1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
|
% This file is public domain
%
% These problems are a mixture of essay-style and questions with
% answers. One of these problems requires the tikz package
\newproblem*{oop}{Describe what is meant by object-oriented
programming.}
\begin{defproblem}{inheritance}
Describe what is meant by the term \emph{inheritance} in
object-oriented programming. Use examples.
\end{defproblem}
\begin{defproblem}{weightedcoin}%
\begin{onlyproblem}
A coin is weighted so that heads is four times as likely
as tails. Find the probability that:
\begin{textenum}
\item tails appears,
\item heads appears
\end{textenum}%
\end{onlyproblem}%
\begin{onlysolution}
Let $p=P(T)$, then $P(H)=4p$. We require $P(H)+P(T)=1$,
so $4p+p=1$, hence $p=\frac{1}{5}$. Therefore:
\begin{textenum}
\item $P(T)=\frac{1}{5}$,
\item $P(H)=\frac{4}{5}$
\end{textenum}
\end{onlysolution}
\end{defproblem}
\begin{defproblem}{validprobspaces}
\begin{onlyproblem}%
Under which of the following functions does
$S=\{a_1,a_2\}$ become a probability space?
\par
\begin{textenum}
\begin{tabular}{ll}
\item $P(a_1)=\frac{1}{3}$, $P(a_2)=\frac{1}{2}$
&
\item\label{validprobspacescorrect1} $P(a_1)=\frac{3}{4}$,
$P(a_2)=\frac{1}{4}$
\\
\item\label{validprobspacescorrect2} $P(a_1)=1$, $P(a_2)=0$
&
\item $P(a_1)=\frac{5}{4}$, $P(a_2)=-\frac{1}{4}$
\end{tabular}
\end{textenum}
\end{onlyproblem}%
\begin{onlysolution}%
\ref{validprobspacescorrect1} and \ref{validprobspacescorrect2}%
\end{onlysolution}
\end{defproblem}
\begin{defproblem}{digraph}
\begin{onlyproblem}\label{ex:digraph}
Identify, if any, the sinks and sources of the digraph shown in Figure~\ref{fig:digraph}.
\begin{figure}[tbh]
\centering
\begin{tikzpicture}[every node/.style={draw,circle}]
\path (0,0) node (A) {$A$}
(1,0) node (B) {$B$}
(0,1) node (C) {$C$};
\draw[->] (A) -- (B);
\draw[->] (B) -- (C);
\draw[->] (A) -- (C);
\end{tikzpicture}
\par
\caption{Digraph for Question~\ref{ex:digraph}}
\label{fig:digraph}
\end{figure}
\end{onlyproblem}
\begin{onlysolution}
$A$ is a souce and $C$ is a sink.
\end{onlysolution}
\end{defproblem}
|