blob: 08fe33784fc95cf46065eee08f2e7a6f26ab9c1e (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
\documentclass[pdf,gyom,slideColor,colorBG]{prosper}
\usepackage{amsmath}
\begin{document}
\begin{slide}{The quest for $\pi$}
\begin{itemize}
\item The following formula computes $8$ correct digits per iteration
(Ramanujan):
\end{itemize}
\begin{small}
\begin{equation*}
\frac{1}{\pi}=\sum_{n=0}^\infty \frac{(\frac{1}{4})_n(\frac{2}{4})_n(\frac{3}{4})_n}{n!^3}\bigl(2\sqrt{2}(1103+26390n)\bigr)\frac{1}{(99^2)^{2n+1}}
\end{equation*}
\end{small}
\end{slide}
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End:
|