrule
\verb=\llangle x,y,z \rrangle= & \( \llangle x,y,z \rrangle \) & Properly spaced double angle brackets\\
\bottomrule
\end{tabular}
\subsection{Recursive vs. Computable}
To disable these commands pass the option \verb=nonames=. To use recursive, r.e. and recursively enumerable everywhere pass the option \verb=re=. To use computable, c.e. and computably enumerable everywhere pass the option \verb=ce=. To force REA and CEA use the options \verb=rea= and \verb=cea=. If none of these options are passed the macros will expand as below. All macros in this section work in both text and math modes.\\
\begin{tabular}{l | l }\toprule
\verb=\re= & \re \\ \midrule
\verb=\ce= & \ce \\ \midrule
\verb=\REA= & \REA \\ \midrule
\verb=\CEA= & \CEA \\ \midrule
\verb=\recursive= & \recursive \\ \midrule
\verb=\computable= & \computable \\ \midrule
\verb=\recursivelyEnumerable= & \recursivelyEnumerable \\ \midrule
\verb=\computablyEnumerable= & \computablyEnumerable \\ \midrule
\verb=\Recursive= & \Recursive \\ \midrule
\verb=\Computable= & \Computable \\ \midrule
\verb=\RecursivelyEnumerable= & \RecursivelyEnumerable \\ \midrule
\verb=\ComputablyEnumerable= & \ComputablyEnumerable \\ \midrule
\bottomrule
\end{tabular}
\subsection{Quantifiers \& Connectives}
To disable these commands pass the option \verb=noquants=. The commands \verb=\exists= and \verb=\forall= are standard but the package extends them.\\
\begin{tabular}{l | l | l}\toprule
\verb=\exists[x < y]= & \( \exists[x < y ] \) & \\[6pt]
\verb=\exists(x < y)= & \( \exists(x < y ) \) & \\ \midrule
\verb=\exists*= & \multirow{2}{*}{\( \exists* \)} & \\[6pt]
\tab \verb=\existsinf= & & \\[6pt]
\verb=\exists*[x < y]= & \( \exists*[x < y ] \) & \\[6pt]
\verb=\exists*(x < y)= & \( \exists*(x < y ) \) & \\ \midrule
\verb=\nexists[x < y]= & \( \nexists[x < y ] \) & \\[6pt]
\verb=\nexists(x < y)= & \( \nexists(x < y ) \) & \\ \midrule
\verb=\nexists*= & \multirow{2}{*}{\( \nexists* \)} & \\[6pt]
\tab \verb=\nexistsinf= & & \\[6pt]
\verb=\nexists*[x < y]= & \( \nexists*[x < y ] \) & \\[6pt]
\verb=\nexists*(x < y)= & \( \nexists*(x < y ) \) & \\ \midrule
\verb=\forall[x < y]= & \( \forall[x < y ] \) & \\[6pt]
\tab \verb=\forall(x < y)= & \( \forall(x < y ) \) & \\ \midrule
\verb=\forall*= & \multirow{2}{*}{\( \forall* \)} &\multirow{4}{*}{For almost all.} \\
\tab \verb=\forallae= & & \\[6pt]
\verb=\forall*[x < y]= & \( \forall*[x < y ] \) & \\[6pt]
\verb=\forall*(x < y)= & \( \forall*(x < y ) \) & \\ \midrule
\verb=\True= & \( \True \) & \\ \midrule
\verb=\False= & \( \False \) & \\ \midrule
\verb=\Land \phi_i= & \( \Land \phi_i \) & Operator form of and\\ \midrule
\verb=\Lor \phi_i= & \( \Lor \phi_i \) & Operator form of or\\ \midrule
\verb=\LLand \phi_i= & \( \LLand \phi_i \) & Infinitary conjunction\\ \midrule
\verb=\LLor \phi_i= & \( \LLor \phi_i \) & Infinitary disjunction\\
\bottomrule
\end{tabular}
\subsection{Spaces}
To disable these commands pass the option \verb=nospaces=.\\
\begin{tabular}{l | l | l}\toprule
\verb=\bstrs= & \( \bstrs \) & Finite binary strings \\ \midrule
\verb=\wstrs= & \( \wstrs \) & Finite sequences of integers \\ \midrule
\verb=\cantor= & \( \cantor \) & Cantor space \\ \midrule
\verb=\baire= & \( \baire \) & Baire space \\[6pt]
\verb=\Baire= & \( \Baire \) & Alternate baire space \\
\bottomrule
\end{tabular}
\subsection{Strings}
To disable these commands pass the option \verb=nostrings=.\\
\begin{tabular}{l | l | l}\toprule
\verb=\str{1,0,1}= & \( \str{1,0,1} \) & \multirow{2}{*}{Strings/Codes for strings} \\
\tab \verb=\code{5,8,13}= & \( \code{5,8,13} \) & \\ \midrule
\verb=\EmptyStr= & \( \EmptyStr \) & \multirow{2}{*}{Empty string} \\[6pt]
\tab \verb=\estr= & \( \estr \) & \\ \midrule
\verb=\decode{\sigma}{3}= & \( \decode{\sigma}{3} \) & Alternate notation for \( \sigma(3) \) \\ \midrule
\verb=\sigma\concat\tau= & \( \sigma\concat\tau \) & \multirow{2}{*}{Concatenation} \\[6pt]
\verb=\sigma\concat[0]= & \( \sigma\concat[0] \) & \\ \midrule
\verb=\strpred{\sigma}= & \( \strpred{\sigma} \) & The immediate predecessor of \( \sigma \) \\ \midrule
\verb=\lh{\sigma}= & \( \lh{\sigma} \) & Length of \( \sigma \) \\ \midrule
\verb=\sigma \incompat \tau= & \( \sigma \incompat \tau \) & \multirow{2}{*}{Incompatible strings} \\
\tab \verb=\sigma \incomp \tau= & \( \sigma \incomp \tau \) & \\ \midrule
\verb=\sigma \compat \tau= & \( \sigma \compat \tau \) & Compatible strings \\ \midrule
\verb=\pair{x}{y}= & \( \pair{x}{y} \) & Code for the pair \( (x,y) \) \\ \midrule
\verb=\setcol{X}{n}= & \( \setcol{X}{n} \) & \( \set{y}{\pair{n}{y} \in X} \) \\ \midrule
\verb=\setcol{X}{\leq n}= & \( \setcol{X}{\leq n} \) & \( \set{ \pair{x}{y}}{\pair{x}{y} \in X \land x \leq n} \) \\
\bottomrule
\end{tabular}
\subsection{Trees}
To disable these commands pass the option \verb=notrees=.\\
\begin{tabular}{l | l | l}\toprule
\verb=\CBderiv{T}= & \( \CBderiv{T} \) & \multirow{2}{*}{Cantor-Bendixson Derivative} \\[6pt]
\verb=\CBderiv[\alpha]{T}= & \( \CBderiv[\alpha]{T} \) & \\ \midrule
\verb=\pruneTree{T}= & \( \pruneTree{T} \) & \( \set{\sigma \in T}{\exists(g)(g \in [T] \land \sigma \subset g)} \) \\ \midrule
\verb=\hgt{T}= & \( \hgt{T} \) & \\
\bottomrule
\end{tabular}
\subsection{Set Relations}
To disable these commands pass the option \verb=nosetrels=.\\ Note that many of these commands are extensions of existing commands.
\begin{tabular}{l | l | l}\toprule
\verb=X \subset* Y= & \( X \subset* Y\) & \multirow{2}{*}{All but finitely much of \( X \) is in \( Y \)} \\
\verb=X \subseteq* Y= & \( X \subseteq* Y\) & \\ \midrule
\verb=X \supset* Y= & \( X \supset* Y\) & \multirow{2}{*}{All but finitely much of \( Y \) is in \( X \)} \\
\verb=X \supseteq* Y= & \( X \supseteq* Y\) & \\ \midrule
\verb=X \eq Y= & \( X \eq Y\) & Macro for \verb~=~ \\ \midrule
\verb=X \eq* Y= & \multirow{2}{*}{\( X \eq* Y\)} & \multirow{2}{*}{Equal mod finite} \\
\tab \verb=X \eqae Y= & & \\ \midrule
\verb=X \infsubset Y= & \( X \infsubset Y\) & \( X \subset Y \land \card{Y \setminus X}=\omega \) \\ \midrule
\verb=X \infsubset* Y= & \( X \infsubset* Y\) & \( X \subset* Y \land \card{Y \setminus X}=\omega \) \\ \midrule
\verb=X \infsupset Y= & \( X \infsupset Y\) & \( Y \subset X \land \card{X \setminus Y}=\omega \) \\ \midrule
\verb=X \infsupset* Y= & \( X \infsupset* Y\) & \( Y \subset* X \land \card{X \setminus Y}=\omega \) \\ \midrule
\verb=X \majsubset Y= & \( X \majsubset Y\) & \( X \) is a major subset of \( Y \) \\ \midrule
\verb=X \majsupset Y= & \( X \majsupset Y\) & \( Y \) is a major subset of \( X \) \\
\bottomrule
\end{tabular}
\subsection{Ordinal Notations}
To disable these commands pass the option \verb=noordinalnotations=.\\
\begin{tabular}{l | l | l}\toprule
\verb=\wck= & \( \wck \) & First non-computable ordinal \\ \midrule
\verb=\ordzero= & \( \ordzero \) & Notation for ordinal \( 0 \)\\ \midrule
\verb=\abs{\alpha}= & \( \abs{\alpha} \) & Ordinal \( \alpha \) denotes \\ \midrule
\verb=\kleeneO= & \multirow{2}{*}{\( \kleeneO \)} & \multirow{2}{*}{Set of ordinal notations} \\[6pt]
\tab \verb=\ordNotations= & & \\[6pt]
\verb=\kleeneO*= & \multirow{3}{*}{\( \kleeneO* \)} & \multirow{3}{*}{Unique set of ordinal notations} \\[6pt]
\tab \verb=\uniqOrdNotations= & & \\[6pt]
\tab \verb=\kleeneOuniq= & & \\[6pt]
\verb=\kleeneO(X)= & \( \kleeneO(X) \) & Relativized ordinal notations \\[6pt]
\verb=\kleeneO[\alpha]= & \( \kleeneO[\alpha] \) & Ordinal notations for ordinals \( < \abs{\alpha} \) \\[6pt]
\verb=\kleeneO*(X)[\alpha]= & \( \kleeneO*(X)[\alpha] \) & \\ \midrule
\verb=\alpha \kleeneless \beta= & \( \alpha \kleeneless \beta \) & Ordering on notations \\ \midrule
\verb=\alpha \kleenel \beta= & \( \alpha \kleenel \beta \) & \\ \midrule
\verb=\alpha \kleeneleq \beta= & \( \alpha \kleeneleq \beta \) & \\ \midrule
\verb=\alpha \kleenegtr \beta= & \( \alpha \kleenegtr \beta \) & \\ \midrule
\verb=\alpha \kleenegeq \beta= & \( \alpha \kleenegeq \beta \) & \\ \midrule
\verb=\alpha \kleenePlus \beta= & \( \alpha \kleenePlus \beta \) & Effective addition of notations \\ \midrule
\verb=\alpha \kleeneMul \beta= & \( \alpha \kleeneMul \beta \) & Effective multiplication of notations \\ \midrule
\verb=\kleenelim{\lambda}{n}= & \( \kleenelim{\lambda}{n} \) & The \( n \)-th element in effective limit defining notation \( \lambda \)\\ \midrule
\verb=\kleenepred{\alpha}= & \( \kleenepred{\alpha} \) & Predecessor of \( \alpha \) if defined \\ \midrule
\verb=\kleenehgt{R}= & \multirow{2}{*}{\( \kleenehgt{R} \)} & Heigh of computable relation \( R \) \\
\tab \verb=\hgtO{R}= & & \\
\bottomrule
\end{tabular}
\subsection{Forcing}
To disable these commands pass the option \verb=noforcing=.\\
\begin{tabular}{l | l | l}\toprule
\verb=\sigma \forces \phi= & \multirow{2}{*}{\( \sigma \forces \phi \)} & \multirow{2}{*}{\( \sigma \) forces \( \phi \)}\\
\tab \verb=\sigma \frc \phi= & & \\
\verb=\sigma \forces(X) \phi= & \( \sigma \forces(X)[T] \phi \) & \( \phi \) is formula relative to \( X \) \\
\verb=\sigma \forces[T] \phi= & \( \sigma \forces(X)[T] \phi \) & Local forcing on \( T \)\\
\verb=\sigma \forces* \phi= & \( \sigma \forces* \phi \) & Strong forcing \\
\bottomrule
\end{tabular}
\subsection{Syntax}
To disable these commands pass the option \verb=nosyntax=.\\ All syntax classes can be relativized with an optional argument in square brackets even when not listed below. Only the \( \Delta \) formula classes are listed below since the syntax is identical for \( \Sigma \) and \( \Pi \). Capitalizing the first letter gives the boldface version in all cases (except the computable infinitary formulas).
\begin{xtabular}{l | l | l}\toprule
\verb=\Cdeltan[X]{\alpha}= & \( \Cdeltan[X]{2} \) & The computable \( \delta^{X}_\alpha \) formulas \\ \midrule
\verb=\deltan{2}= & \( \deltan{2} \) & \\ \midrule
\verb=\deltan[X]{2}= & \( \deltan[X]{2} \) & \\ \midrule
\verb=\deltaZeroN[X]{2}= & \multirow{2}{*}{\( \deltaZeroN[X]{2} \)} & \\
\tab \verb=\deltazn[X]{2}= & & \\ \midrule
\verb=\deltaZeroOne[X]= & \multirow{2}{*}{\( \deltaZeroOne[X] \)} & \\
\tab \verb=\deltazi[X]= & & \\ \midrule
\verb=\deltaZeroTwo[X]= & \multirow{2}{*}{\( \deltaZeroTwo[X] \)} & \\
\tab \verb=\deltazii[X]= & & \\ \midrule
\verb=\deltaZeroThree[X]= & \multirow{2}{*}{\( \deltaZeroThree[X]\)} & \\
\tab \verb=\deltaziii[X]= & & \\ \midrule
\verb=\deltaOneN[X]{2}= & \multirow{2}{*}{\( \deltaOneN[X]{2} \)} & \\
\tab \verb=\deltaIn[X]{2}= & & \\ \midrule
\verb=\deltaOneOne[X]= & \multirow{2}{*}{\( \deltaOneOne[X] \)} & \\
\tab \verb=\deltaIi[X]= & & \\ \midrule
\verb=\deltaOneTwo[X]= & \multirow{2}{*}{\( \deltaOneTwo[X] \)} & \\
\tab \verb=\deltaIii[X]= & & \\ \midrule
\verb=\deltaOneThree[X]= & \multirow{2}{*}{\( \deltaOneThree[X] \)} & \\
\tab \verb=\deltaIiii[X]= & & \\ \midrule
\verb=\Deltan{2}= & \( \Deltan{2} \) & \\ \midrule
\verb=\logic{\omega_1}{\omega}= & \( \logic{\omega_1}{\omega} \) & Indicates the kind of infinitary logic\\
\bottomrule
\end{xtabular}
\end{document}
|