1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
|
\documentclass{amsart}
\usepackage{color}
\usepackage{graphics}
\usepackage[ND,SEQ,EQ,ML]{prftree}
\usepackage{url}
\usepackage{microtype}
\setlength{\fboxsep}{0pt}
\begin{document}
\title{Proof Trees in \LaTeX}
\date{}
\author{Marco Benini}
\address{Dipartimento di Scienza e Alta Tecnologia\\
Universit\`a degli Studi dell'Insubria\\
via Valleggio 11, I-22100 Como, Italy}
\email{marco.benini@uninsubria.it}
\urladdr{http://marcobenini.wordpress.com}
\maketitle
% --------------------------
\section{Introduction}\label{sec:introduction}
Writing proofs in natural deduction or in similar, tree-like calculi,
is always a challenge: from the typographical point of view, these
proofs are complex objects that cannot be simply typeset using the
standard \LaTeX{} commands. Thus, many packages have been developed:
Sam Buss's \texttt{bussproofs.sty},
\url{http://math.ucsd.edu/~sbuss/ResearchWeb/bussproofs/}; Makoto
Tatsuta's \texttt{proof.sty},
\url{http://research.nii.ac.jp/~tatsuta/proof-sty.html}; and
\texttt{prooftree.sty} by Paul Taylor,
\url{http://mirror.ctan.org/macros/generic/proofs/taylor}.
All these packages have their merits and weaknesses. For example,
Buss's package is extremely flexible but inference rules with more
than five assumptions cannot be directly typeset. On the other hand,
Tatsuta's package provides a very simple set of commands doing a
fine job, but customisation is very limited. Taylor's package provides
a natural syntax for writing proofs, but customisation is limited, and
the package has an expire date.
The package presented in the following provides most of the features
which are already present in Buss's package, coupled with some new
ones. This package uses a syntax which is closer to Tatsuta's one, but
almost all the typesetting process is parametric, so that each bit of
a proof can be customised at will.
The graphical appearance of a proof is similar to the one obtained
using Taylor's package, but the additional features allow to set up
the graphical output to follow the style of some of the standard
textbooks, e.g., A.S.~Troelstra and H.~Schwichtenberg, \textit{Basic
Proof Theory}, Cambridge University Press (2000).
% --------------------------
\clearpage
\section{Basic Commands}\label{sec:basic_commands}
The package is invoked by putting \verb|\usepackage{prftree.sty}| in
the preamble of the document, and installation reduces to put the file
\texttt{prftree.sty} somewhere in the \LaTeX{} search
path.\vspace{2ex}
A proof tree constructs a box with the following internal structure:
\begin{center}
{\setlength{\unitlength}{1em}
\begin{picture}(31,6)
\put(7,4){\framebox(17,2){$\mbox{assumption}_1 \cdots
\mbox{assumption}_n$}}
\put(6,3){\line(1,0){19}}
\put(26,2){\framebox(5,2){rule name}}
\put(0,2){\framebox(5,2){label}}
\put(10,0){\framebox(11,2){conclusion}}
\end{picture}}
\end{center}
In turn, each assumption is typeset as a box which has usually the
shape of another proof tree, while the rule name and the label are
typeset in a text box, and the conclusion in a math box. The aspect of
the proof line is controlled by suitable options, as is the presence
of the rule name and of the label. Options cover other aspects of the
graphical rendering of a proof tree, as it will be explained
later. The basic command to build a proof tree is \verb|\prftree|.
For example, the proof of $A \supset \neg\neg A$ in natural deduction
is:
\begin{displaymath}
\prftree[r]{$\scriptstyle\supset\mathrm{I}$}
{\prftree[r]{$\scriptstyle\supset\mathrm{I}$}
{\prftree[r]{$\scriptstyle\supset\mathrm{E}$}
{\prfboundedassumption{A}}
{\prfboundedassumption{\neg A}}
{\bot}}
{\neg\neg A}}
{A \supset \neg\neg A}
\end{displaymath}
This proof is generated by the following \LaTeX{} code:
\begin{verbatim}
\begin{displaymath}
\prftree[r]{$\scriptstyle\supset\mathrm{I}$}
{\prftree[r]{$\scriptstyle\supset\mathrm{I}$}
{\prftree[r]{$\scriptstyle\supset\mathrm{E}$}
{\prfboundedassumption{A}}
{\prfboundedassumption{\neg A}}
{\bot}}
{\neg\neg A}}
{A \supset \neg\neg A}
\end{displaymath}
\end{verbatim}
In general, the syntax of the \verb|\prftree| command is:
\begin{displaymath}
\verb|\prftree|[\mbox{options}] \cdots
[\mbox{options}]\{\mbox{assumption}_1\} \cdots
\{\mbox{assumption}_n\}\{\mbox{conclusion}\}
\end{displaymath}
Assumptions are optional and there may be any number of them. Each
assumption may contain a proof tree, which is typeset independently:
the order allows to use indentation to help reading the source. The
conclusion is mandatory, and it is supposed to be a
formula.
Assumptions and the conclusion are typeset in a display style math
environment. Options control the way the proof is generated: in the
example, the \verb|r| option has been used to signal that the first
argument of \verb|\prftree| is the name of the inference rule.
The available options are:
\begin{itemize}
\item\ [\textbf{r}], [\textbf{rule}], [\textbf{by rule}],
[\textbf{by}], [\textbf{right}]: the first argument after the
options is the rule name, which is typeset in text mode;
\item\ [\textbf{l}], [\textbf{left}], [\textbf{label}]: the first
argument after the options is the label of the rule, which is
typeset in text mode. If a rule name is present, the first argument
is the rule name, and the second one is the label;
\item\ [\textbf{straight}], [\textbf{straight line}],
[\textbf{straightline}]: makes the proof line solid;
\item\ [\textbf{dotted}], [\textbf{dotted line}],
[\textbf{dottedline}]: makes the proof line dotted;
\item\ [\textbf{dashed}], [\textbf{dashed line}],
[\textbf{dashedline}]: makes the proof line dashed;
\item\ [\textbf{f}], [\textbf{fancy}], [\textbf{fancy line}],
[\textbf{fancyline}]: the proof line will be fancy;
\item\ [\textbf{s}], [\textbf{single}], [\textbf{single line}],
[\textbf{singleline}]: makes the proof line single;
\item\ [\textbf{d}], [\textbf{double}], [\textbf{double line}],
[\textbf{doubleline}]: makes the proof line double;
\item\ [\textbf{noline}]: suppresses the proof line (prevails over all
other line options);
\item\ [\textbf{summary}]: renders the proof line as the summary
symbol (prevails over all other line options except \textbf{noline}).
\end{itemize}
By default the proof line is straight and single. Options may be
written in sequence, as in \verb|[r,f,d]|, which means that the proof
tree will have a rule name, and the proof line will be fancy and
double, or separately, as in \verb|[r][f][d]|, or even as a
combination, like \verb|[r][f,d]|. Options are evaluated
left-to-right, so \verb|[d,s]| is the same as \verb|[s]|, while
\verb|[noline,straight,d]| is the same as \verb|[noline]|.
The conjunction introduction rule illustrates the various line
options:
\begin{displaymath}
\begin{array}{lcc@{\qquad}l}
\mbox{default (single straight)} &
\prftree{A}{B}{A \wedge B} &
\prftree[r]{$\scriptstyle\wedge\mathrm{I}$}
{A}{B}{A \wedge B} &
\texttt{[straight]} \\
\mbox{double straight} &
\prftree[d]{A}{B}{A \wedge B} &
\prftree[d,r]{$\scriptstyle\wedge\mathrm{I}$}
{A}{B}{A \wedge B} &
\texttt{[double,straight]} \\
\mbox{single dotted} &
\prftree[dotted]{A}{B}{A \wedge B} &
\prftree[dotted,r]{$\scriptstyle\wedge\mathrm{I}$}
{A}{B}{A \wedge B} &
\texttt{[dotted]} \\
\mbox{double dotted} &
\prftree[dotted,d]{A}{B}{A \wedge B} &
\prftree[dotted,d,r]{$\scriptstyle\wedge\mathrm{I}$}
{A}{B}{A \wedge B} &
\texttt{[double,dotted]} \\
\mbox{single dashed} &
\prftree[dashed]{A}{B}{A \wedge B} &
\prftree[dashed,r]{$\scriptstyle\wedge\mathrm{I}$}
{A}{B}{A \wedge B} &
\texttt{[dashed]} \\
\mbox{double dashed} &
\prftree[dashed,d]{A}{B}{A \wedge B} &
\prftree[dashed,d,r]{$\scriptstyle\wedge\mathrm{I}$}
{A}{B}{A \wedge B} &
\texttt{[double,dashed]} \\
\mbox{single fancy} &
\prftree[f]{A}{B}{A \wedge B} &
\prftree[f,r]{$\scriptstyle\wedge\mathrm{I}$}
{A}{B}{A \wedge B} &
\texttt{[fancy]} \\
\mbox{double fancy} &
\prftree[f,d]{A}{B}{A \wedge B} &
\prftree[f,d,r]{$\scriptstyle\wedge\mathrm{I}$}
{A}{B}{A \wedge B} &
\texttt{[double,fancy]} \\
\mbox{noline} &
\prftree[noline]{A}{B}{A \wedge B} &
\prftree[noline,r]{$\scriptstyle\wedge\mathrm{I}$}
{A}{B}{A \wedge B} &
\texttt{[noline]}
\end{array}
\end{displaymath}
These examples are implemented in an array whose cells have the form
\begin{center}
\verb|\prftree[|\emph{option}\verb|]{A}{B}{A \wedge B} &|
\verb|\prftree[|\emph{option}\verb|,r]{$\scriptstyle\wedge\mathrm{I}$}|
\end{center}
in which the option part is the one on the right of the
picture.\vspace{1ex}
An assumption is a special proof tree, built by the command:
\begin{displaymath}
\verb|\prfassumption|\{\text{formula}\}
\end{displaymath}
Similarly, a bounded assumption is produced by the command:
\begin{displaymath}
\verb|\prfboundedassumption|\{\text{formula}\}
\end{displaymath}
as in the previous example.
Although it is possible to type assumptions directly as argument of
\verb|\prftree|, it is better to use the commands above: as explained
later, since a proof tree is a box with an internal structure, the
assumption commands take care of building this structure
appropriately, while the direct typing does not, which may produce
unexpected results.\vspace{2ex}
Similarly, axioms are produced by the commands
\begin{displaymath}
\verb|\prfaxiom|\{\mbox{axiom}\}
\end{displaymath}
and
\begin{displaymath}
\verb|\prfbyaxiom|\{\mbox{name}\}\{\mbox{axiom}\}
\end{displaymath}
For example, the axiom stating that equality is reflexive, is
\begin{displaymath}
\begin{array}{cc}
\prfaxiom{\forall x\, x = x} &
\prfbyaxiom{refl}{\forall x\, x = x}
\end{array}
\end{displaymath}
and they are generated by the \LaTeX{} code
\begin{displaymath}
\begin{array}{l}
\verb|\prfaxiom{\forall x\, x = x}|\\
\verb|\prfbyaxiom{refl}{\forall x\, x = x}|
\end{array}
\end{displaymath}\vspace{-.2ex}
Finally, a proof summary is used to summarise a proof. The
corresponding command is:
\begin{displaymath}
\verb|\prfsummary|[\mbox{name}]\{\mbox{assumption}_1\} \cdots
\{\mbox{assumption}_n\}\{\mbox{conclusion}\}
\end{displaymath}
The name of the proof is optional, while the assumptions and the
conclusion are treated as in \verb|\prftree|. When present, the proof
name is typeset in text mode.
For example, \verb|\prfsummary{\forall x\, x = x}| produces
\begin{displaymath}
\prfsummary{\forall x\, x = x}
\end{displaymath}
while
\verb|\prfsummary[name]{A(x)}{B(y)}{B(y) \wedge A(x)}|
gives
\begin{displaymath}
\prfsummary[name]{A(x)}{B(y)}{B(y) \wedge A(x)}
\end{displaymath}\vspace{-.2ex}
In general, a proof tree is a \TeX{} box containing all the pieces of
the tree, with strict bounds: for example,
\begin{displaymath}
\fbox{\prfsummary[name]{A(x)}{B(y)}{B(y) \wedge A(x)}}
\end{displaymath}
% --------------------------
\clearpage
\section{Parameters}\label{sec:parameters}
A number of parameters may be used to control the typesetting of proof
trees. They may be changed globally or locally, following the usual
scoping rules of \TeX{}. In this respect, remember that each
assumption is typeset independently, so parameters may be changed on a
sub-proof basis, as will be done in most examples.\vspace{2ex}
There are various \TeX{} dimensions that influence how proofs are
constructed:
\begin{itemize}
\item\ \verb|\prflinepadbefore| (default 0.3ex): the space between the
bottom line of assumptions and the proof line
\item\ \verb|\prflinepadafter| (default 0.3ex): the space between the
proof line and the top of the conclusion;
\item\ \verb|\prflineextra| (default 0.3em): the length which extends
on the left and on the right the proof line so that it is slightly
longer than the largest between the conclusion and the list of
(direct) assumptions;
\item\ \verb|\prflinethickness| (default 0.12ex): the thickness of the
proof line;
\item\ \verb|\prfemptylinethickness| (default 4 times the line
thickness): in the rare case when the line is empty, but there are
assumptions, this is the distance between the assumptions and the
conclusion;
\item\ \verb|\prfrulenameskip| (default 0.2em): the space between the
proof line and the rule name;
\item\ \verb|\prflabelskip| (default 0.2em): the space between the
proof label and the proof line;
\item\ \verb|\prfinterspace| (default .8em): the space between two
subsequent assumptions in the assumption list;
\item\ \verb|\prfdoublelineinterspace| (default 0.06ex): the space
between the two lines of a double line.
\end{itemize}
For example,
\begin{displaymath}
\prflinepadafter=0ex
\prftree[r]{$\supset$I}
{\prftree[r]{$\supset$I}
{\prftree[r]{$\supset$E}
{\prfboundedassumption{A}}
{\prfboundedassumption{\neg A}}
{\bot}}
{\neg\neg A}}
{A \supset \neg\neg A}
\end{displaymath}
is typeset by
\begin{verbatim}
\prflinepadafter=0ex
\prftree[r]{$\supset$I}
{\prftree[r]{$\supset$I}
{\prftree[r]{$\supset$E}
{\prfboundedassumption{A}}
{\prfboundedassumption{\neg A}}
{\bot}}
{\neg\neg A}}
{A \supset \neg\neg A}
\end{verbatim}
Similarly, \verb|\prflineextra=-.4em| and \verb|\prfrulenameskip=.8em|
produce:
\begin{displaymath}
{\prflineextra=-.4em
\prfrulenameskip=.8em
\prftree[r]{$\supset$I}
{\prftree[r]{$\supset$I}
{\prftree[r]{$\supset$E}
{\prfboundedassumption{A}}
{\prfboundedassumption{\neg A}}
{\bot}}
{\neg\neg A}}
{A \supset \neg\neg A}}
\end{displaymath}
Also, \verb|\prflinethickness=3pt| and
\verb|\prfdoublelineinterspace=2pt| in the upper sub-proof generate:
\begin{displaymath}
\prftree[r]{$\supset$I}
{\prftree[r]{$\supset$I}
{\prflinethickness=3pt
\prfdoublelineinterspace=2pt
\prftree[r,d]{$\supset$E}
{\prfboundedassumption{A}}
{\prfboundedassumption{\neg A}}
{\bot}}
{\neg\neg A}}
{A \supset \neg\neg A}
\end{displaymath}
The corresponding code is
\begin{verbatim}
\prftree[r]{$\supset$I}
{\prftree[r]{$\supset$I}
{\prflinethickness=3pt
\prfdoublelineinterspace=2pt
\prftree[r,d]{$\supset$E}
{\prfboundedassumption{A}}
{\prfboundedassumption{\neg A}}
{\bot}}
{\neg\neg A}}
{A \supset \neg\neg A}
\end{verbatim}
Line thickness does not affect dashed, dotted, and fancy lines, but
interline space does: in the example,
\verb|\prfdoublelineinterspace=4pt| on a fancy line produces
\begin{displaymath}
\prftree[r]{$\supset$I}
{\prftree[r]{$\supset$I}
{\prfdoublelineinterspace=4pt
\prftree[r,d,f]{$\supset$E}
{\prfboundedassumption{A}}
{\prfboundedassumption{\neg A}}
{\bot}}
{\neg\neg A}}
{A \supset \neg\neg A}
\end{displaymath}\vspace{.2ex}
Fancy lines are drawn by the \verb|\prffancyline| command. This can be
redefined: as a guideline, the package defines it as
\begin{verbatim}
\def\prffancyline{\cleaders\hbox to .63em%
{\hss\raisebox{-.5ex}[.2ex][0pt]{$\sim$}\hss}\hfill}
\end{verbatim}\vspace{2ex}
Label spacing works exactly as rule name spacing. Actually, it is
possible to have a proof with both a label and a rule name:
\begin{displaymath}
\prftree[r]{$\supset$I}
{\prflabelskip=.7em
\prftree[r,l]{$\supset$I}
{[\textsl{$\bot\mathrm{E}$ will not work here!}]}
{\prftree[r]{$\supset$E}
{\prfboundedassumption{A}}
{\prfboundedassumption{\neg A}}
{\bot}}
{\neg\neg A}}
{A \supset \neg\neg A}
\end{displaymath}
which has been typeset by
\begin{verbatim}
\prftree[r]{$\supset$I}
{\prflabelskip=.7em
\prftree[r,l]{$\supset$I}
{[\textsl{$\bot\mathrm{E}$ will not work here!}]}
{\prftree[r]{$\supset$E}
{\prfboundedassumption{A}}
{\prfboundedassumption{\neg A}}
{\bot}}
{\neg\neg A}}
{A \supset \neg\neg A}
\end{verbatim}\vspace{2ex}
The \verb|\prfinterspace| controls the distance between
assumptions. Specifically, this is the space between the \emph{boxes}
containing two assumptions.
Consider the following example
\begin{displaymath}
\prftree
{\prftree
{\prftree
{\prftree
{\prftree
{\prfboundedassumption{A \rightarrow (B \rightarrow C)}}
{\prfboundedassumption{A}}
{B \rightarrow C}}
{\prftree
{\prfboundedassumption{A \rightarrow B}}
{\prfboundedassumption{A}}
{B}}
{C}}
{A \rightarrow C}}
{(A \rightarrow B) \rightarrow (A \rightarrow C)}}
{(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B)
\rightarrow (A \rightarrow C))}
\end{displaymath}
Although the assumptions in the top line are well spaced, the two
sub-proofs on the top are too close. This can be corrected in two
different ways: by putting an explicit space, via \verb|\hspace|, in
front of the second sub-proof, or after the first
sub-proof---remember, they are just boxes
\begin{displaymath}
\prftree
{\prftree
{\prftree
{\prftree
{\prftree
{\prfboundedassumption{A \rightarrow (B \rightarrow C)}}
{\prfboundedassumption{A}}
{B \rightarrow C}\hspace{1.5em}}
{\prftree
{\prfboundedassumption{A \rightarrow B}}
{\prfboundedassumption{A}}
{B}}
{C}}
{A \rightarrow C}}
{(A \rightarrow B) \rightarrow (A \rightarrow C)}}
{(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B)
\rightarrow (A \rightarrow C))}
\end{displaymath}
otherwise, putting $\verb|\prfinterspace|=1.5\mathrm{em}$ before the
sub-proof whose conclusion is $C$, one obtains the more pleasant
\begin{displaymath}
\prftree
{\prftree
{\prftree
{\prfinterspace=1.5em
\prftree
{\prftree
{\prfboundedassumption{A \rightarrow (B \rightarrow C)}}
{\prfboundedassumption{A}}
{B \rightarrow C}}
{\prftree
{\prfboundedassumption{A \rightarrow B}}
{\prfboundedassumption{A}}
{B}}
{C}}
{A \rightarrow C}}
{(A \rightarrow B) \rightarrow (A \rightarrow C)}}
{(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B)
\rightarrow (A \rightarrow C))}
\end{displaymath}\vspace{.2ex}
The \verb|Strut| option of the package controls a subtle point about
spacing around a proof line: assumptions and conclusion are usually
typeset so that the height and the depth of their box is at least the
one of \verb|\mathstrut|. In this way, adjacent proofs will have their
proof lines aligned (well, whenever they don't have huge
conclusions). But, as signalled by Dominic Hughes, sometimes one wants
the height and the depth to be the ``real'' ones, especially when
there are no characters/symbols with a positive depth: this forces the
perceived space above and below the proof line to be exactly the
values of \verb|\prflinepadbefore| and \verb|\prflinepadafter|. This
behaviour can be achieved by calling the package with the \verb|STRUT|
option. Alternatively, one may use the \verb|\prfSTRUToptionfalse|
command to locally force this behaviour, and
\verb|\prfSTRUToptiontrue| to return to the standard one. Similarly,
the \verb|STRUTlabel| package option, together with the pair of
commands \verb|\prfSTRUTlabeloptiontrue| and
\verb|\prfSTRUTlabeloptionfalse|, operate on rule names and rule
labels.\vspace{2ex}
The rendering of bounded assumptions is modified by
\verb|\prfboundedstyle|. When $\verb|\prfboundedstyle| = 0$, the
format of the assumption is $[\mbox{formula}]$, which is the default
behaviour; with $\verb|\prfboundedstyle| = 1$, the formula is
cancelled by a horizontal line; with $\verb|\prfboundedstyle| > 1$,
the custom \verb|\prfdiscargedassumption| command is invoked:
\begin{displaymath}
\begin{array}{c@{\qquad}c@{\qquad}c}
\prfboundedassumption{A(x)} &
{\prfboundedstyle=1\prfboundedassumption{A(x)}} &
{\prfboundedstyle=2\prfboundedassumption{A(x)}}
\end{array}
\end{displaymath}
The \verb|\prfdiscargedassumption| can be freely redefined. The
package provides a reference implementation:
\begin{verbatim}
\def\prfdiscargedassumption#1{\left\langle{#1}\right\rangle}
\end{verbatim}\vspace{2ex}
Proof summaries are drawn according to \verb|\prfsummarystyle|. The
default value is $0$, which produces a vertical dotted line. Setting
$\verb|\prfsummarystyle| = 1$ produces a huge $\Pi$, while
$\verb|\prfsummarystyle| = 2$ produces a $\prod$. The value $3$ uses a
$\mathcal{D}$ as the derivation symbol. Values greater than $3$ force
the summary to be rendered by the \verb|\prffancysummarybox| command.
\begin{displaymath}
\begin{array}{@{}c@{\quad}c@{\qquad}c@{\qquad}c@{}}
\verb|\prfsummarystyle| = 0 &
{\prfsummary{\forall x.\, x = x}} &
{\prfsummary{B(x)}{A(x)}} &
{\prfsummary[name]{A(y)}{D(x)}{B(x) \wedge C(x)}} \\[2ex]
\verb|\prfsummarystyle| = 1 &
{\prfsummarystyle1\prfsummary{\forall x.\, x = x}} &
{\prfsummarystyle1\prfsummary{B(x)}{A(x)}} &
{\prfsummarystyle1\prfsummary[name]{A(y)}{D(x)}{B(x) \wedge
C(x)}} \\[1ex]
\verb|\prfsummarystyle| = 2 &
{\prfsummarystyle2\prfsummary{\forall x.\, x = x}} &
{\prfsummarystyle2\prfsummary{B(x)}{A(x)}} &
{\prfsummarystyle2\prfsummary[name]{A(y)}{D(x)}{B(x) \wedge
C(x)}} \\[1ex]
\verb|\prfsummarystyle| = 3 &
{\prfsummarystyle3\prfsummary{\forall x.\, x = x}} &
{\prfsummarystyle3\prfsummary{B(x)}{A(x)}} &
{\prfsummarystyle3\prfsummary[name]{A(y)}{D(x)}{B(x) \wedge C(x)}}
\\[1ex]
\verb|\prfsummarystyle| = 4 &
{\prfsummarystyle4\prfsummary{\forall x.\, x = x}} &
{\prfsummarystyle4\prfsummary{B(x)}{A(x)}} &
{\prfsummarystyle4\prfsummary[name]{A(y)}{D(x)}{B(x) \wedge C(x)}}
\end{array}
\end{displaymath}
The fancy summary box is composed by the \verb|\prffancysummarybox|
command. This can be modified at will. The package defines it as
\begin{verbatim}
\newbox\prf@@fancysummarybox\newdimen\prf@@fancysymmarylen
\def\prffancysummarybox{%
\sbox{\prf@@fancysummarybox}{\Huge$\bigtriangledown$}%
\prf@@fancysymmarylen\ht\prf@@fancysummarybox%
\advance\prf@@fancysymmarylen\dp\prf@@fancysummarybox%
\sbox{\prf@@fancysummarybox}{%
\raisebox{.25\prf@@fancysymmarylen}[.8\prf@@fancysymmarylen]%
[0pt]{\usebox{\prf@@fancysummarybox}}}%
\prf@@fancysymmarylen\wd\prf@summary@label%
\ifdim\prf@@fancysymmarylen>\z@\relax%
\prf@@fancysymmarylen\wd\prf@@fancysummarybox%
\wd\prf@summary@label.4em%
\hbox to\prf@@fancysymmarylen{%
\usebox\prf@@fancysummarybox}\kern-.4em%
\box\prf@summary@label%
\else\usebox\prf@@fancysummarybox\fi}
\end{verbatim}\vspace{2ex}
The assumptions, conclusions, labels, and rule names are drawn using
the following commands, which may be redefined:
\begin{verbatim}
\def\prfConclusionBox#1{%
\hbox{$\displaystyle\begingroup#1\endgroup%
\def\prfAssumptionBox#1{%
\hbox{$\displaystyle\begingroup#1\endgroup%
\ifprfSTRUToption\mathstrut\fi$}}
\def\prfRuleNameBox#1{\hbox{\begingroup#1\endgroup%
\ifprfSTRUTlabeloption\strut\fi}}
\def\prfLabelBox#1{\hbox{\begingroup#1\endgroup%
\ifprfSTRUTlabeloption\strut\fi}}
\end{verbatim}
It is not advisable to change these commands in a radical way, unless
one understands how the graphical engine works.
% -------------------------------------
\clearpage
\section{Labels and References}\label{sec:references}
As discharged assumptions are often hard to track in a proof, the
package provides a mechanism to label them and to reference them
inside a proof tree. A reference is made up of three pieces: the
\emph{label}, which is the name to denote the reference inside the
text, the \emph{reference value}, which is the value denoted by the
label, and the \emph{anchor}, which is the graphical rendering of the
value aside the labelled point of the proof.
For example,
\begin{displaymath}
\begin{prfenv}
\prftree[r]{$\supset\mathrm{I}_{\prfref<assum:A>}$}
{\prftree[r]{$\supset\mathrm{I}_{\prfref<assum:not_A>}$}
{\prftree[r]{$\supset$E}
{\prfboundedassumption<assum:A>{A}}
{\prfboundedassumption<assum:not_A>{\neg A}}
{\bot}}
{\neg\neg A}}
{A \supset \neg\neg A}
\end{prfenv}
\end{displaymath}
is generated by the following code
\begin{verbatim}
\begin{prfenv}
\prftree[r]{$\supset\mathrm{I}_{\prfref<assum:A>}$}
{\prftree[r]{$\supset\mathrm{I}_{\prfref<assum:not_A>}$}
{\prftree[r]{$\supset$E}
{\prfboundedassumption<assum:A>{A}}
{\prfboundedassumption<assum:not_A>{\neg A}}
{\bot}}
{\neg\neg A}}
{A \supset \neg\neg A}
\end{prfenv}
\end{verbatim}
The labels are \verb|assum:A| and \verb|assum:not_A|, the reference
values are $1$ and $2$, respectively, and the anchors are these values
on the discharged assumptions on the top of the proof. The references
to these labels are the values in the rule names.\vspace{2ex}
The \verb|prfenv| environment delimits the scope of labels: the
\verb|\end{prfenv}| declaration makes the labels still available
for reference, but numbering of new labels will restart from
$1$. Enclosing a proof tree in a \verb|prfenv| environment is not
mandatory: in such case, labels will be global to the
document.\vspace{2ex}
Sometimes, labels require two compilation steps to be correctly
generated: in fact, as \LaTeX{} labels, forward references may be
undefined in the first compilation step. The package issues a warning
in this case, and display a \verb|??| for the invalid reference. Also,
notice how the assumption reference mechanism is analogous to \LaTeX{}
labels, but it is independent from it.\vspace{2ex}
A reference to a label is made by the
$\verb|\prfref|\langle\mathrm{label}\rangle$ command: its argument is
a label, i.e., a string of text following the same rules as the
argument of the \LaTeX{} \verb|\label| command. As in the \verb|\ref|
command, the resulting value has no formatting.\vspace{2ex}
A labelled assumption is generated by the following commands:
\begin{displaymath}
\begin{array}{l}
\verb|\prfassumption|\langle[\mathrm{option}]\mathrm{label}\rangle
\{\mathrm{assumption}\}
\\
\verb|\prfboundedassumption|\langle[\mathrm{option}]
\mathrm{label}\rangle\{\mathrm{assumption}\}
\end{array}
\end{displaymath}
The first one acts as \verb|\prfassumption| but also declares the
assumption label and decorates the assumption text with the
anchor. The second one does the same on bounded assumptions.
The generation of labels is controlled by the option value:
\begin{itemize}
\item \textbf{n}, \textbf{number}, \textbf{arabic}: generates a number
(default);
\item \textbf{r}, \textbf{roman}: generates a lowercase roman number;
\item \textbf{R}, \textbf{Roman}: generates an uppercase
roman number;
\item \textbf{a}, \textbf{alph}, \textbf{alpha}, \textbf{alphabetic}:
produces a lowercase letter;
\item \textbf{A}, \textbf{Alph}, \textbf{Alpha}, \textbf{Alphabetic}:
produces an uppercase letter;
\item \textbf{f}, \textbf{s}, \textbf{function}, \textbf{symbol},
\textbf{function symbol}: produces a footnote symbol, as in
Section~C.8.4 of Lamport's, \textit{\LaTeX: A document preparation
system};
\item \textbf{l}, \textbf{label}: tells that the label has not to be
defined. This is used to generate a labelled assumption sharing the
label with another one, which declares the value and the format.
\end{itemize}
Except for \textbf{l} and \textbf{label}, all the options are used to
format the anchor following the standard \LaTeX{} way available for
counters. No multiple options are allowed.
For example, the disjunction elimination rule is a perfect way to
illustrate the reason behind the \textbf{label} option, i.e., the need
to discharge a pair of assumptions:
\begin{displaymath}
\begin{prfenv}
\prfinterspace=1.2em
\prftree[r]{$\vee\mathrm{E}_{\prfref<assum:orE>}$}
{\prfsummary{\Gamma}{A \vee B}}
{\prfsummary{\Gamma,
\prfboundedassumption<assum:orE>{A}}{C}}
{\prfsummary{\Gamma,
\prfboundedassumption<[l]assum:orE>{B}}{C}}{C}
\end{prfenv}
\end{displaymath}
\begin{verbatim}
\prftree[r]{$\vee\mathrm{E}_{\prfref<assum:orE>}$}
{\prfsummary{\Gamma}{A \vee B}}
{\prfsummary{\Gamma,
\prfboundedassumption<assum:orE>{A}}{C}}
{\prfsummary{\Gamma,
\prfboundedassumption<[l]assum:orE>{B}}{C}}{C}
\end{verbatim}
If a label is declared more than once, a warning is issued when the
\textbf{label} option is not used: although this is not a mistake, it
may indicate that a label is reused when it should not.
The same example can be used to show how the other options work:
\begin{displaymath}
\renewcommand{\arraystretch}{6}
\begin{array}{@{}ccc@{}}
\begin{prfenv}
\prfinterspace=.6em
\prfsummarystyle=2
\prftree[r]{$\vee\mathrm{E}_{\prfref<assum:orEn>}$}
{\prfsummary{\Gamma}{A \vee B}}
{\prfsummary{\Gamma,
\prfboundedassumption<[n]assum:orEn>{A}}{C}}
{\prfsummary{\Gamma,
\prfboundedassumption<[l]assum:orEn>{B}}{C}}
{C}
\end{prfenv} &
\begin{prfenv}
\prfinterspace=.6em
\prfsummarystyle=2
\prftree[r]{$\vee\mathrm{E}_{\prfref<assum:orEr>}$}
{\prfsummary{\Gamma}{A \vee B}}
{\prfsummary{\Gamma,
\prfboundedassumption<[r]assum:orEr>{A}}{C}}
{\prfsummary{\Gamma,
\prfboundedassumption<[l]assum:orEr>{B}}{C}}
{C}
\end{prfenv} &
\begin{prfenv}
\prfinterspace=.6em
\prfsummarystyle=2
\prftree[r]{$\vee\mathrm{E}_{\prfref<assum:orER>}$}
{\prfsummary{\Gamma}{A \vee B}}
{\prfsummary{\Gamma,
\prfboundedassumption<[R]assum:orER>{A}}{C}}
{\prfsummary{\Gamma,
\prfboundedassumption<[l]assum:orER>{B}}{C}}
{C}
\end{prfenv} \\
\begin{prfenv}
\prfinterspace=.6em
\prfsummarystyle=2
\prftree[r]{$\vee\mathrm{E}_{\prfref<assum:orEa>}$}
{\prfsummary{\Gamma}{A \vee B}}
{\prfsummary{\Gamma,
\prfboundedassumption<[a]assum:orEa>{A}}{C}}
{\prfsummary{\Gamma,
\prfboundedassumption<[l]assum:orEa>{B}}{C}}
{C}
\end{prfenv} &
\begin{prfenv}
\prfinterspace=.6em
\prfsummarystyle=2
\prftree[r]{$\vee\mathrm{E}_{\prfref<assum:orEA>}$}
{\prfsummary{\Gamma}{A \vee B}}
{\prfsummary{\Gamma,
\prfboundedassumption<[A]assum:orEA>{A}}{C}}
{\prfsummary{\Gamma,
\prfboundedassumption<[l]assum:orEA>{B}}{C}}
{C}
\end{prfenv} &
\begin{prfenv}
\prfinterspace=.6em
\prfsummarystyle=2
\prftree[r]{$\vee\mathrm{E}_{\prfref<assum:orEf>}$}
{\prfsummary{\Gamma}{A \vee B}}
{\prfsummary{\Gamma,
\prfboundedassumption<[f]assum:orEf>{A}}{C}}
{\prfsummary{\Gamma,
\prfboundedassumption<[l]assum:orEf>{B}}{C}}
{C}
\end{prfenv}
\end{array}
\end{displaymath}
Also, as the \verb|\prfboundedstyle| varies, the resulting proof trees
are:
\begin{displaymath}
\begin{array}{ccc}
\begin{prfenv}
\prfinterspace=.6em
\prfboundedstyle=0
\prfsummarystyle=4
\prftree[r]{$\vee\mathrm{E}_{\prfref<assum:AorE>}$}
{\prfsummary{\Gamma}{A \vee B}}
{\prfsummary{\Gamma,
\prfboundedassumption<assum:AorE>{A}}{C}}
{\prfsummary{\Gamma,
\prfboundedassumption<[l]assum:AorE>{B}}{C}}
{C}
\end{prfenv} &
\begin{prfenv}
\prfinterspace=.6em
\prfboundedstyle=1
\prfsummarystyle=4
\prftree[r]{$\vee\mathrm{E}_{\prfref<assum:BorE>}$}
{\prfsummary{\Gamma}{A \vee B}}
{\prfsummary{\Gamma,
\prfboundedassumption<assum:BorE>{A}}{C}}
{\prfsummary{\Gamma,
\prfboundedassumption<[l]assum:BorE>{B}}{C}}
{C}
\end{prfenv} &
\begin{prfenv}
\prfinterspace=.6em
\prfboundedstyle=2
\prfsummarystyle=4
\prftree[r]{$\vee\mathrm{E}_{\prfref<assum:CorE>}$}
{\prfsummary{\Gamma}{A \vee B}}
{\prfsummary{\Gamma,
\prfboundedassumption<assum:CorE>{A}}{C}}
{\prfsummary{\Gamma,
\prfboundedassumption<[l]assum:CorE>{B}}{C}}
{C}
\end{prfenv}
\end{array}
\end{displaymath}
The \verb|prfassumptioncounter| is the \LaTeX{} counter used to
generate the assumption values. It contains the last used value, and
initially, it is set to $0$. By modifying its value, e.g., to
\verb|\setcounter{prfassumptioncounter}{1}|,
\begin{displaymath}
\begin{prfenv}
\setcounter{prfassumptioncounter}{1}
\prfsummarystyle=2
\prftree[r]{$\vee\mathrm{E}_{\prfref<assum:orEff>}$}
{\prfsummary{\Gamma}{A \vee B}}
{\prfsummary{\Gamma,
\prfboundedassumption<[f]assum:orEff>{A}}{C}}
{\prfsummary{\Gamma,
\prfboundedassumption<[l]assum:orEff>{B}}{C}}
{C}
\end{prfenv}
\end{displaymath}
A labelled assumption box is graphically constructed by the package
command \verb|\prflabelledassumptionbox| which can be redefined if
needed. It takes two arguments: the assumption and the anchor. Its
standard definition is
\begin{verbatim}
\def\prflabelledassumptionbox#1#2{%
\setbox\prf@fancybox\hbox{${#1}$}%
\prf@tmp\wd\prf@fancybox%
\setbox\prf@fancybox\hbox{$\box\prf@fancybox^{#2}$}%
\wd\prf@fancybox\prf@tmp%
\prf@assumption{\box\prf@fancybox}}
\end{verbatim}
Moreover, also a labelled and bounded assumption is graphically
rendered by the same command. There is just one exception: when
$\verb|\prfboundedstyle| > 1$. In fact, since that style is
controlled by a command that can be redefined, the same must hold for
references in that style. The command which is called in this case is
\verb|\prflabelleddiscargedassumption| which can be redefined if
needed; its standard definition in the package is
\begin{verbatim}
\def\prflabelleddiscargedassumption#1#2{%
\prflabelledassumptionbox{\left\langle{#1}\right\rangle}{#2}}
\end{verbatim}\vspace{2ex}
Also proof summaries can be labelled and referenced. The syntax
extends the \verb|\prfsummary| command:
\begin{displaymath}
\verb|\prfsummary|\langle[\mathrm{option}]\mathrm{label}\rangle
[\mathrm{name}]\{\mathrm{assumption}1\} \cdots
\{\mathrm{assumption}_n\}\{\mathrm{conclusion}\}
\end{displaymath}
The reference argument works in the same way as the corresponding one
for assumptions, and the options are the same.
\begin{displaymath}
\setcounter{prfsummarycounter}{0}
\begin{array}{c@{\qquad}c@{\qquad}c@{\qquad}c@{\qquad}c}
{\prfsummarystyle=0
\prfsummary<proof:a0>{A}{B}{A \wedge B}} &
{\prfsummarystyle=1
\prfsummary<proof:a1>{A}{B}{A \wedge B}} &
{\prfsummarystyle=2
\prfsummary<proof:a2>{A}{B}{A \wedge B}} &
{\prfsummarystyle=3
\prfsummary<proof:a3>{A}{B}{A \wedge B}} &
{\prfsummarystyle=4
\prfsummary<proof:a4>{A}{B}{A \wedge B}}
\end{array}
\end{displaymath}
These examples have been generated by the following code snippet:
\begin{verbatim}
{\prfsummarystyle=X
\prfsummary<proof:aX>{A}{B}{A \wedge B}}
\end{verbatim}
The \verb|[option]| part of the label specification is optional, and
it works exactly as the option field of labelled assumptions. This is
best illustrated by an example:
\begin{displaymath}
\setcounter{prfsummarycounter}{0}
\begin{array}{cccc}
{\prfsummarystyle=1
\prfsummary<[r]proof:b1>{A}{B}{A \wedge B}} &
{\prfsummarystyle=1
\prfsummary<[R]proof:b2>{A}{B}{A \wedge B}} &
{\prfsummarystyle=1
\prfsummary<[f]proof:b3>{A}{B}{A \wedge B}} &
{\prfsummarystyle=1
\prfsummary<[a]proof:b4>{A}{B}{A \wedge B}} \\ &
{\prfsummarystyle=1
\prfsummary<[A]proof:b5>{A}{B}{A \wedge B}} &
{\prfsummarystyle=1
\prfsummary<[l]proof:b3>{A}{B}{A \wedge B}} &
\end{array}
\end{displaymath}
These examples have been generated by the following code snippet:
\begin{verbatim}
{\prfsummarystyle=1
\prfsummary<[r]proof:bX>{A}{B}{A \wedge B}}
\end{verbatim}
and the last line uses the \verb|label| option.\vspace{2ex}
The value of the summary labelling is controlled by the
\verb|prfsummarycounter| counter, which is initially $0$ and contains
the last used value.
% -------------------------------------
\clearpage
\section{Simplified Commands}\label{sec:simplified_commands}
The basic commands illustrated so far allow to control proof trees in
all aspects, but they tend to be verbose in practise. Thus, a number
of abbreviations are provided to make handier the writing of proofs.
Since they may collide with other packages, these macros are activated
by suitable options. Multiple options can be used at the same time.
\subsection{Natural deduction}
By loading the package with the \verb|ND| option, the following
abbreviations are available, which correspond to the inference rules
of natural deduction calculi:
\begin{itemize}
\item \verb|\NDA|: assumption;
\item \verb|\NDAL|: labelled assumption;
\item \verb|\NDD|: discharged assumption;
\item \verb|\NDDL|: labelled discharged assumption;
\item \verb|\NDP|: generic proof tree;
\item \verb|\NDAX|: a generic axiom rule;
\begin{displaymath}
\vcenter{\NDAX{x = x}}\enspace;
\end{displaymath}
\item \verb|\NDANDI|: conjunction introduction
\begin{displaymath}
\vcenter{\NDANDI{\NDA{A}}{\NDA{B}}{A \wedge B}}\enspace;
\end{displaymath}
\item \verb|\NDANDER|, \verb|\NDANDEL|, \verb|\NDANDE|: conjunction
elimination right, left, and unspecified, respectively
\begin{displaymath}
\vcenter{\NDANDEL{\NDA{A \wedge B}}{\NDA{A}}} \quad
\vcenter{\NDANDER{\NDA{A \wedge B}}{\NDA{B}}}\enspace;
\end{displaymath}
\item \verb|\NDORIR|, \verb|\NDORIL|, \verb|\NDORI|: disjunction
introduction right, left, and unspecified, respectively
\begin{displaymath}
\vcenter{\NDORIL{\NDA{A}}{\NDA{A \vee B}}} \quad
\vcenter{\NDORIR{\NDA{B}}{\NDA{A \vee B}}}\enspace;
\end{displaymath}
\item \verb|\NDOREL|, \verb|\NDORE|: disjunction elimination, possibly
labelled
\begin{displaymath}
\begin{prfenv}
\vcenter{\NDOREL{ndorel:1}{\NDA{A \vee B}}
{\prfsummary{\NDDL{ndorel:1}{A}}{C}}
{\prfsummary{\NDDL{[l]ndorel:1}{B}}{C}}{C}} \quad
\vcenter{\NDORE{\NDA{A \vee B}}{\prfsummary{\NDA{A}}{C}}
{\prfsummary{\NDA{B}}{C}}{C}}\enspace;
\end{prfenv}
\end{displaymath}
\item \verb|\NDIMPIL|, \verb|\NDIMPI|: implication introduction,
possibly labelled
\begin{displaymath}
\begin{prfenv}
\vcenter{\NDIMPIL{ndimpil:1}
{\prfsummary{\NDDL{ndimpil:1}{A}}{B}}
{A \rightarrow B}} \quad
\vcenter{\NDIMPI{\prfsummary{\NDA{A}}{B}}{A \rightarrow B}}
\enspace;
\end{prfenv}
\end{displaymath}
\item \verb|\NDIMPE|: implication elimination
\begin{displaymath}
\begin{prfenv}
\vcenter{\NDIMPE{\NDA{A \rightarrow B}}{\NDA{A}}{B}}\enspace;
\end{prfenv}
\end{displaymath}
\item \verb|\NDNOTIL|, \verb|\NDNOTI|: negation introduction, possibly
labelled
\begin{displaymath}
\begin{prfenv}
\vcenter{\NDNOTIL{ndnotil:1}
{\prfsummary{\NDDL{ndnotil:1}{A}}{\bot}}{\neg A}}\quad
\vcenter{\NDNOTI{\prfsummary{\NDA{A}}{\bot}}{\neg A}}\enspace;
\end{prfenv}
\end{displaymath}
\item \verb|\NDNOTE|: negation elimination
\begin{displaymath}
\begin{prfenv}
\vcenter{\NDNOTE{\NDA{\neg A}}{\NDA{A}}{\bot}}\enspace;
\end{prfenv}
\end{displaymath}
\item \verb|\NDALLI|: universal quantifier introduction
\begin{displaymath}
\begin{prfenv}
\vcenter{\NDALLI{\NDA{A}}{\forall x.\, A}}\enspace;
\end{prfenv}
\end{displaymath}
\item \verb|\NDALLE|: universal quantifier elimination
\begin{displaymath}
\begin{prfenv}
\vcenter{\NDALLE{\NDA{\forall x.\, A}}{A[t/x]}}\enspace;
\end{prfenv}
\end{displaymath}
\item \verb|\NDEXI|: existential quantifier introduction
\begin{displaymath}
\begin{prfenv}
\vcenter{\NDEXI{\NDA{A[t/x]}}{\exists x.\, A}}\enspace;
\end{prfenv}
\end{displaymath}
\item \verb|\NDEXEL|, \verb|\NDEXE|: existential quantifier
elimination, possibly labelled
\begin{displaymath}
\begin{prfenv}
\vcenter{\NDEXEL{ndexel:1}{\NDA{\exists x.\, A}}
{\prfsummary{\NDDL{ndexel:1}{A}}{B}}{B}}\quad
\vcenter{\NDEXE{\NDA{\exists x.\, A}}
{\prfsummary{\NDA{A}}{B}}{B}}\enspace;
\end{prfenv}
\end{displaymath}
\item \verb|\NDTI|: truth introduction
\begin{displaymath}
\begin{prfenv}
\vcenter{\NDTI{\top}}\enspace;
\end{prfenv}
\end{displaymath}
\item \verb|\NDFE|: falsity elimination
\begin{displaymath}
\begin{prfenv}
\vcenter{\NDFE{\NDA{\bot}}{A}}\enspace;
\end{prfenv}
\end{displaymath}
\item \verb|\NDLEM|: law of Excluded Middle
\begin{displaymath}
\begin{prfenv}
\vcenter{\NDLEM{A \vee \neg A}}\enspace.
\end{prfenv}
\end{displaymath}
\end{itemize}
The labels, when present, are the first argument, the rest being the
assumptions and, finally, the conclusion. The rules do not have a
fixed format, so extensions are allowed, e.g., on conjunction
elimination or disjunction introduction.
For example, the proof
\begin{displaymath}
\begin{prfenv}
\NDOREL{simp:notA}{\NDLEM{A \vee \neg A}}
{\NDIMPI{\NDDL{[l]simp:notA}{A}}{\neg\neg A \supset A}}
{\NDIMPIL{simp:notnotA}
{\NDFE{\NDIMPE{\NDDL{simp:notnotA}{\neg\neg A}}
{\NDDL{simp:notA}{\neg A}}{\bot}}{A}}
{\neg\neg A \supset A}}
{\neg\neg A \supset A}
\end{prfenv}
\end{displaymath}
is typeset in abbreviated form by the following code
\begin{verbatim}
\NDOREL{simp:notA}{\NDLEM{A \vee \neg A}}
{\NDIMPI{\NDDL{[l]simp:notA}{A}}{\neg\neg A \supset A}}
{\NDIMPIL{simp:notnotA}
{\NDFE{\NDIMPE{\NDDL{simp:notnotA}{\neg\neg A}}
{\NDDL{simp:notA}{\neg A}}{\bot}}{A}}
{\neg\neg A \supset A}}
{\neg\neg A \supset A}
\end{verbatim}\vspace{2ex}
\subsection{Sequents}
Similarly, by loading the package with the \verb|SEQ| option, the
following abbreviations are available, which roughly correspond to the
inference rule of sequent calculi:
\begin{itemize}
\item \verb|\SEQA|: assumption;
\item \verb|\SEQD|: bounded assumption (not normally used, but handy
to have in case of fancy calculi);
\item \verb|\SEQP|: generic proof;
\item \verb|\SEQAX|: axiom rule
\begin{displaymath}
\vcenter{\SEQAX{A \Rightarrow A}}\enspace;
\end{displaymath}
\item \verb|\SEQLF|: left falsity
\begin{displaymath}
\vcenter{\SEQLF{\bot \Rightarrow {}}}\enspace;
\end{displaymath}
\item \verb|\SEQLW|, \verb|\SEQRW|: left and right weakening
\begin{displaymath}
\vcenter{\SEQLW{\Gamma \Rightarrow \Delta}{A, \Gamma \Rightarrow
\Delta}}\quad
\vcenter{\SEQLW{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow
\Delta, A}}\enspace;
\end{displaymath}
\item \verb|\SEQLC|, \verb|\SEQRC|: left and right contraction
\begin{displaymath}
\vcenter{\SEQLC{A, A, \Gamma \Rightarrow \Delta}{A, \Gamma
\Rightarrow \Delta}}\quad
\vcenter{\SEQRC{\Gamma \Rightarrow \Delta, A, A}{\Gamma
\Rightarrow \Delta, A}}\enspace;
\end{displaymath}
\item \verb|\SEQLAND|, \verb|\SEQLANDL|, \verb|\SEQLANDR|: left
conjunction; the \verb|L| and \verb|R| variants specify which side
of the conjunction is introduced
\begin{displaymath}
\vcenter{\SEQLANDL{A, \Gamma \Rightarrow \Delta}{A \wedge B, \Gamma
\Rightarrow \Delta}}\quad
\vcenter{\SEQLANDR{B, \Gamma \Rightarrow \Delta}{A \wedge B, \Gamma
\Rightarrow \Delta}}\enspace;
\end{displaymath}
\item \verb|\SEQRAND|: right conjunction
\begin{displaymath}
\vcenter{\SEQRAND{\Gamma \Rightarrow \Delta, A}{\Gamma \Rightarrow
\Delta, B}{\Gamma \Rightarrow \Delta, A \wedge B}}\enspace;
\end{displaymath}
\item \verb|\SEQLOR|: left disjunction
\begin{displaymath}
\vcenter{\SEQLOR{A, \Gamma \Rightarrow \Delta}{B, \Gamma
\Rightarrow \Delta}{A \vee B, \Gamma \Rightarrow
\Delta}}\enspace;
\end{displaymath}
\item \verb|\SEQROR|, \verb|\SEQRORL|, \verb|\SEQRORR|: right
disjunction; the \verb|R| and \verb|L| variants specify which side
of the disjunction is introduced
\begin{displaymath}
\vcenter{\SEQRORL{\Gamma \Rightarrow \Delta, A}{\Gamma \Rightarrow
\Delta, A \vee B}}\quad
\vcenter{\SEQRORR{\Gamma \Rightarrow \Delta, B}{\Gamma \Rightarrow
\Delta, A \vee B}}\enspace;
\end{displaymath}
\item \verb|\SEQLIMP|: left implication
\begin{displaymath}
\vcenter{\SEQLIMP{\Gamma \Rightarrow \Delta, A}{B, \Gamma
\Rightarrow \Delta}{A \rightarrow B, \Gamma \Rightarrow
\Delta}}\enspace;
\end{displaymath}
\item \verb|\SEQRIMP|: right implication
\begin{displaymath}
\vcenter{\SEQRIMP{A, \Gamma \Rightarrow \Delta, B}{\Gamma
\Rightarrow, \Delta, A \rightarrow B}}\enspace;
\end{displaymath}
\item \verb|\SEQLALL|: left universal quantification
\begin{displaymath}
\vcenter{\SEQLALL{A[t/x], \Gamma \Rightarrow \Delta}{\forall x.\,
A, \Gamma \Rightarrow \Delta}}\enspace;
\end{displaymath}
\item \verb|\SEQRALL|: right universal quantification
\begin{displaymath}
\vcenter{\SEQRALL{\Gamma \Rightarrow \Delta, A}{\Gamma \Rightarrow
\Delta, \forall x.\, A}}\enspace;
\end{displaymath}
\item \verb|\SEQLEX|: left existential quantification
\begin{displaymath}
\vcenter{\SEQLEX{A, \Gamma \Rightarrow \Delta}{\exists x.\, A,
\Gamma \Rightarrow \Delta}}\enspace;
\end{displaymath}
\item \verb|\SEQREX|: right existential quantification
\begin{displaymath}
\vcenter{\SEQREX{\Gamma \Rightarrow \Delta, A[t/x]}{\Gamma
\Rightarrow \Delta, \exists x.\, A}}\enspace;
\end{displaymath}
\item \verb|\SEQCUT|: cut rule
\begin{displaymath}
\vcenter{\SEQCUT{\Gamma \Rightarrow \Delta, A}{A, \Gamma'
\Rightarrow \Delta'}{\Gamma \Gamma' \Rightarrow \Delta
\Delta'}}\enspace.
\end{displaymath}
\end{itemize}
\subsection{Equality}
Invoking the \verb|EQ| option defines the following inference rules:
\begin{itemize}
\item \verb|\EQREFL|: reflexivity
\begin{displaymath}
\vcenter{\EQREFL{t = t}}\enspace;
\end{displaymath}
\item \verb|\EQSYM|: symmetry
\begin{displaymath}
\vcenter{\EQSYM{t = s}{s = t}}\enspace;
\end{displaymath}
\item \verb|\EQTRANS|: transitivity
\begin{displaymath}
\vcenter{\EQTRANS{t = s}{s = r}{t = r}}\enspace;
\end{displaymath}
\item \verb|\EQSUBST|: the substitution rule
\begin{displaymath}
\vcenter{\EQSUBST{t = s}{A[t/x]}{A[s/x]}}\enspace.
\end{displaymath}
\end{itemize}
\subsection{Implication}
Since the implication symbol is usually represented either as
$\rightarrow$ or as $\supset$, the package allows to choose which
representation to use. By default, implication is $\rightarrow$, but
loading the package with the \verb|[IMP]| option switches to
$\supset$. The same effect is obtained by the commands
\verb|\prfIMPOptiontrue| (implication is $\supset$) and
\verb|prfIMPOptionfalse| (implication is $\rightarrow$).
\subsection{Martin-L{\"o}f Type Theory and Homotopy Type Theory}
Invoking the package with the \verb|ML| option enables the support for
these type theories. This part is derived from Roberta Bonacina's PhD
dissertation, which used this package in an essential way to develop
proof trees in Homotopy Type Theory.
Enabling the option \verb|ML| defines a number of symbols which are
useful to have. However, since they may conflict with other packages,
they can be disabled invoking the option \verb|MLnodef|. These
operators are
\begin{itemize}
\item \verb|\type|: the symbol $\type$ correctly spaced as a
mathematical binary operation;
\item \verb|\universe|: the symbol for universes;
\item \verb|\judgementaldef| and \verb|\propositionaldef|: the symbols
$\judgementaldef$ and $\propositionaldef$ spaced as mathematical
binary operations;
\item \verb|\emptytype| ($\emptytype$), \verb|\unittype|
($\unittype$), \verb|\booleantype| ($\booleantype$): these symbols
are ordinary operators typeset in mathematical boldface font;
\item \verb|\context| ($\context$), \verb|\identitytype|
($\identitytype$), \verb|\refl| ($\refl$), \verb|\axiomofchoice|
($\axiomofchoice$), \verb|\accessibility| ($\accessibility$),
\verb|\ap| ($\ap$), \verb|\apd| ($\apd$), \verb|\basepoint|
($\basepoint$), \verb|\biinv| ($\biinv$), \verb|\cardtype|
($\cardtype$), \verb|\cocone| ($\cocone$), \verb|\cons| ($\cons$),
\verb|\contr| ($\contr$), \verb|\equivtype| ($\equivtype$),
\verb|\ext| ($\ext$), \verb|\fiber| ($\fiber$), \verb|\funext|
($\funext$), \verb|\glue| ($\glue$), \verb|\happly| ($\happly$),
\verb|\hom| ($\hom$), \verb|\id| ($\id$), \verb|\idtoeqv|
($\idtoeqv$), \verb|\im| ($\im$), \verb|\idtoiso| ($\idtoiso$),
\verb|\ind| ($\ind$), \verb|\inj| ($\inj$), \verb|\inl| ($\inl$),
\verb|\inr| ($\inr$), \verb|\iscontr| ($\iscontr$), \verb|\isequiv|
($\isequiv$), \verb|\ishae| ($\ishae$), \verb|\isotoid|
($\isotoid$), \verb|\isprop| ($\isprop$), \verb|\isset| ($\isset$),
\verb|\ker| ($\ker$), \verb|\LEM| ($\LEM$), \verb|\linv| ($\linv$),
\verb|\listtype| ($\listtype$), \verb|\loopcons| ($\loopcons$),
\verb|\Map| ($\Map$), \verb|\merid| ($\merid$), \verb|\nil|
($\nil$), \verb|\ordtype| ($\ordtype$), \verb|\pair| ($\pair$),
\verb|\pred| ($\pred$), \verb|\pr| ($\pr$), \verb|\Prop| ($\Prop$),
\verb|\qinv| ($\qinv$), \verb|\rec| ($\rec$), \verb|\rinv|
($\rinv$), \verb|\seg| ($\seg$), \verb|\Set| ($\Set$), \verb|\Succ|
($\Succ$), \verb|\sup| ($\sup$), \verb|\total| ($\total$),
\verb|\transport| ($\transport$), \verb|\ua| ($\ua$), \verb|\Wtype|
($\Wtype$), \verb|\transportconst| ($\transportconst$): these
symbols are ordinary operators, typeset in the mathematical
sans-serif font; their graphical appearance is in brackets.
\end{itemize}
The large number of inference rules is listed below: they cover the
structural part of the theories, plus most of the usual inductive
types, comprehending also some higher-order inductive types. To each
rule is associated a rule name, which is available as a command: the
convention is that the rule name is obtained appending \verb|rule| to
the name of the inference rule. In general, the command to typeset a
rule conforms to the standard name in the book \emph{Homotopy Type
Theory}. The name as typeset, is shown in brackets:
\begin{itemize}
\item \verb|\MLctxEMP| $(\scriptstyle\MLctxEMPrule)$,\\ \verb|\MLctxEXT|
$(\scriptstyle\MLctxEXTrule)$: context manipulation;
\item \verb|\MLVble| $(\scriptstyle\MLVblerule)$: variable
introduction;
\item \verb|\MLSubst| $(\scriptstyle\MLSubstrule)$,
\verb|\MLWkg|
$(\scriptstyle\MLWkgrule)$: substitution and weakening;
\item \verb|\MLEQrefl| $(\scriptstyle\MLEQreflrule)$,
\verb|\MLEQsym| $(\scriptstyle\MLEQsymrule)$,
\verb|\MLEQtrans| $(\scriptstyle\MLEQtransrule)$, \\
\verb|\MLEQsubst| $(\scriptstyle\MLEQsubstrule)$,
\verb|\MLEQsubsteq| $(\scriptstyle\MLEQsubsteqrule)$: structural
rules about judgemental equality;
\item \verb|\MLUintro| $(\scriptstyle\MLUintrorule)$,
\verb|\MLUcumul| $(\scriptstyle\MLUcumulrule)$,
\verb|\MLUcumuleq| $(\scriptstyle\MLUcumuleqrule)$: type universe;
\item \verb|\MLpiform| $(\scriptstyle\MLpiformrule)$,
\verb|\MLpiformeq| $(\scriptstyle\MLpiformeqrule)$, \\
\verb|\MLpiintro| $(\scriptstyle\MLpiintrorule)$,
\verb|\MLpiintroeq| $(\scriptstyle\MLpiintroeqrule)$, \\
\verb|\MLpielim| $(\scriptstyle\MLpielimrule)$,
\verb|\MLpielimeq| $(\scriptstyle\MLpielimeqrule)$, \\
\verb|\MLpicomp| $(\scriptstyle\MLpicomprule)$,
\verb|\MLpiuniq| $(\scriptstyle\MLpiuniqrule)$: dependent function
types;
\item \verb|\MLKintro| $(\scriptstyle\MLKintrorule)$: generic rule for
constant introduction;
\item \verb|\MLsigmaform| $(\scriptstyle\MLsigmaformrule)$,
\verb|\MLsigmaintro| $(\scriptstyle\MLsigmaintrorule)$,
\verb|\MLsigmaelim| $(\scriptstyle\MLsigmaelimrule)$, \\
\verb|\MLsigmacomp| $(\scriptstyle\MLsigmacomprule)$,
\verb|\MLsigmauniq| $(\scriptstyle\MLsigmauniqrule)$: dependent pair
types;
\item \verb|\MLplusform| $(\scriptstyle\MLplusformrule)$,
\verb|\MLplusintrol| $(\scriptstyle\MLplusintrolrule)$,
\verb|\MLplusintror| $(\scriptstyle\MLplusintrorrule)$, \\
\verb|\MLpluselim| $(\scriptstyle\MLpluselimrule)$,
\verb|\MLpluscompl| $(\scriptstyle\MLpluscomplrule)$,
\verb|\MLpluscompr| $(\scriptstyle\MLpluscomprrule)$, \\
\verb|\MLplusuniq| $(\scriptstyle\MLplusuniqrule)$: coproduct types;
\item \verb|\MLzeroform| $(\scriptstyle\MLzeroformrule)$,
\verb|\MLzeroelim| $(\scriptstyle\MLzeroelimrule)$,
\verb|\MLzerouniq| $(\scriptstyle\MLzerouniqrule)$: the empty type;
\item \verb|\MLunitform| $(\scriptstyle\MLunitformrule)$,
\verb|\MLunitintro| $(\scriptstyle\MLunitintrorule)$,
\verb|\MLunitelim| $(\scriptstyle\MLunitelimrule)$, \\
\verb|\MLunitcomp| $(\scriptstyle\MLunitcomprule)$,
\verb|\MLunituniq| $(\scriptstyle\MLunituniqrule)$: the unit type;
\item \verb|\MLnatform| $(\scriptstyle\MLnatformrule)$,
\verb|\MLnatintrozero| $(\scriptstyle\MLnatintrozerorule)$, \\
\verb|\MLnatintrosucc| $(\scriptstyle\MLnatintrosuccrule)$,
\verb|\MLnatelim| $(\scriptstyle\MLnatelimrule)$, \\
\verb|\MLnatcompzero| $(\scriptstyle\MLnatcompzerorule)$,
\verb|\MLnatcompsucc| $(\scriptstyle\MLnatcompsuccrule)$, \\
\verb|\MLnatuniq| $(\scriptstyle\MLnatuniqrule)$: the natural number
type;
\item \verb|\MLidform| $(\scriptstyle\MLidformrule)$,
\verb|\MLidintro| $(\scriptstyle\MLidintrorule)$,
\verb|\MLidelim| $(\scriptstyle\MLidelimrule)$, \\
\verb|\MLidcomp| $(\scriptstyle\MLidcomprule)$,
\verb|\MLiduniq| $(\scriptstyle\MLiduniqrule)$: identity types;
\item \verb|\MLwform| $(\scriptstyle\MLwformrule)$,
\verb|\MLwintro| $(\scriptstyle\MLwintrorule)$,
\verb|\MLwelim| $(\scriptstyle\MLwelimrule)$, \\
\verb|\MLwcomp| $(\scriptstyle\MLwcomprule)$,
\verb|\MLwuniq| $(\scriptstyle\MLwuniqrule)$: $\mathsf{W}$ types;
\item \verb|\MLListform| $(\scriptstyle\MLListformrule)$,
\verb|\MLListintron| $(\scriptstyle\MLListintronrule)$,\\
\verb|\MLListintroc| $(\scriptstyle\MLListintrocrule)$,
\verb|\MLListelim| $(\scriptstyle\MLListelimrule)$,\\
\verb|\MLListcompn| $(\scriptstyle\MLListcompnrule)$,
\verb|\MLListcompc| $(\scriptstyle\MLListcompcrule)$,\\
\verb|\MLListuniq| $(\scriptstyle\MLListuniqrule)$:
$\mathsf{List}$ types;
\item \verb|\MLfunext| $(\scriptstyle\MLfunextrule)$: function extensionality;
\item \verb|\MLuniv| $(\scriptstyle\MLunivrule)$: univalence;
\item \verb|\MLSform| $(\scriptstyle\MLSformrule)$,
\verb|\MLSintro| $(\scriptstyle\MLSintrorule)$,
\verb|\MLSelim| $(\scriptstyle\MLSelimrule)$,\\
\verb|\MLScomp| $(\scriptstyle\MLScomprule)$,
\verb|\MLSuniq| $(\scriptstyle\MLSuniqrule)$,
\verb|\MLSpeqintro| $(\scriptstyle\MLSpeqintrorule)$,\\
\verb|\MLSpeqcomp| $(\scriptstyle\MLSpeqcomprule)$: the
$\mathbb{S}^1$ circle type;
\item \verb|\MLIform| $(\scriptstyle\MLIformrule)$,
\verb|\MLIintroa| $(\scriptstyle\MLIintroarule)$,
\verb|\MLIintrob| $(\scriptstyle\MLIintrobrule)$, \\
\verb|\MLIelim| $(\scriptstyle\MLIelimrule)$,
\verb|\MLIcompa| $(\scriptstyle\MLIcomparule)$,
\verb|\MLIcompb| $(\scriptstyle\MLIcompbrule)$, \\
\verb|\MLIuniq| $(\scriptstyle\MLIuniqrule)$,
\verb|\MLIpeqintro| $(\scriptstyle\MLIpeqintrorule)$,
\verb|\MLIpeqcomp| $(\scriptstyle\MLIpeqcomprule)$: the interval
type;
\item \verb|\MLsigmaintroa| $(\scriptstyle\MLsigmaintroarule)$,
\verb|\MLsigmaintrob| $(\scriptstyle\MLsigmaintrobrule)$, \\
\verb|\MLsigmacompa| $(\scriptstyle\MLsigmacomparule)$,
\verb|\MLsigmacompb| $(\scriptstyle\MLsigmacompbrule)$, \\
\verb|\MLsigmapeqintro| $(\scriptstyle\MLsigmapeqintrorule)$,
\verb|\MLsigmapeqcomp| $(\scriptstyle\MLsigmapeqcomprule)$:
suspensions;
\item \verb|\MLPOform| $(\scriptstyle\MLPOformrule)$,
\verb|\MLPOintroa| $(\scriptstyle\MLPOintroarule)$,
\verb|\MLPOintrob| $(\scriptstyle\MLPOintrobrule)$, \\
\verb|\MLPOelim| $(\scriptstyle\MLPOelimrule)$,
\verb|\MLPOcompa| $(\scriptstyle\MLPOcomparule)$,
\verb|\MLPOcompb| $(\scriptstyle\MLPOcompbrule)$, \\
\verb|\MLPOuniq| $(\scriptstyle\MLPOuniqrule)$,
\verb|\MLPOpeqintro| $(\scriptstyle\MLPOpeqintrorule)$,
\verb|\MLPOpeqcomp| $(\scriptstyle\MLPOpeqcomprule)$: pushouts;
\item \verb|\MLTform| $(\scriptstyle\MLTformrule)$,
\verb|\MLTintro| $(\scriptstyle\MLTintrorule)$,
\verb|\MLTelim| $(\scriptstyle\MLTelimrule)$, \\
\verb|\MLTcomp| $(\scriptstyle\MLTcomprule)$,
\verb|\MLTuniq| $(\scriptstyle\MLTuniqrule)$,
\verb|\MLTpeqintro| $(\scriptstyle\MLTpeqintrorule)$, \\
\verb|\MLTpeqcomp| $(\scriptstyle\MLTpeqcomprule)$: truncations;
\item \verb|\MLtorusform| $(\scriptstyle\MLtorusformrule)$,
\verb|\MLtorusintro| $(\scriptstyle\MLtorusintrorule)$,
\verb|\MLtoruselim| $(\scriptstyle\MLtoruselimrule)$,\\
\verb|\MLtoruscomp| $(\scriptstyle\MLtoruscomprule)$,
\verb|\MLtoruspeqintroa| $(\scriptstyle\MLtoruspeqintroarule)$, \\
\verb|\MLtoruspeqintrob| $(\scriptstyle\MLtoruspeqintrobrule)$,
\verb|\MLtoruspeqintroc| $(\scriptstyle\MLtoruspeqintrocrule)$, \\
\verb|\MLtoruspeqcompa| $(\scriptstyle\MLtoruspeqcomparule)$,
\verb|\MLtoruspeqcompb| $(\scriptstyle\MLtoruspeqcompbrule)$, \\
\verb|\MLtoruspeqcompc| $(\scriptstyle\MLtoruspeqcompcrule)$:
the torus type.
\end{itemize}
\subsection{Defining new inference rules}
Of course, the reader is encouraged to develop her own abbreviations
starting from the provided ones. To this aim two commands are
provided. They share the same syntax: \verb|\prfMakeInferenceRule| and
\verb|\prfMakeInferenceRuleRef| take two arguments, the first one is
the name of the command associated to the inference rule, and the
second one is used to write the rule name. For example,
\begin{center}
\verb|\prfMakeInferenceRule{NDANDI}{\mathord{\wedge}\textup{I}}|
\end{center}
is how the conjunction introduction rule is defined, and
\begin{center}
\verb| \prfMakeInferenceRuleRef{NDOREL}{\mathord{\vee}\textup{E}}|
\end{center}
is how the disjunction elimination rule is defined. The rules
generated by the \verb|Ref| variant use their first argument as the
reference to the assumption(s) they discharge.
\subsection{Stacking proofs and assumptions}
Sometimes, a proof is too large to fit into the text width. Although
some strategies could be implemented to compress it, see the next
section, they fail in extreme cases. For example, the elimination rule
for the circle in Homotopy type theories is:
\begin{displaymath}
\MLScomp
{\Gamma, x \type \mathbb{S}^1 \vdash C \type \universe_i}
{\Gamma \vdash b \type C[\basepoint/x]}
{\Gamma \vdash \ell \type b =_{\loopcons}^{C} b}
{\Gamma \vdash p \type \mathbb{S}^1}
{\Gamma \vdash \ind_{\mathbb{S}^1}(x.\, C, b, \ell, \basepoint)
\type C[p/x]}
\end{displaymath}
typeset by
\begin{verbatim}
\MLScomp
{\Gamma, x \type \mathbb{S}^1 \vdash C \type \universe_i}
{\Gamma \vdash b \type C[\basepoint/x]}
{\Gamma \vdash \ell \type b =_{\loopcons}^{C} b}
{\Gamma \vdash p \type \mathbb{S}^1}
{\Gamma \vdash \ind_{\mathbb{S}^1}(x.\, C, b, \ell, \basepoint)
\type C[p/x]}
\end{verbatim}
It is clear that on an A5 paper, there is not enough space to write it
down. In these cases, the package provides a way to \emph{stack} the
premises of a rule, obtaining
\begin{displaymath}
\MLScomp
{\prfStackPremises
{\Gamma, x \type \mathbb{S}^1 \vdash C \type \universe_i}
{\Gamma \vdash b \type C[\basepoint/x]} }
{\prfStackPremises
{\Gamma \vdash \ell \type b =_{\loopcons}^{C} b}
{\Gamma \vdash p \type \mathbb{S}^1} }
{\Gamma \vdash \ind_{\mathbb{S}^1}(x.\, C, b, \ell, \basepoint)
\type C[p/x]}
\end{displaymath}
The corresponding \LaTeX{} code is
\begin{verbatim}
\MLScomp
{\prfStackPremises
{\Gamma, x \type \mathbb{S}^1 \vdash C \type \universe_i}
{\Gamma \vdash b \type C[\basepoint/x]}
}
{\prfStackPremises
{\Gamma \vdash \ell \type b =_{\loopcons}^{C} b}
{\Gamma \vdash p \type \mathbb{S}^1}
}
{\Gamma \vdash
\ind_{\mathbb{S}^1}(x.\, C, b, \ell, \basepoint) \type C[p/x]}
\end{verbatim}
The command
\verb|\prfStackPremises{|$a_1$\verb|}{|$\ldots$\verb|}{|$a_n$\verb|}|
takes the arguments $a_1, \ldots, a_n$ and typeset them as a proof
tree with no lines with $a_1$ on the top.
Actually, stacking proofs is possible:
\begin{displaymath}
\MLScomp
{\prfStackPremises
{\prfsummary{\Gamma\;\context}
{\Gamma, x \type \mathbb{S}^1 \vdash \mathbb{S}^1 \type
\universe_i}}
{\prfsummary{\Gamma\;\context}
{\Gamma \vdash \basepoint \type \mathbb{S}^1}} }
{\prfStackPremises
{\prfsummary{\Gamma\;\context}
{\Gamma \vdash \ell \type \basepoint = \basepoint}}
{\prfsummary{\Gamma\;\context}
{\Gamma \vdash p \type \mathbb{S}^1}} }
{\Gamma \vdash \ind_{\mathbb{S}^1}(x.\, C, b, \ell, \basepoint)
\type C[p/x]}
\end{displaymath}
has been typeset by
\begin{verbatim}
\MLScomp
{\prfStackPremises
{\prfsummary{\Gamma\;\context}
{\Gamma, x \type \mathbb{S}^1 \vdash \mathbb{S}^1 \type
\universe_i}}
{\prfsummary{\Gamma\;\context}
{\Gamma \vdash \basepoint \type \mathbb{S}^1}}
}
{\prfStackPremises
{\prfsummary{\Gamma\;\context}
{\Gamma \vdash \ell \type \basepoint = \basepoint}}
{\prfsummary{\Gamma\;\context}
{\Gamma \vdash p \type \mathbb{S}^1}}
}
{\Gamma \vdash
\ind_{\mathbb{S}^1}(x.\, C, b, \ell, \basepoint) \type C[p/x]}
\end{verbatim}
Since a stack is a proof tree, the parameters could be locally changed
to control its appearance. For example
\begin{displaymath}
\MLScomp
{\prfemptylinethickness20\prflinethickness
\prfStackPremises
{\Gamma, x \type \mathbb{S}^1 \vdash C \type \universe_i}
{\Gamma \vdash b \type C[\basepoint/x]} }
{\prfStackPremises
{\Gamma \vdash \ell \type b =_{\loopcons}^{C} b}
{\Gamma \vdash p \type \mathbb{S}^1} }
{\Gamma \vdash \ind_{\mathbb{S}^1}(x.\, C, b, \ell, \basepoint)
\type C[p/x]}
\end{displaymath}
makes the lines in the left stack far apart.
\begin{verbatim}
\MLScomp
{\prfemptylinethickness20\prflinethickness
\prfStackPremises
{\Gamma, x \type \mathbb{S}^1 \vdash C \type \universe_i}
{\Gamma \vdash b \type C[\basepoint/x]} }
{\prfStackPremises
{\Gamma \vdash \ell \type b =_{\loopcons}^{C} b}
{\Gamma \vdash p \type \mathbb{S}^1} }
{\Gamma \vdash \ind_{\mathbb{S}^1}(x.\, C, b, \ell, \basepoint)
\type C[p/x]}
\end{verbatim}
Spacing in stacks of proofs is normally difficult to control: if
really sophisticated formatting is needed, it is better to consider
the following option:
\begin{displaymath}
\MLScomp
{\prfassumption{
\begin{array}{@{}c@{\quad}c@{}}
{\prfsummary{\Gamma\;\context}
{\Gamma, x \type \mathbb{S}^1 \vdash \mathbb{S}^1 \type
\universe_i}} &
{\Gamma \vdash \ell \type \basepoint = \basepoint} \\
{\prfsummary{\Gamma\;\context}
{\Gamma \vdash \basepoint \type \mathbb{S}^1}} &
{\Gamma \vdash p \type \mathbb{S}^1}
\end{array}}}
{\Gamma \vdash \ind_{\mathbb{S}^1}(x.\, C, b, \ell, \basepoint)
\type C[p/x]}
\end{displaymath}
which uses the \verb|array| environment
\begin{verbatim}
\MLScomp
{\prfassumption{
\begin{array}{@{}c@{\quad}c@{}}
{\prfsummary{\Gamma\;\context}
{\Gamma, x \type \mathbb{S}^1 \vdash \mathbb{S}^1 \type
\universe_i}} &
{\Gamma \vdash \ell \type \basepoint = \basepoint} \\
{\prfsummary{\Gamma\;\context}
{\Gamma \vdash \basepoint \type \mathbb{S}^1}} &
{\Gamma \vdash p \type \mathbb{S}^1}
\end{array}}}
{\Gamma \vdash \ind_{\mathbb{S}^1}(x.\, C, b, \ell, \basepoint)
\type C[p/x]}
\end{verbatim}
or similar ones, using the multitude of packages to format tables. By
the way, the obvious solution using stacks is
\begin{displaymath}
\MLScomp
{\prfStackPremises
{\prfsummary{\Gamma\;\context}
{\Gamma, x \type \mathbb{S}^1 \vdash \mathbb{S}^1 \type
\universe_i}}
{\prfsummary{\Gamma\;\context}
{\Gamma \vdash \basepoint \type \mathbb{S}^1}} }
{\prfStackPremises
{\prfassumption
{\Gamma \vdash \ell \type \basepoint = \basepoint}}
{\prfassumption
{\Gamma \vdash p \type \mathbb{S}^1}} }
{\Gamma \vdash \ind_{\mathbb{S}^1}(x.\, C, b, \ell, \basepoint)
\type C[p/x]}
\end{displaymath}
\begin{verbatim}
\MLScomp
{\prfStackPremises{\prfsummary{\Gamma\;\context}
{\Gamma, x \type \mathbb{S}^1 \vdash \mathbb{S}^1 \type
\universe_i}}
{\prfsummary{\Gamma\;\context}
{\Gamma \vdash \basepoint \type \mathbb{S}^1}} }
{\prfStackPremises{\prfassumption
{\Gamma \vdash \ell \type \basepoint = \basepoint}}
{\prfassumption
{\Gamma \vdash p \type \mathbb{S}^1}} }
{\Gamma \vdash \ind_{\mathbb{S}^1}(x.\, C, b, \ell, \basepoint)
\type C[p/x]}
\end{verbatim}
%-------------------------------------
\clearpage
\section{Hints and Tricks}\label{sec:hints_and_tricks}
This section shows a few hints and tricks to use the package at its
best.\vspace{2ex}
Consider the proof:
\begin{displaymath}
\begin{prfenv}
\NDOREL{a:notA}{\NDLEM{A \vee \neg A}}
{\NDIMPI{\NDDL{a:notA}{A}}{\neg\neg A \supset A}}
{\NDIMPIL{a:notnotA}
{\NDFE{\NDIMPE{\NDDL{a:notnotA}{\neg\neg A}}
{\NDDL{[l]a:notA}{\neg A}}{\bot}}{A}}
{\neg\neg A \supset A}}
{\neg\neg A \supset A}
\end{prfenv}
\end{displaymath}
the space between the axiom and the sub-proof of the positive case is
visually much less than the space between the positive and the
negative cases. Looking at boxes, the space is exactly the same, but
the perception is that spacing is wrong.
We can correct this perception in two distinct ways: by adding space
between the axiom and the positive case; or, conversely, by moving the
negative case closer to the positive one.
The first strategy yields:
\begin{displaymath}
\begin{prfenv}
\NDOREL{a:notA}{\NDLEM{A \vee \neg A}\hspace{.8em}}
{\NDIMPI{\NDDL{[l]a:notA}{A}}{\neg\neg A \supset A}}
{\NDIMPIL{a:notnotA}
{\NDFE{\NDIMPE{\NDDL{[l]a:notnotA}{\neg\neg A}}
{\NDDL{[l]a:notA}{\neg A}}{\bot}}{A}}
{\neg\neg A \supset A}}
{\neg\neg A \supset A}
\end{prfenv}
\end{displaymath}
and this effect is given by adding an appropriate \verb|\hspace| after
the axiom, as in
\begin{verbatim}
\NDOREL{a:notA}{\NDLEM{A \vee \neg A}\hspace{.4em}}
{\NDIMPI{\NDDL{[l]a:notA}{A}}{\neg\neg A \supset A}}
{\NDIMPIL{a:notnotA}
{\NDFE{\NDIMPE{\NDDL{[l]a:notnotA}{\neg\neg A}}
{\NDDL{[l]a:notA}{\neg A}}{\bot}}{A}}
{\neg\neg A \supset A}}
{\neg\neg A \supset A}
\end{verbatim}
Adding the same space in front of the positive case is equivalent.
The second strategy yields:
\begin{displaymath}
\begin{prfenv}
\NDOREL{a:notA}{\NDLEM{A \vee \neg A}}
{\NDIMPI{\NDDL{[l]a:notA}{A}}{\neg\neg A \supset A}}
{\hspace{-.4em}\NDIMPIL{a:notnotA}
{\NDFE{\NDIMPE{\NDDL{[l]a:notnotA}{\neg\neg A}}
{\NDDL{[l]a:notA}{\neg A}}{\bot}}{A}}
{\neg\neg A \supset A}}
{\neg\neg A \supset A}
\end{prfenv}
\end{displaymath}
Again, this is obtained by adding a negative \verb|hspace| after the
positive case, or, equivalently, before the negative one:
\begin{verbatim}
\NDOREL{a:notA}{\NDLEM{A \vee \neg A}}
{\NDIMPI{\NDDL{[l]a:notA}{A}}{\neg\neg A \supset A}}
{\hspace{-.8em}\NDIMPIL{a:notnotA}
{\NDFE{\NDIMPE{\NDDL{[l]a:notnotA}{\neg\neg A}}
{\NDDL{[l]a:notA}{\neg A}}{\bot}}{A}}
{\neg\neg A \supset A}}
{\neg\neg A \supset A}
\end{verbatim}
In general, to make a wide proof \emph{compact}, one can appropriately
add negative spaces in front of sub-proofs so to make them closer and
letting them to overlap as boxes, but not visually, thus \emph{tiling}
the space.\vspace{2ex}
Since proof trees are boxes, it is easy to align them on need. For
example the following proof tree, with the bounding box put in
evidence
\begin{displaymath}
\fbox{\prfsummarystyle=1
\prfsummary{A}{B}{A \wedge B}}
\end{displaymath}
can be used wherever a box may appear. In the flow of text, it will
look like \fbox{\prfsummarystyle=1\prfsummary{A}{B}{A \wedge B}}, so
that the conclusion is aligned with the baseline. This makes easier to
align proof trees, as in
\begin{center}
\fbox{\prfsummarystyle=1
\prfsummary{f}{g}{f \wedge g}}\qquad
\fbox{$\begin{prfenv}
\NDOREL{a:notA}{\NDLEM{A \vee \neg A}}
{\NDIMPI{\NDDL{[l]a:notA}{A}}{\neg\neg A \supset A}}
{\hspace{-.4em}\NDIMPIL{a:notnotA}
{\NDFE{\NDIMPE{\NDDL{[l]a:notnotA}{\neg\neg A}}
{\NDDL{[l]a:notA}{\neg A}}{\bot}}{A}}
{\neg\neg A \supset A}}
{\neg\neg A \supset A}
\end{prfenv}$}
\end{center}
since this is the natural way to put proofs side by side:
\begin{verbatim}
\fbox{\prfsummarystyle=1
\prfsummary{f}{g}{f \wedge g}}\qquad
\fbox{$
\NDOREL{a:notA}{\NDLEM{A \vee \neg A}}
{\NDIMPI{\NDDL{[l]a:notA}{A}}{\neg\neg A \supset A}}
{\hspace{-.4em}\NDIMPIL{a:notnotA}
{\NDFE{\NDIMPE{\NDDL{[l]a:notnotA}{\neg\neg A}}
{\NDDL{[l]a:notA}{\neg A}}{\bot}}{A}}
{\neg\neg A \supset A}}
{\neg\neg A \supset A}$}
\end{verbatim}
But, if really one has to include a proof tree in the flow of text, it
is slightly better to vertically centre the box, as in
\fbox{$\vcenter{\prfsummary{A}{B}{A \wedge B}}$}. This is obtained by
\begin{verbatim}
$\vcenter{\prfsummary{A}{B}{A \wedge B}}$
\end{verbatim}
Of course, the result is not pleasant, because rows are far apart,
which is unavoidable because of the height of the proof tree.
The same principle applies also to arrays of proof trees:
\begin{displaymath}
\begin{array}{lcccc}
\text{some text} &
\setcounter{prfsummarycounter}{0}
\setcounter{prfassumptioncounter}{0}
{\prfsummarystyle=1
\prfsummary<[l]proof:b1>{A}{B}{A \wedge B}} &
{\prfsummarystyle=1
\prfsummary<[l]proof:b2>{A}{B}{A \wedge B}} &
{\prfsummarystyle=1
\prfsummary<[l]proof:b3>{A}{B}{A \wedge B}} &
{\prfsummarystyle=1
\prfsummary<[l]proof:b4>{A}{B}{A \wedge B}}
\end{array}
\end{displaymath}
which has been typeset by
\begin{verbatim}
\begin{array}{lcccc}
\text{some text} &
{\prfsummarystyle=1
\prfsummary<[l]proof:b1>{A}{B}{A \wedge B}} &
{\prfsummarystyle=1
\prfsummary<[l]proof:b2>{A}{B}{A \wedge B}} &
{\prfsummarystyle=1
\prfsummary<[l]proof:b3>{A}{B}{A \wedge B}} &
{\prfsummarystyle=1
\prfsummary<[l]proof:b4>{A}{B}{A \wedge B}}
\end{array}
\end{verbatim}
vertically aligns the cells to their baselines.
On the contrary
\begin{displaymath}
\begin{array}{lcccc}
\text{some text} &
\setcounter{prfsummarycounter}{0}
\setcounter{prfassumptioncounter}{0}
\vcenter{\prfsummarystyle=1
\prfsummary<[l]proof:b1>{A}{B}{A \wedge B}} &
\vcenter{\prfsummarystyle=1
\prfsummary<[l]proof:b2>{A}{B}{A \wedge B}} &
\vcenter{\prfsummarystyle=1
\prfsummary<[l]proof:b3>{A}{B}{A \wedge B}} &
\vcenter{\prfsummarystyle=1
\prfsummary<[l]proof:b4>{A}{B}{A \wedge B}}
\end{array}
\end{displaymath}
is much better, and it is obtained by
\begin{verbatim}
\begin{array}{lcccc}
\text{some text} &
\vcenter{\prfsummarystyle=1
\prfsummary<[l]proof:b1>{A}{B}{A \wedge B}} &
\vcenter{\prfsummarystyle=1
\prfsummary<[l]proof:b2>{A}{B}{A \wedge B}} &
\vcenter{\prfsummarystyle=1
\prfsummary<[l]proof:b3>{A}{B}{A \wedge B}} &
\vcenter{\prfsummarystyle=1
\prfsummary<[l]proof:b4>{A}{B}{A \wedge B}}
\end{array}
\end{verbatim}\vspace{2ex}
The labelling of proof summaries is useful when a proof is very large
and there is the need to split it. The strategy is to select some
sub-proofs and to show them as summaries: instead of writing
\begin{displaymath}
\setcounter{prfsummarycounter}{0}
\setcounter{prfassumptioncounter}{0}
\NDOREL{a:notA}{\NDLEM{A \vee \neg A}}
{\NDIMPI{\NDDL{[l]a:notA}{A}}{\neg\neg A \supset A}}
{\NDIMPIL{a:notnotA}
{\NDFE{\NDIMPE{\NDDL{[l]a:notnotA}{\neg\neg A}}
{\NDDL{[l]a:notA}{\neg A}}{\bot}}{A}}
{\neg\neg A \supset A}}
{\neg\neg A \supset A}
\end{displaymath}
we may consider to define
\begin{displaymath}
\setcounter{prfsummarycounter}{0}
\setcounter{prfassumptioncounter}{0}
\mbox{Let }
\left(\vcenter{\prfsummary<[f]s:abbrev>
{\NDDL{s:notnotA}{\neg\neg A}}
{\NDAL{s:notA}{\neg A}}
{\neg\neg A \supset A}}\right)
\equiv
\left(\vcenter{\NDIMPIL{s:notnotA}
{\NDFE{\NDIMPE{\NDDL{[l]s:notnotA}{\neg\neg A}}
{\NDAL{[l]s:notA}{\neg A}}{\bot}}{A}}
{\neg\neg A \supset A}}\right)
\end{displaymath}
allowing to abbreviate the whole proof as
\begin{displaymath}
\NDOREL{s:notA}{\NDLEM{A \vee \neg A}}
{\NDIMPI{\NDDL{[l]s:notA}{A}}{\neg\neg A \supset A}}
{\hspace{-1em}\prfsummary<s:abbrev>
{\NDDL{[l]s:notnotA}{\neg\neg A}}
{\NDDL{[l]s:notA}{\neg A}}
{\neg\neg A \supset A}}
{\neg\neg A \supset A}
\end{displaymath}
The corresponding \LaTeX{} code is
\begin{verbatim}
\setcounter{prfsummarycounter}{0}
\setcounter{prfassumptioncounter}{0}
\mbox{Let }
\left(\vcenter{\prfsummary<[f]s:abbrev>
{\NDDL{s:notnotA}{\neg\neg A}}
{\NDAL{s:notA}{\neg A}}
{\neg\neg A \supset A}}\right)
\equiv
\left(\vcenter{\NDIMPIL{s:notnotA}
{\NDFE{\NDIMPE{\NDDL{[l]s:notnotA}{\neg\neg A}}
{\NDAL{[l]s:notA}{\neg A}}{\bot}}{A}}
{\neg\neg A \supset A}}\right)
\end{verbatim}
for the definition of the proof summary, and
\begin{verbatim}
\NDOREL{s:notA}{\NDLEM{A \vee \neg A}}
{\NDIMPI{\NDDL{[l]s:notA}{A}}{\neg\neg A \supset A}}
{\hspace{-1em}\prfsummary<s:abbrev>
{\NDDL{[l]s:notnotA}{\neg\neg A}}
{\NDDL{[l]s:notA}{\neg A}}
{\neg\neg A \supset A}}
{\neg\neg A \supset A}
\end{verbatim}
for its use.
% -------------------------------------
\clearpage
\section{More Examples}\label{sec:examples}
This section shows a number of examples illustrating the package. See
the previous sections for the description of the features.\vspace{2ex}
The disjunction elimination rule, with various line options:
\begin{displaymath}
\renewcommand{\arraystretch}{3.7}
\begin{array}{@{}ccc@{}}
{\prfsummarystyle=1
\prftree{\prfsummary{\Gamma}{A \vee B}}
{\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
{\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
{C}} &
{\prfsummarystyle=1
\prftree[r]{$\vee$E}{\prfsummary{\Gamma}{A \vee B}}
{\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
{\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
{C}} &
{\prfsummarystyle=1
\prftree[l]{$\vee$E}{\prfsummary{\Gamma}{A \vee B}}
{\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
{\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
{C}} \\
{\prfsummarystyle=1
\prftree[d]{\prfsummary{\Gamma}{A \vee B}}
{\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
{\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
{C}} &
{\prfsummarystyle=1
\prftree[r][d]{$\vee$E}{\prfsummary{\Gamma}{A \vee B}}
{\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
{\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
{C}} &
{\prfsummarystyle=1
\prftree[l][d]{$\vee$E}{\prfsummary{\Gamma}{A \vee B}}
{\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
{\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
{C}} \\
{\prfsummarystyle=1
\prftree[dotted]{\prfsummary{\Gamma}{A \vee B}}
{\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
{\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
{C}} &
{\prfsummarystyle=1
\prftree[r,dotted]{$\vee$E}{\prfsummary{\Gamma}{A \vee B}}
{\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
{\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
{C}} &
{\prfsummarystyle=1
\prftree[l,dotted]{$\vee$E}{\prfsummary{\Gamma}{A \vee B}}
{\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
{\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
{C}} \\
{\prfsummarystyle=1
\prftree[d,dotted]{\prfsummary{\Gamma}{A \vee B}}
{\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
{\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
{C}} &
{\prfsummarystyle=1
\prftree[r,d,dotted]{$\vee$E}{\prfsummary{\Gamma}{A \vee B}}
{\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
{\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
{C}} &
{\prfsummarystyle=1
\prftree[l,d,dotted]{$\vee$E}{\prfsummary{\Gamma}{A \vee B}}
{\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
{\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
{C}} \\
{\prfsummarystyle=1
\prftree[dashed]{\prfsummary{\Gamma}{A \vee B}}
{\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
{\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
{C}} &
{\prfsummarystyle=1
\prftree[r,dashed]{$\vee$E}{\prfsummary{\Gamma}{A \vee B}}
{\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
{\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
{C}} &
{\prfsummarystyle=1
\prftree[l,dashed]{$\vee$E}{\prfsummary{\Gamma}{A \vee B}}
{\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
{\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
{C}} \\
{\prfsummarystyle=1
\prftree[d,dashed]{\prfsummary{\Gamma}{A \vee B}}
{\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
{\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
{C}} &
{\prfsummarystyle=1
\prftree[d,r,dashed]{$\vee$E}{\prfsummary{\Gamma}{A \vee B}}
{\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
{\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
{C}} &
{\prfsummarystyle=1
\prftree[d,l,dashed]{$\vee$E}{\prfsummary{\Gamma}{A \vee B}}
{\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
{\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
{C}} \\
{\prfsummarystyle=1
\prftree[f]{\prfsummary{\Gamma}{A \vee B}}
{\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
{\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
{C}} &
{\prfsummarystyle=1
\prftree[r,f]{$\vee$E}{\prfsummary{\Gamma}{A \vee B}}
{\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
{\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
{C}} &
{\prfsummarystyle=1
\prftree[l,f]{$\vee$E}{\prfsummary{\Gamma}{A \vee B}}
{\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
{\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
{C}} \\
{\prfsummarystyle=1
\prftree[noline]{\prfsummary{\Gamma}{A \vee B}}
{\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
{\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
{C}} &
{\prfsummarystyle=1
\prftree[noline][r]{$\vee$E}{\prfsummary{\Gamma}{A \vee B}}
{\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
{\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
{C}} &
{\prfsummarystyle=1
\prftree[noline][l]{$\vee$E}{\prfsummary{\Gamma}{A \vee B}}
{\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
{\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
{C}}
\end{array}
\end{displaymath}
Proof that the Law of Excluded middle implies $\neg\neg A \supset A$:
\begin{displaymath}
\prfIMPOptiontrue
\NDORE
{\NDLEM
{A \vee \neg A}\hspace{.4em}}
{\NDIMPI
{\NDD{A}}
{\neg\neg A \supset A}}
{\NDIMPI
{\NDFE
{\NDIMPE
{\NDD{\neg\neg A}}
{\NDD{\neg A}}
{\bot}}
{A}}
{\neg\neg A \supset A}}
{\neg\neg A \supset A}
\prfIMPOptionfalse
\end{displaymath}
Proof that the Law of Excluded middle implies $\neg\neg A \supset A$
with labels instead of rule names, except on axioms:
\begin{displaymath}
\prftree[l]{$\scriptstyle\vee\mathrm{E}$}
{\NDLEM
{A \vee \neg A}\hspace{.6em}}
{\prftree[l]{$\scriptstyle\supset\mathrm{I}$}
{\NDD{A}}
{\neg\neg A \supset A}}
{\prftree[l]{$\scriptstyle\supset\mathrm{I}$}
{\prftree[l]{$\scriptstyle\bot\mathrm{E}$}
{\prftree[l]{$\scriptstyle\supset\mathrm{E}$}
{\NDD{\neg\neg A}}
{\NDD{\neg A}}
{\bot}}
{A}}
{\neg\neg A \supset A}}
{\neg\neg A \supset A}
\end{displaymath}
Another simple proof in natural deduction:
\begin{displaymath}
\prftree
{\prftree
{\prftree
{\prftree
{\prftree
{\prfboundedassumption{A \rightarrow (B \rightarrow C)}}
{\prfboundedassumption{A}}
{B \rightarrow C}\hspace{2em}}
{\prftree
{\prfboundedassumption{A \rightarrow B}}
{\prfboundedassumption{A}}
{B}}
{C}}
{A \rightarrow C}}
{(A \rightarrow B) \rightarrow (A \rightarrow C)}}
{(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B)
\rightarrow (A \rightarrow C))}
\end{displaymath}
The same proof, under the proposition-as-types interpretation:
\begin{displaymath}
\prftree
{\prftree
{\prftree
{\prftree
{\prftree
{\prfassumption{u\colon A \rightarrow (B \rightarrow C)}}
{\prfassumption{w\colon A}}
{u w\colon B \rightarrow C}\hspace{2em}}
{\prftree
{\prfassumption{v\colon A \rightarrow B}}
{\prfassumption{w\colon A}}
{v w\colon B}}
{u w(v w)\colon C}}
{\lambda w.\, u w(v w)\colon A \rightarrow C}}
{\lambda v w.\, u w(v w)\colon (A \rightarrow B) \rightarrow (A
\rightarrow C)}}
{\lambda u v w.\, u w(v w)\colon (A \rightarrow (B \rightarrow C))
\rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))}
\end{displaymath}
A deduction in a sequent calculus:
\begin{displaymath}
\prfinterspace=1.2em
\prftree
{\prftree
{\prftree
{\prftree
{\prfassumption{A \Rightarrow A}}
{\prftree
{\prfassumption{A \Rightarrow A}}
{\prftree
{B \Rightarrow B}
{C \Rightarrow C}
{B, B \rightarrow C \Rightarrow C}}
{A, A \rightarrow B, B \rightarrow C \Rightarrow C}}
{A, A \rightarrow B, A \rightarrow (B \rightarrow C)
\Rightarrow C}}
{A \rightarrow B, A \rightarrow (B \rightarrow C) \Rightarrow A
\rightarrow C}}
{A \rightarrow (B \rightarrow C) \Rightarrow (A \rightarrow B)
\rightarrow (A \rightarrow C)}}
{\Rightarrow (A \rightarrow (B \rightarrow C)) \rightarrow ((A
\rightarrow B) \rightarrow (A \rightarrow C))}
\end{displaymath}
Proof trees can be coloured, as kindly pointed out by Dominic Hughes:
\begin{displaymath}
\begin{prfenv}
\color{green}\NDIMPIL{ex6:1}
{\NDANDI
{\color{red}\NDNOTIL{ex6:2}
{\NDNOTE
{\NDDL{ex6:1}{\neg (A \vee B)}}
{\NDORIL
{\NDDL{ex6:2}{A}}
{A \vee B}}
{\bot}}
{\neg A}}
{\color{blue}\NDNOTIL{ex6:3}
{\NDNOTE
{\NDDL{[l]ex6:1}{\neg (A \vee B)}}
{\NDORIR
{\NDDL{ex6:3}{B}}
{A \vee B}}
{\bot}}
{\neg B}}
{\neg A \wedge \neg B}}
{\neg (A \vee B) \supset \neg A \wedge \neg B}
\end{prfenv}
\end{displaymath}\vspace{.2ex}
Also. all the standard box manipulation commands can be freely applied.
The following examples are not significant for doing mathematics, but
the mechanics behind can be occasionally useful, for example, to
shrink a large proof to fit the page length:
\begin{displaymath}
\rotatebox{15}{\begin{prfenv}
\NDIMPIL{ex5:1}
{\NDANDI
{\NDNOTIL{ex5:2}
{\NDNOTE
{\NDDL{ex5:1}{\neg (A \vee B)}}
{\NDORIL
{\NDDL{ex5:2}{A}}
{A \vee B}}
{\bot}}
{\neg A}}
{\NDNOTIL{ex5:3}
{\NDNOTE
{\NDDL{[l]ex5:1}{\neg (A \vee B)}}
{\NDORIR
{\NDDL{ex5:3}{B}}
{A \vee B}}
{\bot}}
{\neg B}}
{\neg A \wedge \neg B}}
{\neg (A \vee B) \supset \neg A \wedge \neg B}
\end{prfenv}}
\end{displaymath}
\begin{displaymath}
\begin{prfenv}
\NDIMPIL{ex7:1}
{\NDANDI
{\reflectbox{\NDNOTIL{ex7:2}
{\NDNOTE
{\NDDL{ex7:1}{\neg (A \vee B)}}
{\NDORIL
{\NDDL{ex7:2}{A}}
{A \vee B}}
{\bot}}
{\neg A}}}
{\resizebox{20em}{!}{\NDNOTIL{ex7:3}
{\NDNOTE
{\NDDL{[l]ex7:1}{\neg (A \vee B)}}
{\scalebox{.7}[1]{\NDORIR
{\NDDL{ex7:3}{B}}
{A \vee B}}}
{\bot}}
{\neg B}}}
{\neg A \wedge \neg B}}
{\neg (A \vee B) \supset \neg A \wedge \neg B}
\end{prfenv}
\end{displaymath}
% -------------------------------------
\clearpage
\section{Fonts}\label{sec:fonts}
The package works with any font. It uses the current math fonts for
typesetting proofs, while it uses the current text font to typeset
labels and rule names.
Care has been taken to ensure that the various dimensions and
parameters in Section~\ref{sec:parameters} are relative to the current
font, that is, technically, they are expressed with units \texttt{ex}
for vertical lengths, and \texttt{em} for horizontal lengths. Dashes
are \TeX\ rules with thickness \verb|\prflinethickness|.
For unknown reasons, the \texttt{fontenc} package modifies slightly
the values for \texttt{ex} and \texttt{em}, thus the graphical
appearance of proof trees may vary when comparing the results obtained
by compiling with and without this package.
In most cases, the graphical appearance of proofs is acceptable, even
changing font and size. But using fonts whose body is particularly
heavy, may result in proof lines which are too thin. In this case, the
user of the package should increment the value of
\verb|\prflinethickness|.
The package, up to version 1.5, was designed to work with the Computer
Modern family of fonts. It worked also with other fonts, without any
major problem, but, as kindly signalled by D{\'e}mi Nollet at ENS Lyon
and universit{\'e} Paris-Diderot, dashed and dotted lines do not
behave correctly, as dashes overlap. Please, update to the latest
version of the package if you plan to use fonts different from
Computer Modern.
% -------------------------------------
\clearpage
\section{Internals}\label{sec:internals}
A proof tree is typeset as a \TeX{} box in horizontal mode. This means
that wherever a character can stay, so does a proof: in principle,
there is no need to put the proof in a math environment. Also, the
width of a proof is exactly the width of the box; the height of the
proof is the height of the conclusion plus the total height of all the
matter above it; the depth of the proof is the depth of the
conclusion. The proof is aligned so that the current baseline is the
baseline of the conclusion.
For example, the proof of $g \supset \neg\neg g$ in natural deduction
is:
\begin{displaymath}
\mbox{proof} \equiv
\fbox{\prftree[r]{$\supset$I}
{\prftree[r]{$\supset$I}
{\prftree[r]{$\supset$E}
{\prfboundedassumption{g}}
{\prfboundedassumption{\neg g}}
{\bot}}
{\neg\neg g}}
{g \supset \neg\neg g}}
\end{displaymath}
The proof has been surrounded by a framebox to make evident its
bounds. Also, since the letter $g$ has a depth, the example shows how
depth in the conclusion influences the alignment of the proof with
respect to the preceding text.\vspace{2ex}
Actually, the fundamental command in the package is \verb|\prftree|:
the commands to construct assumptions (\verb|\prfassumption| and
\verb|\prfboundedassumption|), those to generate axioms
(\verb|\prfaxiom| and \verb|\prfbyaxiom|), and \verb|\prfsummary| are
just appropriate instances.\vspace{2ex}
The \verb|\prftree| command is composed by a parser, which takes care
of reading the various options and parameters, and by a graphical
engine, \verb|\prf@draw|, which calculates and draw the box containing
the proof tree.
It may be useful to understand how the graphical engine works. In the
first place, each proof tree is a box with a structure:
\begin{center}
{\setlength{\unitlength}{1em}
\begin{picture}(27,6)
\put(0.8,0){\framebox(26.2,6){}}
\put(5,4){\framebox(18,1.8){$\cdots$}}
\put(5.2,4.2){\framebox(6,1.4){$\mbox{assumption}_1$}}
\put(16.8,4.2){\framebox(6,1.4){$\mbox{assumption}_n$}}
\put(7,3){\line(1,0){14}}
\put(22,2.3){\framebox(4.8,1.4){rule name}}
\put(1,2.3){\framebox(4.8,1.4){label}}
\put(8.5,0.2){\framebox(11,1.8){conclusion}}
\end{picture}}
\end{center}
The conclusion, the proof line, and the \emph{assumption line} are
centred. The assumption line is the line whose first element is the
conclusion of the first assumption, and whose last element is the
conclusion of the last assumption, properly spaced so that all the
assumptions fit in between. The width of the proof line is calculated
as the maximum of the width of the assumption line and the conclusion,
with the rule name and the label, if present, hanging on the right and
the left, respectively.
To calculate the assumption line, the engine keeps track of the
position of the conclusion within a proof tree, which reduces to
remember how far is the conclusion from the left margin
(\verb|Lassum|), and how far it is from the right margin
(\verb|Rassum|). So, the assumption line starts from the value of
\verb|Lassum| of the first assumption, and finishes at \verb|Rassum|
of the last assumption.
Thus, with these values it is not difficult to figure out the
mathematics to place the various boxes around, so to combine them into
a proof tree. This is exactly what the graphical engine does.
Unfortunately, when one writes assumptions as simple formulae, without
the \verb|\prfassumption| command, the corresponding \verb|Lassum| and
\verb|Rassum| are not set to $0$, which is the right value. In fact,
the recursive expansion of the \verb|\prf@draw| macro follows the
\emph{natural} order in the construction of the proof box, which is
extremely useful because it allows to locally modify parameters in
sub-proofs; but this order conflicts with proper rendering of
assumptions which are not proof trees.
Also, the hints on how to put space between assumptions, see
Section~\ref{sec:hints_and_tricks}, may have strange effects: if space
is added in front of the first assumption or behind the last one, this
space makes invalid the values of \verb|Lassum| and \verb|Rassum|,
respectively, yielding hard to predict results.
It is worth remarking that the mathematics of the graphical engine is
sound, which means that zero or negative values for the various
dimensions specified as parameters, or using \emph{bizarre} boxes in
the fancy commands, yields the expected results, as far as boxes do
not have parts which extends beyond the bounds.\vspace{2ex}
The implementation of references mimics the implementation of
\verb|\label| and \verb|\ref| in \LaTeX. Whenever a reference is
defined, through a command with the $\langle \mathrm{label}\rangle$ as
the first argument, the reference value is created according to the
options, and it gets stored in the \texttt{.aux} file, by writing
$\verb|\prfauxvalue|\{\mathrm{label}\}\{\mathrm{value}\}$ in the
file. Then, when the source code will be recompiled, and the
\texttt{.aux} file read, this command will be executed before any
occurrence of a reference, which can be resolved.
Most difficulties in the implementation of references lie in the way
to construct the boxes to be used in the proof tree. But, the tricky
part is the interaction with the \LaTeX{} and \TeX{} kernel for error
reporting. A small hack has been introduced to force recompilation
when the references in a proof change.
% -------------------------------------
\clearpage
\section{Future Features and Bugs}\label{sec:future_features}
Essentially, all the features of Buss's package have been implemented
but one: alignment of proofs according to the $\vdash$ (or equivalent)
sign. While this feature is occasionally useful in the writing of
sequent proofs, it requires some trickery in the graphical engine, so
it has been postponed for the moment.\vspace{2ex}
Moreover, automatic compact proofs have been analysed, but not
implemented. A compact proof minimises the amount of space between
subsequent assumptions, eventually making the upper trees to overlap
as boxes, but not as typed text.
The algorithm to obtain this result is not immediate: one should keep
track of the left and right \emph{skylines} of a proof. Comparing the
left skyline of an assumption with the right skyline of the next one,
one can calculate what is the distance between the boxes so that the
distance between the closest points in the skylines is exactly
\verb|\prfinterspace|.
It is not simple to code such an algorithm in \TeX{}, but the real
difficulty is how to represent skylines and how to store them, since
\TeX{} provides no abstract data structures. Hence, the implementation
of this feature has been postponed to a remote future, or to the will
of a real \TeX{} magician.\vspace{2ex}
The abbreviated commands reflect their use by the author. It is quite
possible that you want to define your own commands for inference rules
of your interest. If you think they could be of general interest, send
them by email to the author (see below) who will include them in a
future release of the package, acknowledging your contribution.
\vfill
Although the package has been tested for a long time by now, it is
possible that a few bugs are still present. To signal a bug, please,
write an email to the author (see below), possibly attaching a sample
document which exhibit the misbehaviour, to help tracking and fixing.
\vfill
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End:
|