summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/pgfplots/pgfplots.reference.tickoptions.tex
blob: 0cb1556035f7cb7171add8ffe27aa2f958a218bb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784


\subsection{Tick Options}

\subsubsection{Tick Coordinates and Label Texts}
\begin{pgfplotsxykey}{\x tick=\mchoice{\textbackslash empty,data,\normalfont\marg{coordinate list}} (initially \marg{})}
These options assign a list of \emph{Positions} where ticks shall be placed. The argument is either the empty string (which is the initial value), the command |\empty|, |data| or a list of coordinates. The initial configuration of an empty string means to generate these positions automatically. The choice |\empty| will result in no tick at all. The special value |data| will produce tick marks at every coordinate of the first plot. Otherwise, tick marks will be placed at every coordinate in  \marg{coordinate list}.

The \marg{coordinate list} will be used inside of a |\foreach \x in |\marg{coordinate list} statement. The format is as follows:
\begin{itemize}
	\item |{0,1,2,5,8,1e1,1.5e1}| (a series of coordinates),
	\item |{0,...,5}| (the same as |{0,1,2,3,4,5}|),
	\item |{0,2,...,10}| (the same as |{0,2,4,6,8,10}|),
	\item |{9,...,3.5}| (the same as |{9, 8, 7, 6, 5, 4}|),
	\item See \cite[Section~34]{tikz} for a more detailed definition of the options.
	\item Please be careful with white spaces inside of \marg{coordinate list} (at least around the dots).
\end{itemize}
For logplots, \PGFPlots\ will apply $\log(\cdot)$ to each element in `\marg{coordinate list}'. 
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{loglogaxis}[xtick={12,9897,1468864}]
	% see above for this macro:
	\plotcoords
	\end{loglogaxis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	xtick=\empty,
	ytick={-2,0.3,3,3.7,4.5}]
\addplot+[smooth] coordinates {
	(-2,3) (-1.5,2) (-0.3,-0.2) 
	(1,1.2) (2,2) (3,5)};
\end{axis}
\end{tikzpicture}
\end{codeexample}

\paragraph{Attention:} You can't use the `|...|' syntax if the elements are too large for \TeX! For example, `|xtick=1.5e5,2e7,3e8|' will work (because the elements are interpreted as strings, not as numbers), but `|xtick=1.5,3e5,...,1e10|' will fail because it involves real number arithmetics beyond \TeX's capacities.
\vspace*{0.3cm}

\noindent
The default choice for tick \emph{positions} in normal plots is to place a tick at each coordinate~$i\cdot h$. The step size~$h$ depends on the axis scaling and the axis limits. It is chosen from a list a ``feasible'' step sizes such that neither too much nor too few ticks will be generated. The default for logplots is to place ticks at positions $10^i$ in the axis' range. The positions depend on the axis scaling and the dimensions of the picture. If log plots contain just one (or two) positions $10^i$ in their limits, ticks will be placed at positions $10^{i\cdot h}$ with ``feasible'' step sizes $h$ as in the case of linear axis.

\noindent
The tick \emph{appearance} can be (re-)configured with
\begin{codeexample}[code only]
\pgfplotsset{tick style={very thin,gray}}% modifies the style `every tick'
\pgfplotsset{minor tick style={black}}   % modifies the style `every minor tick'
\end{codeexample}

These style commands can be used at any time. The tick line width can be configured with `|major tick length|' and `|minor tick length|'.

\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[xtick=data,xmajorgrids]
	\addplot coordinates {
		(1,2)
		(2,5)
		(4,6.5)
		(6,8)
		(10,9)
	};
\end{axis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\begin{tikzpicture}
\begin{loglogaxis}[
	title=A log plot with small axis range]

	\addplot coordinates {
		(10,1e-4)
		(17,8.3176e-05)
		(25,7.0794e-05)
		(50,5e-5)
	};
\end{loglogaxis}
\end{tikzpicture}
\end{codeexample}
\end{pgfplotsxykey}

\begin{pgfplotsxykeylist}{minor \x\ tick num=\marg{number} (initially 0),minor tick num=\marg{number}}
	Sets the number of minor tick lines used either for single axes or for all of them.

	Minor ticks will be disabled if the major ticks don't have the same distance and they are currently only available for linear axes (not for logarithmic ones).

\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[minor tick num=1]
	\addplot {x^3};
	\addplot {-20*x};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[minor tick num=3]
	\addplot {x^3};
	\addplot {-20*x};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[minor x tick num=1,
	             minor y tick num=3]
	\addplot {x^3};
	\addplot {-20*x};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

\end{pgfplotsxykeylist}

\begin{pgfplotsxykey}{extra \x\ ticks=\marg{coordinate list}}
Adds \emph{additional} tick positions and tick labels to the $x$~or~$y$ axis. `Additional' tick positions do not affect the normal tick placement algorithms, they are drawn after the normal ticks. This has two benefits: first, you can add single, important tick positions without disabling the default tick label generation and second, you can draw tick labels `on top' of others, possibly using different style flags.


\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	xmin=0,xmax=3,ymin=0,ymax=15,
	extra y ticks={2.71828},
	extra y tick labels={$e$},
	extra x ticks={2.2},
	extra x tick style={grid=major,
		tick label style={
			rotate=90,anchor=east}},
	extra x tick labels={Cut},
]
	\addplot {exp(x)};
	\addlegendentry{$e^x$}
\end{axis}
\end{tikzpicture}
\end{codeexample}

\message{Overfull hbox is ok.}%
\begin{codeexample}[]
\pgfplotsset{every axis/.append style={width=5.3cm}}
\begin{tikzpicture}
\begin{loglogaxis}[
	title=Explicitly Provided Limits,
	xtickten={1,2},
	ytickten={-5,-6}]
\addplot coordinates 
	{(10,1e-5) (20,5e-6) (40,2.5e-6)};
\end{loglogaxis}
\end{tikzpicture}

\begin{tikzpicture}
\begin{loglogaxis}[
	title=With Extra Ticks,
	xtickten={1,2},
	ytickten={-5,-6},
	extra x ticks={20,40},
	extra y ticks={5e-6,2.5e-6}]
\addplot coordinates 
	{(10,1e-5) (20,5e-6) (40,2.5e-6)};
\end{loglogaxis}
\end{tikzpicture}

\begin{tikzpicture}
\begin{loglogaxis}[
	title=With Extra Ticks; $10^e$ format,
	extra tick style={log identify minor tick positions=false},
	xtickten={1,2},
	ytickten={-5,-6},
	extra x ticks={20,40},
	extra y ticks={5e-6,2.5e-6}]
\addplot coordinates 
	{(10,1e-5) (20,5e-6) (40,2.5e-6)};
\end{loglogaxis}
\end{tikzpicture}
\end{codeexample}

Remarks:
\begin{itemize} 
\item Use |extra x ticks| to highlight special tick positions. The use of |extra x ticks| does not affect minor tick/grid line generation, so you can place extra ticks at positions $j\cdot 10^i$ in log--plots. 
\item Extra ticks are always typeset as major ticks.

They are affected by |major tick length| or options like |grid=major|.
\item Use the style |every extra x tick| (|every extra y tick|) to configure the appearance.
\item You can also use `|extra x tick style=|\marg{...}' which has the same effect.
\end{itemize}
\end{pgfplotsxykey}

\begin{pgfplotsxykey}{\x tickten=\marg{exponent base 10 list}}
These options allow to place ticks at selected positions $10^k, k \in \text{\marg{exponent base 10 list}}$. They are only used for logplots. The syntax for \marg{exponent base 10 list} is the same as above for |xtick=|\marg{list} or |ytick=|\marg{list}.

Using `|xtickten={1,2,3,4}|' is equivalent to `|xtick={1e1,1e2,1e3,1e4}|', but it requires fewer computational time and it allows to use the short syntax `|xtickten={1,...,4}|'.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{semilogyaxis}[
	samples=8,
	ytickten={-6,-4,...,4},
	domain=0:10]

\addplot {2^(-2*x + 6)};
\addlegendentry{$2^{-2x + 6}$}

% or invoke gnuplot to generate coordinates:
\addplot gnuplot[id=pow2] 
	{2**(-1.5*x -3)};
\addlegendentry{$2^{-1.5x -3}$}
\end{semilogyaxis}
\end{tikzpicture}
\end{codeexample}

In case |log basis x|$\neq 10$, the meaning of |xtickten| changes. In such a case, |xtickten| will still assign the exponent, but for the chosen |log basis x| instead of base $10$.
\end{pgfplotsxykey}

\begin{pgfplotsxykey}{\x ticklabels=\marg{label list}}
\label{pgfplots:key:xticklabels}%
Assigns a \emph{list} of tick \emph{labels} to each tick position. Tick \emph{positions} are assigned using the |xtick| and |ytick|-options.

This is one of two options to assign tick labels directly. The other option is |xticklabel=|\marg{command} (or |yticklabel=|\marg{command}).
The option `|xticklabel|' offers higher flexibility while `|xticklabels|' is easier to use. See also the variant |xticklabels from table|.

The argument \marg{label list} has the same format as for ticks, that means
\begin{codeexample}[code only]
xticklabels={$\frac{1}{2}$,$e$}
\end{codeexample}
Denotes the two--element--list $\{\frac 12, e\}$. The list indices match the indices of the tick positions. If you need commas inside of list elements, use 
\begin{codeexample}[code only]
xticklabels={{0,5}, $e$}.
\end{codeexample}


\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	xtick={-1.5,-1,...,1.5},
	xticklabels={%
		$-1\frac 12$,
		$-1$,
		$-\frac 12$,
		$0$,
		$\frac 12$,
		$1$}
]
\addplot[smooth,blue,mark=*] 
coordinates {
	(-1,    1)
	(-0.75, 0.5625)
	(-0.5,  0.25)
	(-0.25, 0.0625)
	(0,     0)
	(0.25,  0.0625)
	(0.5,   0.25)
	(0.75,  0.5625)
	(1,     1)
};
\end{axis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\begin{tikzpicture}
\begin{semilogyaxis}[
  ytickten={-2,-1,0,1,2},
  yticklabels={$\frac{1}{100}$,%
  	$\frac{1}{10}$,%
	1,10,100},
]
	\addplot {exp(x)};
\end{semilogyaxis}
\end{tikzpicture}
\end{codeexample}

	Note that it is also possible to terminate list entries with two backslashes, |\\|. In that case, the last entry needs to be terminated by |\\| as well (it is the same alternative syntax which is also accepted for |\legend| and |cycle list|).
\end{pgfplotsxykey}


\begin{pgfplotsxykey}{\x ticklabel=\marg{command}}
These keys change the \TeX-command which creates the tick \emph{labels} assigned to each tick position (see options |xtick| and |ytick|). 

This is one of the two options to assign tick labels directly. The other option is `|xticklabels=|\marg{label list}' (or |yticklabels=|\marg{label list}). The option `|xticklabel|' offers higher flexibility while `|xticklabels|' is easier to use.

The argument \marg{command} can be any \TeX-text. The following commands are valid inside of \marg{command}:
\begin{description}
	\item[] \declareandlabel{\tick} The current element of option |xtick| (or |ytick|).
	\item[] \declareandlabel{\ticknum} The current tick number, starting with~0 (it is a macro containing a number).
	\item[] \declareandlabel{\nexttick} This command is only valid in case if the |x tick label as interval| option is set (or the corresponding variable for~$y$). It will contain the position of the next tick position, that means the right boundary of the tick interval.
\end{description}
The default argument is 
\begin{itemize}
	\item \declareandlabel{\axisdefaultticklabel} for normal plots:
\begin{codeexample}[code only]
\def\axisdefaultticklabel{$\pgfmathprintnumber{\tick}$}
\end{codeexample}

	\item \declareandlabel{\axisdefaultticklabellog} for logplots:
\begin{codeexample}[code only]
\def\axisdefaultticklabellog{%
	\pgfkeysgetvalue{/pgfplots/log number format code/.@cmd}\pgfplots@log@label@style
	\expandafter\pgfplots@log@label@style\tick\pgfeov
}
\end{codeexample}
\end{itemize}
That means you can configure the appearance of linear axis with the number formatting options described in section~\ref{sec:number:printing} and logarithmic axis with |log number format code|, see below.

\begin{codeexample}[]
\begin{tikzpicture}
	\begin{semilogyaxis}[
		yticklabel style={/pgf/number format/fixed},
		% changes tick labels to a number instead 
		% of exponential notation:
		yticklabel={%
			\pgfmathfloatparsenumber{\tick}%
			\pgfmathfloatexp{\pgfmathresult}%
			\pgfmathprintnumber{\pgfmathresult}%
		},
	]
		\addplot {exp(x)};
	\end{semilogyaxis}
\end{tikzpicture}
\end{codeexample}

The following example uses explicitly formatted $x$ tick labels and a small \TeX\ script to format $y$ tick labels in the form \meta{sign}\meta{number}|/10|.
% \usepackage{nicefrac}
\begin{codeexample}[width=4cm]
% \usepackage{nicefrace}% required
\begin{tikzpicture}
\begin{axis}[
	% x ticks explicitly formatted:
	xtick={0,1,0.5,0.25,0.75},
	xticklabels={$0$,$1$,$\frac12$,$\frac14$,$\frac34$},
	% y ticks automatically by some code fragment:
	ytick=data,
	yticklabel={%
		\scriptsize
		\ifdim\tick pt<0pt % a TeX \if -- see TeX Book
			\pgfmathparse{-10*\tick}%
			$-\nicefrac{\pgfmathprintnumber{\pgfmathresult}}{10}$%
		\else
			\ifdim\tick pt=0pt
			\else
				\pgfmathparse{10*\tick}%
				$\nicefrac{\pgfmathprintnumber{\pgfmathresult}}{10}$%
			\fi
		\fi
	},
	ymajorgrids,
	title=A special Prewavelet,
	axis x line=center,
	axis y line=left,
	]
	\addplot coordinates {(0,-1.2) (0.25,1.1) 
		(0.5,-0.6) (0.75,0.1) (1,0)};
\end{axis}
\end{tikzpicture}
\end{codeexample}
\noindent The \TeX\ script takes the |\tick| macro as input and applies some logic. The |\ifdim\tick pt<0pt| means ``if dimension |\tick pt| $ < $ |0pt|''. The |\ifdim| is \TeX's only way to compare real fixed point numbers and the author did not want to invoke |\pgfmath| for this simple task. Since |\ifdim| expects a dimension, we have to use the |pt| suffix which is compatible with |\pgfmath|. The result is that negative numbers, zero and positive numbers are typeset differently.

You can change the appearance of tick labels with
\begin{codeexample}[code only]
\pgfplotsset{tick label style={
	font=\tiny,
	/pgf/number format/sci}}% this modifies the `every tick label' style
\end{codeexample}
and/or
\begin{codeexample}[code only]
\pgfplotsset{x tick label style={
	above,
	/pgf/number format/fixed zerofill}}% this modifies the `every x tick label' style
\end{codeexample}
and
\begin{codeexample}[code only]
\pgfplotsset{y tick label style={font=\bfseries}}% modifies `every y tick label'
\end{codeexample}
\end{pgfplotsxykey}

\begin{pgfplotsxykey}{\x ticklabels from table=\marg{\textbackslash table or filename}\marg{colname}}
	A variant of |xticklabels=|\marg{list} which uses each entry in the column named \meta{colname} from a table as tick labels.

	The first argument \meta{\textbackslash table or filename} can be either a loaded table macro (i.e.\ the result of |\pgfplotstableread|\marg{file name}\marg{\textbackslash table}) or just a file name.

	The second argument can be a column name, a column alias or a |create on use| specification (see \PGFPlotstable\ for the latter two). Furthermore, it can be |[index]|\meta{integer} in which case \meta{integer} is a column index.

	The behavior of |xticklabels from table| is the same as if the column \meta{colname} would have been provided as comma separated list to |xticklabels|. This means the column can contain text, \TeX\ macros or even math mode.

	If you have white spaces in your cells, enclose the complete cell in curly braces, |{example cell}|. The detailed input format for tables is discussed in \verbpdfref{\addplot table} and in the documentation for \PGFPlotstable.
\end{pgfplotsxykey}

\begin{pgfplotsxykey}{extra \x\ tick label=\marg{\TeX\ code}}
	As |xticklabel| provides code to generate tick labels for each |xtick|, the key |extra x tick label| provides code to generate tick labels for every element in |extra x ticks|.
\end{pgfplotsxykey}

\begin{pgfplotsxykey}{extra \x\ tick labels=\marg{label list}}
	As |xticklabels| provides explicit tick labels for each |xtick|, the key |extra x tick labels| provides explicit tick labels for every element in |extra x ticks|.
\end{pgfplotsxykey}



\begin{pgfplotsxykey}{\x\ tick label as interval=\mchoice{true,false} (initially false)}
\label{key:pgfplots:ticklabelasinterval}
	Allows to treat tick labels as intervals; that means the tick positions denote the interval boundaries. If there are $n$ positions, $(n-1)$ tick labels will be generated, one for each interval.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[x tick label as interval]
	\addplot {3*x};
\end{axis}
\end{tikzpicture}
\end{codeexample}
	This mode enables the use of |\nexttick| inside of |xticklabel| (or |yticklabel|). A common application might be a bar plot.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	ybar interval=0.9,
	x tick label as interval,
	xmin=2003,xmax=2030,
	ymin=0,ymax=140,
	xticklabel={
	   $\pgfmathprintnumber{\tick}$
	-- $\pgfmathprintnumber{\nexttick}$},
	xtick=data,
	x tick label style={
		rotate=90,anchor=east,
		/pgf/number format/1000 sep=}
]

	\addplot[draw=blue,fill=blue!40!white]
		coordinates
		{(2003,40) (2005,100) (2006,15) 
		 (2010,90) (2020,120) (2030,3)};
\end{axis}
\end{tikzpicture}
\end{codeexample}
\end{pgfplotsxykey}



\begin{pgfplotsxykeylist}{\x minorticks=\mchoice{true,false} (initially true),\x majorticks=\mchoice{true,false} (initially true),ticks=\mchoice{minor,major,both,none} (initially both)}
Enables/disables the small tick lines either for single axis or for all of them. Major ticks are those placed at the tick positions and minor ticks are between tick positions. Please note that minor ticks are automatically disabled if |xtick| is not a uniform range\footnote{A uniform list means the difference between all elements is the same for linear axis or, for logarithmic axes, $\log(10)$.}.

The key |minor tick length=|\marg{dimen} configures the tick length for minor ticks while the |major| variant applies to major ticks.
You can configure the appearance using the following styles:
\begin{codeexample}[code only]
\pgfplotsset{every tick/.append style={color=black}} % applies to major and minor ticks,
\pgfplotsset{every minor tick/.append style={thin}}  % applies only to minor ticks,
\pgfplotsset{every major tick/.append style={thick}} % applies only to major ticks.
\end{codeexample}
There is also the style ``|every tick|'' which applies to both, major and minor ticks.
\end{pgfplotsxykeylist}

\begin{pgfplotsxykeylist}{\x tickmin=\marg{coord}, \x tickmax=\marg{coord}}
	These keys can be used to modify minimum/maximum values before ticks are drawn. Because this applies to axis discontinuities, it is described on page~\pageref{key:xytickminmax} under section~\ref{key:xytickminmax}, ``Axis Discontinuities"'.
\end{pgfplotsxykeylist}

\subsubsection{Tick Alignment: Positions and Shifts}

\begin{pgfplotsxykeylist}{\x tick pos=\mchoice{left,right,both} (initially both),tick pos=\mchoice{left,right,both}}
Allows to choose where to place the small tick lines. In the default configuration, this does also affect tick \emph{labels}, see below. The |tick pos| style sets all of them to the same value (aliased by |tickpos|\pgfmanualpdflabel{/pgfplots/tickpos}). This option is only useful for boxed axes.

For $x$, the additional choices |bottom| and |top| can be used which are equivalent to |left| and |right|, respectively. Both are accepted for $y$.

Changing |tick pos| will also affect the placement of tick labels. 

Note that it can also affect |axis lines| key although not all combinations make sense. Make sure the settings are consistent.
\end{pgfplotsxykeylist}

\begin{pgfplotsxykeylist}{%
	\x ticklabel pos=\mchoice{left,right,default} (initially default),
	   ticklabel pos=\mchoice{left,right,default} (initially default)}
Allows to choose where to place tick \emph{labels}. The choices |left| and |right| place tick labels either at the left or at the right side of the complete axis. The choice |default| uses the same setting as |xtick pos| (or |ytick pos|). This option is only useful for boxed axes -- keep it to |default| for non-boxed figures. The |ticklabel pos| style sets all three of them to the same value.

For $x$, the additional choices |bottom| and |top| can be used which are equivalent to |left| and |right|, respectively. Both are accepted for $x$.
\end{pgfplotsxykeylist}

\begin{pgfplotsxykeylist}{%
	\x tick align=\mchoice{inside,center,outside} (initially inside),
	   tick align=\mchoice{inside,center,outside} (initially inside)}
Allows to change the location of the ticks relative to the axis lines. The |tick align| sets all of them to the same value.
Default is ``|inside|''.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	xtick=data,ytick=data,
	xtick align=center]
\addplot coordinates 
	{(-3,0) (-2,0.1) (-1,-0.6) 
	 (0,1)
	 (1,-0.6) (2,0.1) (3,0)};
\end{axis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	xtick=data,ytick=data,
	ytick align=outside]
\addplot coordinates 
	{(-3,0) (-2,0.1) (-1,-0.6)
	 (0,1) 
	 (1,-0.6) (2,0.1) (3,0)};
\end{axis}
\end{tikzpicture}
\end{codeexample}

These tick alignment options are set automatically by the |axis x line| and |axis y line| methods (unless one appends an asterisk `|*|'):
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	xtick=data,
	axis x line=center,
	xticklabels={,,},
	ytick={-0.6,0,0.1,1},
	yticklabels={
		$-\frac{6}{10}$,,
		$\frac{1}{10}$,$1$},
	ymajorgrids,
	axis y line=left,
	enlargelimits=0.05]
\addplot coordinates 
	{(-3,0) (-2,0.1) (-1,-0.6)
	 (0,1) 
	 (1,-0.6) (2,0.1) (3,0)};
\end{axis}
\end{tikzpicture}
\end{codeexample}

\end{pgfplotsxykeylist}

\begin{pgfplotsxykeylist}{%
	\x ticklabel shift=\marg{dimension} (initially empty),%
	   ticklabel shift=\marg{dimension} (initially empty)}
	Shifts tick labels in direction of the outer unit normal of the axis by an amount of \marg{dimension}. The |ticklabel shift| sets the same value for all axes.

	This is usually unnecessary as the |anchor| of a tick label already yields enough spacing in most cases.
\end{pgfplotsxykeylist}

\subsubsection{Tick Scaling - Common Factors In Ticks}
\label{sec:scaled:ticks}%
\begin{pgfplotsxykeylist}{
	scaled ticks=\mchoice{true,false,base 10:{\normalfont\meta{e}},real:{\normalfont\meta{num}},manual:{\normalfont\marg{label}\marg{code}}} (initially true),%
	scaled \x\ ticks=\meta{one of the values} (initially true)%
}
Allows to factor out common exponents in tick labels for \emph{linear axes}. For example, if you have tick labels $20000,40000$ and $60000$, you may want to save some space and write $2,4,6$ with a separate factor `$\cdot 10^4$'. Use `|scaled ticks=true|' to enable this feature. In case |true|, tick scaling will be triggered if the data range is either too large or too small (see below).
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[scaled ticks=true]
	\addplot coordinates {
		(20000,0.0005)
		(40000,0.0010)
		(60000,0.0020)
	};
\end{axis}
\end{tikzpicture}%
\end{codeexample}

\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[scaled ticks=false]
	\addplot coordinates {
		(20000,0.0005)
		(40000,0.0010)
		(60000,0.0020)
	};
\end{axis}
\end{tikzpicture}
\end{codeexample}

	The |scaled ticks| key is a style which simply sets scaled ticks for both, $x$ and $y$.

	The value |base 10:|\meta{e} allows to adjust the algorithm manually. For example, |base 10:3| will divide every tick label by $10^3$:
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[scaled ticks=base 10:3,
		/pgf/number format/sci subscript]
	\addplot coordinates
		{(-0.00001,2e12) (-0.00005,4e12) };
	\end{axis}
\end{tikzpicture}
\end{codeexample}
\noindent Here, the \texttt{sci subscript} option simply saves space.
In general, |base 10:|$e$ will divide every tick by $10^e$. The effect
is not limited by the ``too large or too small'' decisions mentioned
above.

	The value |real:|\meta{num} allows to divide every tick by a fixed \meta{num}.
	For example, the following plot is physically ranged from $0$ to $2\pi$, but the tick scaling algorithm is configured to divide every tick label by $\pi$.
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[
		xtick={0,1.5708,...,10},
		domain=0:2*pi,
		scaled x ticks={real:3.1415},
		xtick scale label code/.code={$\cdot \pi$}]
	\addplot {sin(deg(x))};
	\end{axis}
\end{tikzpicture}
\end{codeexample}
	\noindent Setting |scaled ticks=real:|\meta{num} also changes the |tick scale label code| to
\begin{codeexample}[code only]
\pgfkeys{/pgfplots/xtick scale label code/.code=
	{$\pgfkeysvalueof{/pgfplots/tick scale binop} \pgfmathprintnumber{#1}$}}.
\end{codeexample}
\noindent The key |tick scale binop| is described below, it is set initially to |\cdot|.

A further -- not very useful -- example is shown below. Every $x$ tick label has been divided by $2$, every $y$ tick label by $3$.
\nobreak
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[
		scaled x ticks=real:2,
		scaled y ticks=real:3]
	\addplot {x^3};
	\node[pin=135:{$(3,9)$}] at (axis cs:3,9) {};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

	Unfortunately, \meta{num} can't be evaluated with \PGF's math parser (yet) to maintain the full data range accepted by \PGFPlots.

	The last option, |scaled ticks=manual:|\marg{label}\marg{code} allows even more customization. It allows \emph{full control} over the displayed scaling label \emph{and} the scaling code: \marg{text} is used as-is inside of the tick scaling label while \marg{code} is supposed to be a one-argument-macro which scales each tick. Example:
\begin{codeexample}[]
\begin{tikzpicture} 
\begin{axis}[
	% warning: the '%' signs are necessary (?)
	scaled y ticks=manual:{$+65\,535$}{%
		\pgfmathfloatcreate{1}{6.5535}{4}%
		\pgfmathfloatsubtract{#1}{\pgfmathresult}%
	},
	yticklabel style={
		/pgf/number format/fixed,
		/pgf/number format/precision=1},
] 
\addplot coordinates { 
	(0, 65535) 
	(13, 65535) 
	(14, 65536) 
	(15, 65537) 
	(30, 65537) 
}; 
\end{axis} 
\end{tikzpicture} 	
\end{codeexample}
\noindent The example uses |$+65\,535$| as tick scale label content. Furthermore, it defines the customized tick label formula $y - (+6.5535\cdot 10^4) = y - 65535$ to generate $y$ tick labels.

The \marg{text} can be arbitrary. It is completely in user control. The second argument, \marg{code} is supposed to be a one-argument-macro in which |#1| is the current tick position in floating point representation. The macro is expected to assign |\pgfmathresult| (also in floating point representation). The \PGF\ manual~\cite{tikz} contains detailed documentation about its math engine (including floating point\footnote{However, that particular stuff is newer than \PGF\ $2.00$. At the time of this writing, it is only available as (public) CVS version.}).

This feature may also be used do transform coordinates in case they can't be processed with \PGFPlots: transform them and supply a proper tick scaling method such that tick labels represent the original range.

If \marg{text} is empty, the tick scale label won't be drawn (and no space will be occupied).

Tick scaling does \emph{not} work for logarithmic axes.
\end{pgfplotsxykeylist}

\begin{pgfplotsxycodekeylist}{\x tick scale label code}
Allows to change the default code for scaled tick labels. The default is
\begin{codeexample}[code only]
\pgfplotsset{
	xtick scale label code/.code={$\cdot 10^{#1}$}
}
\end{codeexample}

More precisely, it is
\begin{codeexample}[code only]
\pgfplotsset{
	xtick scale label code/.code={$\pgfkeysvalueof{/pgfplots/tick scale binop} 10^{#1}$}
}
\end{codeexample}
\noindent and the initial value of |tick scale binop| is |\cdot|, but it can be changed to |\times| if desired.

If the code is empty, no tick scale label will be drawn (and no space is consumed).
\end{pgfplotsxycodekeylist}

\begin{pgfplotscodekey}{tick scale label code}
	A style which sets |xtick scale label code| and those for $y$ and $z$.
\end{pgfplotscodekey}


\begin{pgfplotskey}{tick scale binop=\marg{\TeX\ math operator} (initially \textbackslash cdot)}
	Sets the binary operator used to display tick scale labels.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	title=\texttt{tick scale 
		binop=\textbackslash cdot}]
\addplot
	[mark=none,blue,samples=250,
	 domain=0:5]
	{exp(10*x)};
\end{axis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	title=\texttt{tick scale 
		binop=\textbackslash times},
	tick scale binop=\times]
\addplot
	[mark=none,blue,samples=250,
	 domain=0:5] 
	{exp(10*x)};
\end{axis}
\end{tikzpicture}
\end{codeexample}
\end{pgfplotskey}

\begin{pgfplotskey}{scale ticks below=\marg{exponent}}
Allows fine tuning of the `|scaled ticks|' algorithm: if the axis limits are of magnitude $10^e$ and $e<$\marg{exponent}, the common prefactor~$10^e$ will be factored out. The default is 
\makeatletter
\pgfplots@scale@ticks@below@exponent
\makeatother.
\end{pgfplotskey}

\begin{pgfplotskey}{scale ticks above=\marg{exponent}}
Allows fine tuning of the '|scaled ticks|' algorithm: if the axis limits are of magnitude $10^e$ and $e>$\marg{exponent}, the common prefactor~$10^e$ will be factored out. The default is
\makeatletter
\pgfplots@scale@ticks@above@exponent
\makeatother.
\end{pgfplotskey}


\subsubsection{Tick Fine Tuning}
The tick placement algorithm depends on a number of parameters which can be tuned to get better results.
\begin{pgfplotskey}{max space between ticks=\marg{number} (initially 35)}
\label{maxspacebetweenticks}
	Configures the maximum space between adjacent ticks in full points. The suffix ``|pt|'' has to be omitted and fractional numbers are not supported. The default is~\axisdefaulttickwidth.
\end{pgfplotskey}

\begin{pgfplotskey}{try min ticks=\marg{number} (initially 3)}
	Configures a loose lower bound on the number of ticks. It should be considered as a suggestion, not a tight limit. The default is~\axisdefaulttryminticks. This number will increase the number of ticks if `|max space between ticks|' produces too few of them.

	The total number of ticks may still vary because not all fractional numbers in the axis' range are valid tick positions.
\end{pgfplotskey}

\begin{pgfplotskey}{try min ticks log=\marg{number} (initially 3)}
	The same as |try min ticks|, but for logarithmic axis.
\end{pgfplotskey}

\begin{pgfplotskeylist}{tickwidth=\marg{dimension} (initially 0.15cm),major tick length=\marg{dimension} (initially 0.15cm)}
	Sets the width of major tick lines.
\end{pgfplotskeylist}

\begin{pgfplotskeylist}{subtickwidth=\marg{dimension} (initially 0.1cm),minor tick length=\marg{dimension} (initially 0.1cm)}
	Sets the width of minor tick lines.
\end{pgfplotskeylist}

\begin{pgfplotsxykeylist}{\x tick placement tolerance (initially 0.05pt)}
	Tick lines and labels will be placed if they are no more than this tolerance beyond the axis limits. This threshold should be chosen such that it does not produce visible differences while still providing fault tolerance.

	The threshold is given in paper units of the final figure.
\end{pgfplotsxykeylist}

\begin{pgfplotsxykey}{log basis \x=\marg{number} (initially empty)}
	Allows to change the logarithms used for logarithmic axes.

	Changing to a different log basis is nothing but a scale. However, it also changes the way tick labels are displayed: they will also be shown in the new basis.

\begin{codeexample}[]
\begin{tikzpicture}
	\begin{semilogyaxis}[log basis y=2,grid=major,samples at={-4,...,4}]
		\addplot {2^x};
	\end{semilogyaxis}
\end{tikzpicture}
~
\begin{tikzpicture}
	\begin{semilogyaxis}[log basis y=10,samples at={-4,...,4}]
		\addplot {2^x};
	\end{semilogyaxis}
\end{tikzpicture}
\end{codeexample}
	
	The initial setting is `|log basis x=|' which defaults to: the natural logarithm for any coordinates (basis $\exp(1)$), and the logarithm base $10$ for the display of tick labels.

	If the log basis is changed to something different than the empty string, the chosen logarithm will be applied to any input coordinate (if the axis scale is log as well) and tick labels will be displayed in this basis. 

	In other words: usually, you see log axes base $10$ and that's it. It is only interesting for coordinate filters: 
	the initial setting (with empty \meta{number}) uses coordinate lists basis $e$ although the display will use basis~$10$ (i.e.\ it is rescaled). Any non-empty value \meta{number} causes both, coordinate lists \emph{and} display to use \meta{number} as basis for the logarithm. The javascript code of the |clickable| library will always use the \emph{display} basis (which is usally $10$) when it computes slopes.

	\paragraph{Technical remarks.} When |log basis x| is used, the style |log basis ticks=|\marg{axis char} will be installed (in this case |log basis ticks=x|). This style in turn will change |log number format code|.

	Please note that |xtickten| will be used differently now: it will provide the desired ticks in the new basis! Despite the misleading name ``|ten|'', |xtickten={1,2,3,4}| will yield ticks at $2^1,2^2,2^3,2^4$ if |log basis x=2| has been set.
\end{pgfplotsxykey}