1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
|
%%
%% An UIT Edition example
%%
%% 1st edition
%%
%% Example 04-03-2 on page 76.
%%
%% Copyright (C) 2012 Herbert Voss
%%
%% It may be distributed and/or modified under the conditions
%% of the LaTeX Project Public License, either version 1.3
%% of this license or (at your option) any later version.
%%
%% See http://www.latex-project.org/lppl.txt for details.
%%
%%
%% ====
% Show page(s) 1,2
%%
%%
\documentclass[a5paper,12pt]{exaarticle}
\pagestyle{empty}
\setlength\textwidth{192.32402pt}
\usepackage[british]{babel}
\usepackage[utf8]{inputenc}
%\StartShownPreambleCommands
\documentclass[a5paper,12pt]{article}
\usepackage[envcountsect]{beamerarticle}
\mode<article>{% only article mode
\usepackage{fullpage} \usepackage[linktocpage]{hyperref} }
\mode<presentation>{% only slides
\setbeamertemplate{background canvas}[vertical shading][bottom=red!10,top=blue!10]
\usetheme{Warsaw} \usefonttheme[onlysmall]{structurebold} }
%\StopShownPreambleCommands
\begin{document}
\title{Introduction to analytic geometry}
\author{Gerhard Kowalewski} \date{1910}
\frame{\titlepage}
\section<presentation>*{Overview}
\begin{frame}{Overview} \tableofcontents[part=1,pausesections] \end{frame}
\AtBeginSubsection[]{\begin{frame}<beamer>
\frametitle{Overview} \tableofcontents[current,currentsubsection] \end{frame} }
\part<presentation>{Main part}
\section{Research and studies}
\begin{frame}{The integral and its geometric applications.}
We assume that the theory of irrational numbers is known.
\end{frame}
\subsection{Interval}
\begin{frame}{Definition}
The \emph{interval} $\langle a,b\rangle$ consists of all numbers $x$ that
satisfy the condition $a\le x\le b$.
\end{frame}
\subsection{Sequence of numbers}
\begin{frame}{Definition of a sequence}
A \emph{sequence of numbers} or \emph{sequence} is created by replacing each member
of the infinite sequence of numbers $1,2,3,\ldots$ by some rational or irrational
number, i.e.\ each $n$ by a number $x_n$.
\end{frame}
\subsection{Limits}
\begin{frame}{Definition of a limit}
$\lim x_n=g$ means that almost all members of the sequence are within each neighbourhood of $g$.
\end{frame}
\subsection{Convergence criterion}
\begin{frame}{Definition of convergence}
\textbf{Convergence criterion}: The sequence $x_1,x_2,x_3,\ldots$ converges if and
only if \textbf{each} sub-sequence $x^\prime_1,x^\prime_2, x^\prime_3,\ldots$
satisfies the relation $\lim(x_n-x^\prime_n)=0$.
\end{frame}
\end{document}
|