summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/rbt-mathnotes/examples/multivar.tex
blob: fc026754f68fadf2273e511f15460c849f1f2004 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
%% multivar.tex
%% Copyright 2021 Rebecca B. Turner.
%
% This work may be distributed and/or modified under the
% conditions of the LaTeX Project Public License, either version 1.3
% of this license or (at your option) any later version.
% The latest version of this license is in
%   http://www.latex-project.org/lppl.txt
% and version 1.3 or later is part of all distributions of LaTeX
% version 2005/12/01 or later.
%
% This work has the LPPL maintenance status `maintained'.
% 
% The Current Maintainer of this work is Rebecca B. Turner.
%
% This work consists of the files:
%     README.md
%     rbt-mathnotes.tex
%     rbt-mathnotes.sty
%     rbt-mathnotes.cls
%     rbt-mathnotes-util.sty
%     rbt-mathnotes-messages.sty
%     rbt-mathnotes-hw.cls
%     rbt-mathnotes-formula-sheet.cls
%     examples/cheat-sheet.tex
%     examples/multivar.tex
%     examples/topology-hw-1.tex
% and the derived files:
%     rbt-mathnotes.pdf
%     examples/cheat-sheet.pdf
%     examples/multivar.pdf
%     examples/topology-hw-1.pdf

\documentclass[knowledge]{rbt-mathnotes}
\title{Multivariable Calculus}
\mathnotes{
  instructor  = Prof.~Corey Bregman ,
  name        = Rebecca Turner ,
  email       = rebeccaturner@brandeis.edu ,
  course      = \textsc{math} 20a (multivariable calculus) ,
  institution = Brandeis University ,
  semester    = Fall 2019 ,
}

\ExplSyntaxOn
\NewDocumentCommand \normalized { m }
  { \frac { #1 } { \| #1 \| } }
\let \gr \grad
\def \ddx { \frac{d}{dx} }
% VL = vector literal
\NewDocumentCommand \vl { m } { \left\langle #1 \right\rangle }
\ExplSyntaxOff

% \makeatletter
% \@ifpackageloaded{knowledge}
%   {
\knowledge{notion, index={Derivative!Partial}}
  | partial derivative
\AtBeginDocument{\index{Partial derivative|see{Derivative, partial}}}

\knowledge{notion, index={Derivative!Directional}}
  | directional derivative
\AtBeginDocument{\index{Directional derivative|see{Directional, partial}}}

\knowledge{notion, index=Unit vector}
  | unit vector

\knowledge{notion, index=Limit}
  | limit

\knowledge{notion, index={Differentiable functions}}
  | differentiable

\knowledge{notion, index=Gradient}
  | gradient

\knowledge{notion, index={Neighborhood (topology)}}
  | neighborhood

\knowledge{notion, index=Local maximum}
  | local maximum
  | local maxima

\knowledge{notion, index=Local minimum}
  | local minimum
  | local minima

\knowledge{notion, index=Absolute maximum}
  | absolute maximum
  | absolute maxima

\knowledge{notion, index=Absolute minimum}
  | absolute minimum
  | absolute minima

\knowledge{notion, index=Local extremum}
  | local extremum
  | local extrema

\knowledge{notion, index=Critical point}
  | critical point

\knowledge{notion, index=Saddle point}
  | saddle point

\knowledge{notion, index={Lagrange multiplier}}
  | Lagrange multiplier
  | Lagrange multipliers
  | the method of Lagrange multipliers

\knowledge{url={https://en.wikipedia.org/wiki/Joseph-Louis_Lagrange}}
  | Joseph-Louis Lagrange
  | Lagrange

\knowledge{url={https://en.wikipedia.org/wiki/Marquis_de_Condorcet}}
    | Marquis de Condorcet

  \knowledge{url={https://en.wikipedia.org/wiki/Adrien-Marie_Legendre}}
    | Adrien-Marie Legendre
%   }
%   {}
% \makeatother
\date{2019-10-23}
\begin{document}
\maketitle
\tableofcontents

\chapter{Vectors}
I already know about vectors --- I've been taught them in about five
different courses so far. I'm skipping this.

\chapter{Partial derivatives}

If we have a function of multiple variables, say
\[f(a_1, a_2, a_3, \dots),\]
we might care about the change of $f$ with respect to only one variable. By
picking a fixed value for all but one of the variables, we can determine
this.

Say that we want to find the "partial derivative" of $f$ with respect to
$a_2$; then, by constructing $g(a_2) = f(c_1, a_2, c_3, \dots)$, we've
created a function of \emph{one} variable, which we can differentiate as
usual.
\begin{notation}
  We write the "partial derivative" of a function $f$ at a point $\vec p$ 
  with respect to a basis element $a$ of $\vec p$ as \fbox{$f_a(\vec p)$.}

  We may also use much more common notation
  \[\pd[f]{a},\]
  using the "partial derivative" symbol $\partial$, a stylized cursive
  ``d''.\footnote{Introduced by "Marquis de Condorcet" in 1770, who used it
  to represent a partial \emph{differential}, i.e.~the $dy$ or $dx$ in
  $dy/dx$, and then adapted in 1786 by "Adrien-Marie Legendre" for use as the
  partial derivative.}

  In the interest of completeness, I'll exhaustedly note that the book also
  uses, on occasion, the notation $D_a f$.
\end{notation}

We can also calculate ""higher partial derivatives"" --- similarly to the
higher ordinary derivatives. The notation is a fairly clear extension:
\[(f_x)_x = f_{xx} = \pd x \left( \pd[f]{x} \right) = \pd[^2 f]{x^2}.\]

\begin{thm}[Clairaut's Theorem]
  Suppose $f$ is defined on a neighborhood $N$ about a point $\vec p$.
  If $f_{xy}$ and $f_{yx}$ are continuous in $N$, then $f_{xy}(\vec p) =
  f_{yx}(\vec p)$.
\end{thm}

\section{Gradients}
\begin{notation}
  This ridiculous textbook denotes the "partial derivative" of a function
  $f(x, y) = z$ with respect to  $x$ as $f_x(x, y)$.
\end{notation}

\begin{defn}
  The ""directional derivative"" of a function $f$ at $(x_0, y_0)$ in the
  direction of a "unit vector" $\vec u = \langle a, b \rangle$ is
  \[D_{\vec u} f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) -
  f(x_0, y_0)}{h},\]
  if the "limit" exists.
\end{defn}

If $f : \Re^2 \mapsto \Re$ is a "differentiable" function, then $f$ has a
"directional derivative" in the direction of any "unit vector" $\vec u =
\langle a, b \rangle$ of
\begin{alignat*}{1}
  D_{\vec u} f(x, y) &= f_x(x, y) a + f_y(x, y) b.
\intertext{Or, if $\vec u = \langle \cos \theta, \sin \theta \rangle$, then}
  D_{\vec u} f(x, y) &= f_x(x, y) \cos \theta + f_y(x, y) \sin \theta.
\end{alignat*}

Noticing that the "directional derivative" of a function can be written as
the dot product of two vectors,
\begin{alignat*}{1}
  D_{\vec u} f(x, y) &= f_x(x, y) a + f_y(x, y) b \\
    &= \langle f_x(x, y), f_y(x, y) \rangle \cdot \langle a, b \rangle \\
    &= \langle f_x(x, y), f_y(x, y) \rangle \cdot \vec u,
\end{alignat*}
we call the first vector $\langle f_x(x, y), f_y(x, y) \rangle$ the
""gradient"" of $f$ and denote it as $\grad f$.

\begin{defn}
  The "gradient" of a function $f$ of two variables is defined as
  \[\grad f(x, y) = \langle f_x(x, y), f_y(x, y) \rangle
    = \frac{\partial f}{\partial x} \vec i + \frac{\partial f}{\partial y}
    \vec j.\]
\end{defn}

Therefore, we can rewrite the "directional derivative" of a function $f$
as
\[D_{\vec u} f(x, y) = \grad f(x, y) \cdot \vec u.\]
It's intuitive, then, that the maximum value of the "directional derivative"
is $|\grad f(x, y)|$, when $\vec u$ is parallel to $\grad f(x, y)$.

\section{Maximum and minimum values}
\begin{defn}
  $f : A^k \mapsto B$ has a ""local maximum"" at $\vec a$ if for some
  "neighborhood" $N \subset A$ about $\vec a$, for all $\vec x \in N$,
  $f(\vec x) \le f(\vec a)$.

  Conversely, if $f(\vec x) \ge f(\vec a)$, then $f(\vec a)$ is a ""local
  \emph{minimum}@local minimum"".

  If the statement also holds true for $N = A$, then $\vec a$ is an
  ""absolute maximum"" (or ""absolute minimum"").
\end{defn}

If $f$ has a "local maximum" or "minimum@local minimum" at $\vec a$ and the
partials of $f$ exist at $\vec a$, then $\partial f/\partial x (\vec a) = 0$
and $f_y(a, b) = 0$; geometrically, the tangent plane to a maximum or
minimum must be horizontal.

\begin{defn}
  A point $\vec a$ is called a ""critical point"" of $f$ if $f_x(\vec a) =
  0$ or $f_x(\vec a)$ doesn't exist for all variables of $f$.
\end{defn}

\begin{defn}
  A ""saddle point"" of a function is a "critical point" which is not a
  "local extremum" of the function.
\end{defn}

If $(a, b)$ is a critical point of $f$, then let
\[D = D(a, b) = f_{xx} (a,b) \, f_{yy} (a,b) - (f_{xy}(a,b))^2.\]
If $D < 0$, then $(a, b)$ is a "saddle point" of $f$.

\section{Lagrange multipliers}
Often we want to find the "local extrema" of a function subject to
constraints, i.e.~maximizing the volume of an object while keeping its
surface area constant. The method of "Lagrange multipliers"\footnote{After
"Joseph-Louis Lagrange" (1736--1813), ``an Italian Enlightenment Era
mathematician and astronomer [who] made significant contributions to the
fields of analysis, number theory, and both classical and celestial
mechanics.''} is a strategy for doing this.

To find extrema of $f(\vec p)$ constrained with $g(\vec p) = k$,
we look for extrema of $f$ that are restricted to lie on the level curve
$g(\vec p) = k$; it happens that the largest $c$ such that $f(\vec p) = c$
intersects with  $g(\vec p) = k$ when the two level curves are tangent with
each other, i.e.~they have identical normals. In other words, for some
scalar $\lambda$, $\grad f(\vec p) = \lambda \grad g(\vec p)$.

More formally, suppose $f$ has an extrema at $\vec p_0$. Then, let the level
surface generated by the constraint $g(\vec p) = k$ be called $S$, where
$\vec p_0 \in S$. Then, let $C$ be the set of points given by $\vec r(t)$ such
that $C \subset S$ and $\vec p_0 \in C$. Further, let $t_0$ be a point such
that $\vec r(t_0) = \vec p_0$.

Then, $f \after \vec r$ gives the values of $f$ on the curve $C$. $f$ has an
extrema at $\vec p$, so $f \after \vec r$ must also, and $(f \after \vec
r)'(t_0) = 0$. If $f$ is "differentiable", we can use the chain rule to
write
\begin{alignat*}{1}
  0 &= (f \after \vec r)'(t_0) \\
  &= \grad f(\vec p_0) \cdot \vec r'(t_0).
\end{alignat*}
Therefore, the gradient of $f$ is orthogonal to the tangent of every such
curve $C$. We also know that $\grad g(\vec p_0)$ is orthogonal to $\vec
r'(t_0)$, so the gradients of $f$ and $g$ at $\vec p_0$ must be parallel.
Therefore, if $\grad g(\vec p_0) \ne 0$, there exists some $\lambda$ such
that
\begin{equation}
  \grad f(\vec p_0) = \lambda \grad g(\vec p_0),
\end{equation}
where the constant $\lambda$ is called a "Lagrange multiplier".

Then, the ""method of Lagrange multipliers"" gives us a process to
find the maximum and minimum values of a function $f(\vec p)$ subject to the
constraint  $g(\vec p) = k$, where $\vec p \in \Re^n$. To use the method of
Lagrange multipliers, we assume that the extreme values exist and that
$\grad g \ne 0$ on the level surface $g(\vec p) = k$.
\begin{enumerate}
  \item Find all values of $\vec p$ and $\lambda$ such that
  \begin{alignat*}{1}
    \grad f(\vec p) &=  \lambda \grad g(\vec p) \\
  \text{and}\qquad g(\vec p) &= k. \\
  \end{alignat*}

  \item Next, evaluate $f$ at all of the points found in the first step. The
  largest of these values is the maximum value of $f$, and the smallest of
  them is the minimum value.
\end{enumerate}

\chapter{Multiple integrals}
Single integrals are good for functions of one variable. To integrate
functions of multiple variables, we use multiple integrals. Straightforward
enough.

Multiple integrals allow us to calculate things like surface areas and
volumes of geometric objects.

In general, for some double integral
\[\underbrace{\int_a^b \overbrace{\int_c^d f(x,y)\,dx}^{\mathclap{\text{We
treat $y$ as constant while evaluating this.}}}\,dy,}_{\mathclap{\text{We've
eliminated $x$ from the equation before evaluating this.}}}\]
we do the opposite of partial differentiation and treat all variables other
than the one we're integrating for as constant, repeatedly, until we've
integrated with respect to all variables; each step in this process is
called, predictably, ""partial integration"".

\section{Double integrals}
For an axis-aligned rectangle $R$ on the $xy$-plane from $(x_0, y_0)$ to $(x_1,
y_1)$, the area of a function $f(x, y)$ under $R$ is given by the double
integral
\begin{alignat*}{1}
  \iint_{Y} f(x,y)\,dA &= \underbrace{\int_{x_0}^{x_1} \int_{y_0}^{y_1}
    f(x,y)\,dy\,dx}_{\mathclap{\text{This is the iterated form of the
    integral.}}} \\
    &= \int_{y_0}^{y_1} \int_{x_0}^{x_1} f(x,y)\,dx\,dy, \\
\end{alignat*}
where we use $\iint_R$ to mean ``integrating over the area of $R$'' and
``$dA$'' to mean ``with respect to area.''

The right-hand side of the equation above is called the ""iterated form"",
or an \reintro*"iterated integral".

We can also iterate over funkier regions if we're willing to play with the
limits of integration a bit. The easiest regions to integrate over are the
ones that are easily expressible as the region bounded above and below by
functions of one variable, e.g. ``the region under the line $y = 2x$ and
above the line $y = x^2$'' (note that this is bounded on the left at $x = 0$
and on the right at $x = 2$).

% Area[ImplicitRegion[x^2 < y \[And] y < 2 x, {x, y}
The area of that region is expressed by the integral
\begin{alignat*}{1}
  A &= \int_0^2 \int_{x^2}^{2x}\,dy\,dx \\
    &= \int_0^2 {\bigg[ x \bigg]}_{x^2}^{2x}\,dx \\
    &= \int_0^2 {\bigg( 2x-x^2 \bigg)}\,dx \\
    &= {\left[ x^2 - \frac{x^3}{3} \right]}_0^2 \\
    &= 4 - \frac{8}{3} = \frac{4}{3}.
\end{alignat*}

A more complicated region might be ``the region under the paraboloid $z =
x^2 + y^2$ and above the region in the $xy$-plane bounded by $y = \sqrt{x}$
and $y=1-\cos x$.''

We can build larger regions out of pieces, by summing smaller integrals.

\section{Polar coordinates}
Use the conversions
\begin{alignat*}{1}
  r &= \sqrt{x^2+y^2} \\
  x &= r\cos\theta \\
  y &= r\sin\theta \\
\intertext{for the coordinates and then we have that if $R$ is a ``polar
rectangle'' (arc-shaped region bounded by angles and radii) from $r=a$ to
$r=b$ and $\theta = \alpha$ to $\theta = \beta$, we have}
  \iint_R f(x,y)\,dA &= \int_\alpha^\beta \int_a^b f(r\cos\theta,
  r\sin\theta)r\,dr\,d\theta, \\
\intertext{which makes our lives easier for circly areas and volumes. Don't
forget to multiply by $r$.
\endgraf
For squiggly and varying radii, we can use functions $h_1(\theta)$ and
$h_2(\theta)$ instead of constants $a$ and $b$:}
  \iint_D f(x,y)\,dA &= \int_\alpha^\beta \int_{h_1(\theta)}^{h_2(\theta)} f(r\cos\theta,
  r\sin\theta)r\,dr\,d\theta. \\
\end{alignat*}

\section{Cylindrical coordinates}
Just add $z$.

\section{Spherical coordinates}
I can never remember how these work. If we have a point $P$, and we drop it
down to the $xy$-plane, the angle between the positive $x$-axis and the
segment from the origin to $P$ is $\theta$.

Next, the angle between the positive $z$-axis and the segment from the origin
to $P$ is $\phi$.

Finally, the length of the segment from the origin to $P$ is $\rho$.

The conversions
\begin{alignat*}{1}
  x &= \rho \sin \phi \cos \theta \\
  y &= \rho \sin \phi \sin \theta \\
  z &= \rho \cos \phi \\
\intertext{give us the integral-conversion for the spherical wedge bounded
by $a \le \rho \le b, \alpha \le \theta \le \beta, c \le \phi \le d$ as}
  \iiint_E f(x,y,z)\,dV &= \int_c^d \int_\alpha^\beta \int_a^b
    f(\rho \sin\phi \cos\theta,\,
      \rho \sin\phi \sin\theta,\,
      \rho \cos \theta)
    [\rho^2 \sin\phi]
    \,d\rho\,d\theta\,d\phi. \\
\end{alignat*}
Very gross!

\section{Surface area}

For $f(x,y)$ with $f_x$, $f_y$ continuous, the surface area of $f$ within
a region $D$ is
\[A = \iint_D \left(\sqrt{f_x(x,y)^2 + f_y(x,y)^2 + 1}\right) \,dA.\]

% Need notes on:
%   - Change of variables (in multiple integrals)

\chapter{Vector calculus}
A vector field is a mapping $\R^k \mapsto \R^n$; for each point in
$k$-dimensional Euclidean space, we associate an $n$-dimensional vector.
These vectors can represent velocity, distance, or anything else, and come
up in all sorts of applied fields.

We'll be mostly concerned with vector fields $\R^2\mapsto\R^2$ and
$\R^3\mapsto\R^3$.

If we have a plane curve given by the vector equation
\begin{alignat*}{1}
  \vec r(t) &= \left< x(t), y(t) \right> \qquad a \le t \le b, \\
\intertext{then the line integral of $f$ along $\vec r(t)$ from $a$ to $b$
is}
  & \int_a^b f(x(t), y(t)) \sqrt{{\left(\dd[x]{t}\right)}^2 +
  {\left(\dd[y]{t}\right)}^2}\,dt,
\end{alignat*}
i.e.\ the length of the curve multiplied, at each point, by the value of the
vector field $f$ at that point.

% Need notes on:
% 16.1, 16.2, 16.3, 16.4, 16.5,
% Need to update cheat sheet.

\appendix
\chapter{Common formulas for derivatives and integrals}
\backmatter
\section{Derivatives}

\begin{alignat*}{2}
  \ddx&\;& (f + g) &= f' + g' \\
  \ddx&& x^n &= nx^{n - 1} \\
  \ddx&& (fg) &= fg' + f'g \\
  \ddx&& \frac{h}{l} &= \frac{l h' - h l'}{l^2} \\
  \ddx&& f(g(x)) &= f'(g(x)) g'(x) \quad\text{(Chain rule.)} \\
  \ddx&& b^x &= b^x \ln b \\
  \ddx&& f^{-1}(x) &= \frac{1}{f'(f^{-1}(x)} \\
  \ddx&& c &= 0 \\
  \ddx&& c\,f &= c\,f' \\
  \ddx&& e^x &= e^x \\
  \ddx&& e^{f(x)} &= f'(x) e^{f(x)} \quad\text{(By the chain rule.)}  \\
  \ddx&& \ln x &= \frac{1}{x} \\
  \ddx&& \log_b x &= \frac{1}{x \ln b} \\
  \ddx&& [\vec u \cdot \vec v] &= \vec u' \cdot \vec v + \vec u \cdot \vec v' \\
  \ddx&& [\vec u \times \vec v] &= \vec u' \times \vec v + \vec u \times \vec v' \\
\end{alignat*}

\subsection{Trigenometric}
\begin{alignat*}{2}
  \ddx&\;& \sin x &= \cos x \\
  \ddx&& \cos x &= -\sin x \\
  \ddx&& \tan x &= \sec^2 x \\
  \ddx&& \cot x &= -\csc^2 x \\
  \ddx&& \sec x &=  \sec x \tan x \\
  \ddx&& \csc x &=  -\csc x \cot x \\
  % inverse
  \ddx&& \sin^{-1} x &= \frac{ 1}{\sqrt{1 - x^2}} \\
  \ddx&& \cos^{-1} x &= \frac{-1}{\sqrt{1 - x^2}} \\
  \ddx&& \tan^{-1} x &= \frac{ 1}{1 + x^2} \\
  \ddx&& \cot^{-1} x &= \frac{-1}{1 + x^2} \\
  \ddx&& \sec^{-1} x &= \frac{ 1}{|x| \sqrt{x^2 - 1}} \\
  \ddx&& \csc^{-1} x &= \frac{-1}{|x| \sqrt{x^2 - 1}} \\
\end{alignat*}

\section{Integrals}
See also:
\emph{\href{https://www.whitman.edu/mathematics/calculus/calculus_08_Techniques_of_Integration.pdf}{Techniques
of Integration}}.
\begin{alignat*}{1}
  \int x^n\,dx &= \frac{x^{n + 1}}{n + 1} + C \quad \text{when } n \ne -1 \\
  \int x^{-1}\,dx &= \ln|x| + C \\
  \int e^x\,dx &= e^x + C \\
  \dd{t} \int_{a(t)}^{b(t)} g(s)\,ds &= b'(t) g(b(t)) - a'(t) g(a(t))
  \quad\text{(Leibniz' rule.)} \\
  \int uv'\,dx &= uv - \int u'v\,dx \\
\end{alignat*}

\subsection{Trigenometric}
\begin{alignat*}{1}
  \int \sin x\,dx &= -\cos x + C \\
  \int \cos x\,dx &= \sin x + C \\
  \int \sec^2 x\,dx &= \tan x + C \\
  \int \sec x \tan x\,dx &= \sec x + C \\
  \int \frac{1}{1 + x^2}\,dx &= \tan^{-1} x + C \\
  \int \frac{1}{\sqrt{1 + x^2}}\,dx &= \sin^{-1} x + C \\
\end{alignat*}

\printindex
\end{document}