1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
|
%%
%% A DANTE-Edition example
%%
%% Example 35-01-20 on page 758.
%%
%% Copyright (C) 2011 Herbert Voss
%%
%% It may be distributed and/or modified under the conditions
%% of the LaTeX Project Public License, either version 1.3
%% of this license or (at your option) any later version.
%%
%% See http://www.latex-project.org/lppl.txt for details.
%%
%%
%% ====
% Show page(s) 3,5,7,9,11,13
\documentclass[paper=screen,mode=present,display=slidesnotes, style=ciment,nopagebreaks,fleqn]{powerdot}
\pagestyle{empty}
\usepackage[utf8]{inputenc}
\usepackage{amsmath,esint}
\title{The theorems of Green}
\author{Herbert Vo\ss}
\newcommand*\Q[2]{\frac{\partial #1}{\partial #2}}
\pdsetup{rf=\textbf{Berlin},logohook=lb,logopos={5pt,5pt},
logocmd={\includegraphics[height=.5cm]{images/UIT}},trans=Dissolve}
\documentclass[paper=screen,mode=present,display=slidesnotes,
style=ciment,nopagebreaks,fleqn,ngerman]{powerdot}
\begin{document}
\maketitle
\section{\texttt{onslide}}
\begin{slide}{The theorems of Green}
\onslide{1-2}{the first theorem:
\begin{align}\label{green1}
\underset{\mathcal{G}\quad}\iiint\!
\left[u\nabla^{2}v+\left(\nabla u,\nabla v\right)\right]\mathrm{d}^{3}V
=\underset{\mathcal{S}\quad}\oiint u\Q{v}{n}\mathrm{d}^{2}A
\end{align}}
\onslide{2}{the second theorem:
\begin{align}\label{green2}
\underset{{\mathcal{G}\quad}}\iiint\!%
\left[u\nabla^{2}v-v\nabla^{2}u\right]\mathrm{d}^{3}V%
=\underset{\mathcal{S}\quad}\oiint%
\left(u\Q{v}{n}-v\Q{u}{n}\right)\mathrm{d}^{2}A
\end{align}}
\onslide{3}{There are no more equations to show!}
\end{slide}
\section{\texttt{onslide+}}
\begin{slide}{The theorems of Green}
\onslide+{1-2}{the first theorem:
\begin{align}\label{green3}
\underset{\mathcal{G}\quad}\iiint\!
\left[u\nabla^{2}v+\left(\nabla u,\nabla v\right)\right]\mathrm{d}^{3}V
=\underset{\mathcal{S}\quad}\oiint u\Q{v}{n}\mathrm{d}^{2}A
\end{align}}
\onslide+{2}{the second theorem:
\begin{align}\label{green4}
\underset{{\mathcal{G}\quad}}\iiint\!%
\left[u\nabla^{2}v-v\nabla^{2}u\right]\mathrm{d}^{3}V%
=\underset{\mathcal{S}\quad}\oiint%
\left(u\Q{v}{n}-v\Q{u}{n}\right)\mathrm{d}^{2}A
\end{align}}
\onslide+{3}{There are no more equations to show!}
\end{slide}
\section{\texttt{onslide*}}
\begin{slide}{The theorems of Green}
\onslide*{1-2}{the first theorem:
\begin{align}\label{green5}
\underset{\mathcal{G}\quad}\iiint\!
\left[u\nabla^{2}v+\left(\nabla u,\nabla v\right)\right]\mathrm{d}^{3}V
=\underset{\mathcal{S}\quad}\oiint u\Q{v}{n}\mathrm{d}^{2}A
\end{align}}
\onslide*{2}{the second theorem:
\begin{align}\label{green6}
\underset{{\mathcal{G}\quad}}\iiint\!%
\left[u\nabla^{2}v-v\nabla^{2}u\right]\mathrm{d}^{3}V%
=\underset{\mathcal{S}\quad}\oiint%
\left(u\Q{v}{n}-v\Q{u}{n}\right)\mathrm{d}^{2}A
\end{align}}
\onslide*{3}{There are no more equations to show!}
\end{slide}
\end{document}
|