summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/pgf-periodictable/manualfiles/pgf-PeriodicTableManual_Examples.tex
blob: b9b76f64d1a38010834d2a231e4c7207e521433b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
The following examples could be used for students or for any other purposes.
\\ [10pt]\pgfPTMbuildcell(8,3)[(1;1.4-2.8;Z),(1;3;radio),(2-3;1.5-3.5;CS),(4.2;1-3;name), %
(5.4;1-3;Ar),(6.5;1-3;eDist),(7.55-8.95;1-2.25;DiscC),(7.55-8.95;2.25-3.8;DiscY)%
]%
\pgfPTbuildcell(8,3)[%
(1;1.4-2.8;Z),(1;3;radio),%
(2-3;1.5-3.5;CS),(4.2;1-3;name),%
(5.4;1-3;Ar),(6.5;1-3;eDist),%
(7.55-8.95;1-2.25;DiscC),%
(7.55-8.95;2.25-3.8;DiscY)%
]%
\\ [-4pt]\pgfPTMmacrobox{pgfPT}[]%
\\ [10pt]\makebox[\linewidth][c]{\scalebox{.6}{\pgfPT}}%
\vfill%\\ [10pt]
\pgfPTMmacrobox{pgfPT}[eDist color=blue!70!black,Ar precision=2,DiscC font=\string\fontsize{4}{4}\string\selectfont,DiscY font=\string\fontsize{4}{4}\string\selectfont\string\bfseries]
\\ [10pt]\makebox[\linewidth][c]{\scalebox{.6}{\pgfPT[eDist color=blue!70!black,Ar precision=2,DiscC font=\fontsize{4}{4}\selectfont,DiscY font=\fontsize{4}{4}\selectfont\bfseries]}}%
\newpage%
\pgfPTMbuildcell(8,3)[(1;1-2;Z),(1;3;radio),(2-3;1-3;CS),(4;1-3;name),(5;1-2.5;Ar),(5;2.5-3;spectra), %
(7;1-2.5;DiscY),(7;2.5-3;DiscC),(8;1-3;eDist)%
]%
\pgfPTbuildcell(8,3)[%
(1;1-2;Z),(1;3;radio),%
(2-3;1-3;CS),(4;1-3;name),%
(5;1-2.5;Ar),(5;2.5-3;spectra),%
(7;1-2.5;DiscY),(7;2.5-3;DiscC),%
(8;1-3;eDist)%
]%
\\ [-4pt]\pgfPTMmacrobox{pgfPT}[csPS,Ar label=w,background={left color=black!20}]%
\\ [10pt]\makebox[\linewidth][c]{\scalebox{.6}{\pgfPT[csPS,Ar label=w,background={left color=black!20}]}}%
\vfill%
\pgfPTMbuildcell(8,3)[(1;1-3;Z),(1;3;radio),(2-3;1.5-3.5;CS),(4.2;1-3;name),(5.4;1-3;Ar), %
(6.5;1-3;eConfignl),(7.55-8.95;1-2.45;DiscC),(7.55-8.95;2.45-3;DiscY)%
]%
\pgfPTbuildcell(8,3)[%
(1;1-3;Z),(1;3;radio),%
(2-3;1.5-3.5;CS),(4.2;1-3;name),%
(5.4;1-3;Ar),%
(6.5;1-3;eConfignl),%
(7.55-8.95;1-2.45;DiscC),%
(7.55-8.95;2.45-3;DiscY)%
]%
\\ [-4pt]\pgfPTMmacrobox{pgfPT}[eConfignl color=blue!70!black,Ar precision=2,DiscC font=\string\fontsize{4}{4}\string\selectfont,DiscY font=\string\fontsize{4}{4}\string\selectfont\string\bfseries]%
\\ [10pt]\makebox[\linewidth][c]{\scalebox{.6}{\pgfPT[eConfignl color=blue!70!black,Ar precision=2,DiscC font=\fontsize{4}{4}\selectfont,DiscY font=\fontsize{4}{4}\selectfont\bfseries]}}%
\newpage%
\pgfPTresetcell%
\pgfPTPeriodColors{period}{P5=red!20}%
\pgfPTGroupColors{group}{G14=green!20}%
\pgfPTCScombine{period,group,mix}%
\pgfPTMlibexample{%
\textbf{\bs{usepgfPTlibrary}\lb\red{colorschemes}\rb}%
\\ \bs{pgfPTPeriodColors}\lb\red{period}\rb\lb\red{P5=red!20}\rb%
\\ \bs{pgfPTGroupColors}\lb\red{group}\rb\lb\red{G14=green!20}\rb%
\\ \bs{pgfPTCScombine}\lb\red{period,group,mix}\rb%
\\ \pgfPTMmacro{pgfPT}[back color scheme=mix,show title=false]%
}{%
\scalebox{.6}{\pgfPT[back color scheme=mix,show title=false]}%
\\ In the Periodic Table, a row is called a \textbf{\textcolor{red!40}{period}} and a column is called a \textbf{\textcolor{green!40}{group}}.
}% -----
\newpage\ %
\vfill%
\pgfPTbuildcell(8,3)[%
(1;1-3;Z),(1;3;radio),%
(2-3;1.5-3.5;CS),(4.2;1-3;name),%
(5.4;1-3;Ar),%
(6.5;1-3;eDist),%
(7.55-8.95;1-2.45;DiscC),%
(7.55-8.95;2.45-3;DiscY)%
]%
\pgfdeclarelayer{back}\pgfsetlayers{back,main}
\def\grupo[#1][#2] #3{%
\begin{tikzpicture}[inner xsep=0pt]
\node[below left,text width=1.75cm,text centered] (figura) at (0,0) %
{\scalebox{.5}{\pgfPT[show title=false,show label LaAc=true,show legend=false,back color scheme=MNM,%
        font=Roboto-TLF,CS font=\fontfamily{RobotoSlab-TLF}\bfseries\large,eDist color=blue!70!black,%
        DiscC font=\fontsize{4}{4}\selectfont,DiscY font=\fontsize{4}{4}\selectfont\bfseries,%
        name font=\fontseries{l}\fontsize{6pt}{6pt}\selectfont,name color=red!50!black,%
        Ar precision=2,Z list=G#2]}};%
\node[right,text width={\linewidth-2.25cm}] (descricao) at (figura.east) {#1\\ [4pt]#3};
\draw[draw=none,left color=black!20,right color=black!60] (figura.north west) rectangle ++(\linewidth,2pt);
\draw[draw=none,left color=black!20,right color=black!60] (figura.south west) rectangle ++(\linewidth,-2pt);
\begin{pgfonlayer}{back}
\draw[draw=none,left color=black!20,right color=black!60,opacity=.25] (figura.north west) rectangle ([xshift=\linewidth]figura.south west);
\end{pgfonlayer}
\end{tikzpicture}
}%
\tcexemplo[Representative elements: element families]{%
For the \textbf{\textit{representative elements}} (groups \textbf{1}, \textbf{2} and \textbf{13} to \textbf{18}) it is common to speak of families that reflect their common characteristics. So we have \textbf{the families}:
\\ [10pt]\grupo[GROUP \textcolor{blue!50!black}{\textbf{1}}: \textbf{Alkali metals}][1*]
{\red{\raisebox{1.25pt}{$\boldsymbol{\blacktriangleright}$} \textit{lithium, sodium, potassium, rubidium, cesium and francium}.}%
\\ [4.5pt]The atoms of these elements \textbf{have} only \textbf{\textcolor{blue!50!black}{one} valence electron}.%
\vspace{4.5pt}\small\begin{itemlist}
\item They react violently with water to form hydroxides.%
\item They have a silver-gray color, with the exception of cesium, which has a golden hue.%
\end{itemlist}
}%
\\ \grupo[GROUP \textcolor{blue!50!black}{\textbf{2}}: \textbf{Alkaline earth metals}][2]
{\red{\raisebox{1.25pt}{$\boldsymbol{\blacktriangleright}$} \textit{beryllium, magnesium, calcium, strontium, barium and radium}.}%
\\ [4.5pt]The atoms of these elements \textbf{have \textcolor{blue!50!black}{two} valence electrons}.%
\vspace{4.5pt}\small\begin{itemlist}
\item Their oxides remain solid at high temperatures and form alkaline solutions.%
\item They react violently with water to form hydroxides.%
\item When they burn, they have reddish flames, excluding barium, which presents a greenish flame.%
\end{itemlist}
}%
\\ \grupo[GROUP 1\textcolor{blue!50!black}{\textbf{3}}: \textbf{\textit{Boron} group}][13]
{\red{\raisebox{1.25pt}{$\boldsymbol{\blacktriangleright}$} \textit{boron, aluminium, gallium, indium, thallium and nihonium}.}%
\\ [4.5pt]The atoms of these elements \textbf{have \textcolor{blue!50!black}{three} valence electrons}.%
\vspace{4.5pt}\small\begin{itemlist}
\item Boron is a metalloid and the other are metals.%
\item Boron, aluminium, gallium, indium and thallium are often used as p-type silicon dopants.%
\item Aluminium is the third most abundant element in the Earth's crust (7.4\%)%
\end{itemlist}
}%
\\ \grupo[GROUP 1\textcolor{blue!50!black}{\textbf{4}}: \textbf{\textit{Carbon} group}][14]
{\red{\raisebox{1.25pt}{$\boldsymbol{\blacktriangleright}$} \textit{carbon, silicon, germanium, tin, lead and flerovium}.}%
\\ [4.5pt]The atoms of these elements \textbf{have \textcolor{blue!50!black}{four} valence electrons}.%
\vspace{4.5pt}\small\begin{itemlist}
\item Carbon is a non-metal, silicon and germanium are metalloids, and tin and lead are metals.%
\item Silicon and germanium are used in semiconductors.%
\end{itemlist}
}%
\\ \grupo[GROUP 1\textcolor{blue!50!black}{\textbf{5}}: \textbf{Pnictogens}][15]
{\red{\raisebox{1.25pt}{$\boldsymbol{\blacktriangleright}$} \textit{nitrogen, phosphorus, arsenic, antimony, bismuth and moscovium}.}%
\\ [4.5pt]The atoms of these elements \textbf{have \textcolor{blue!50!black}{five} valence electrons}.%
\vspace{4.5pt}\small\begin{itemlist}
\item Nitrogen and phosphorus are non-metals, arsenic and antimony are metalloids and bismuth is a metal.%
\item Phosphorus, arsenic, antimony and bismuth are often used as n-type silicon dopants.%
\item Diatomic nitrogen is the main constituent of the Earth's atmosphere (78\%).%
\end{itemlist}
}%
\\ \grupo[GROUP 1\textcolor{blue!50!black}{\textbf{6}}: \textbf{Chalcogens}][16]
{\red{\raisebox{1.25pt}{$\boldsymbol{\blacktriangleright}$} \textit{oxygen, sulfur, selenium, tellurium, polonium and livermorium}.}%
\\ [4.5pt]The atoms of these elements \textbf{have \textcolor{blue!50!black}{six} valence electrons}.%
\vspace{4.5pt}\small\begin{itemlist}
\item Oxygen, sulfur and selenium are non-metals, tellurium is a metalloid and polonium is a metal.%
\item Diatomic oxygen is the second constituent of the Earth's atmosphere (21\%).%
\end{itemlist}
}%
\\ \grupo[GROUP 1\textcolor{blue!50!black}{\textbf{7}}: \textbf{Halogens}][17]
{\red{\raisebox{1.25pt}{$\boldsymbol{\blacktriangleright}$} \textit{fluorine, chlorine, bromine, iodine, astatine and tennessine}.}%
\\ [4.5pt]The atoms of these elements \textbf{have \textcolor{blue!50!black}{seven} valence electrons}.%
\vspace{4.5pt}\small\begin{itemlist}
\item They are extremely reactive elements, as they are very electronegative.%
\item Fluorine is able to \textit{attack} inert substances, including the heavier noble gas atoms.%
\end{itemlist}
}%
\\ \grupo[GROUP 1\textcolor{blue!50!black}{\textbf{8}}: \textbf{Noble gases}][18]
{\red{\raisebox{1.25pt}{$\boldsymbol{\blacktriangleright}$} \textit{helium, neon, argon, krypton, xenon, radon and oganesson}.}%
\\ [4.5pt]The atoms of these elements have the valence shell fully filled, which corresponds to \textbf{\textcolor{blue!50!black}{eight} valence electrons}, with the exception Helium, which has only one shell and, consequently, has \textbf{two valence electrons}.
\vspace{4.5pt}\small\begin{itemlist}
\item They are extremely inert elements, that is, they do not react with other elements, as they are the most stable elements in Nature.%
\end{itemlist}
}%
}%
\vfill%
\blue{\textit{For the source of this example please see the file} pgf-PeriodicTableManual\_Examples.tex}
\vfill%
\newpage
\mymfbox{%
\textbf{\underline{EXERCISE}:}
\\ [3pt]In the following scheme of the Periodic Table, the positions of some chemical elements are represented by letters:
\\ [3pt]\makebox[\linewidth][c]{\textit{\scriptsize\blue{THE LETTERS DO NOT CORRESPOND TO THE CHEMICAL SYMBOLS OF THE ELEMENTS.}}}
\\ [6pt]\makebox[\linewidth][c]{\pgfPT[Z exercise list={1,2,3,4,9,12,17,18,19,20,25,27,32,34,35,49,54,74,86,87},Z list=spd,%s
                                                           cell size=1.5em,ex={c=blue,f=\bfseries}]}
\\ [6pt]\textbf{Using the letters shown}:
\begin{enumerate}
\item identify group 2 elements of the Periodic Table.%: \hrulefill
\item identify the elements of the 2\raisebox{3pt}{\scriptsize nd} period of the Periodic Table.%: \hrulefill
\item identify group 17 elements of the Periodic Table.%: \hrulefill
\item identify the elements of s-block.%: \hrulefill
\item identify the elements of p-block.%: \hrulefill
\item identify the elements of d-block.%: \hrulefill
\item identify the metallic elements.%: \hrulefill
\item identify the non-metallic elements.%: \hrulefill
\item identify the transition metals.%: \hrulefill
\item identify the alkaline earth metals.%: \hrulefill
\item identify the noble gases.%: \hrulefill
\item tell which element belongs, simultaneously, to the 4\raisebox{3pt}{\scriptsize th} period and to group 14.%\\ [6pt]\makebox[\linewidth][s]{\hrulefill}
\item identify the representative elements that tend to generate positive ions.%:\\ [6pt]\makebox[\linewidth][s]{\hrulefill}
\item indicate an element that forms binegative ions.%: \hrulefill
\item indicate the halogen whose mononegative ion has the largest radius.%: \hrulefill
\item write the chemical formula of the compound formed by the elements \textbf{\blue{F}} and \textbf{\blue{O}}.%\\ [6pt]\makebox[\linewidth][s]{\hrulefill}
\item identify, justifying, the element with the largest atomic radius.%:\\ [6pt]\makebox[\linewidth][s]{\hrulefill}\\ [6pt]\makebox[\linewidth][s]{\hrulefill}
\item identify, justifying, the element with the lowest 1\raisebox{3pt}{\scriptsize st} ionization \mbox{energy}.%:\\ [6pt]\makebox[\linewidth][s]{\hrulefill}\\ [6pt]\makebox[\linewidth][s]{ \hrulefill}
\end{enumerate}
}%
\vfill%
\blue{\textit{For the source of this example please see the file} pgf-PeriodicTableManual\_Examples.tex}
\vfill%
\newpage
\def\xbox{\tikz[baseline=(x.base)]{\node[text width=15pt,text centered,font=\Large,draw,thick,rounded corners=.5pt,inner sep=0pt,fill=white] (x) {\vbox to 15pt{\vfil\color{gray}x\vfil}};}}%
\def\obox{\tikz[baseline=(x.base)]{\node[text width=15pt,text centered,draw,thick,rounded corners=.5pt,inner sep=0pt,fill=white] (x) {\vbox to 15pt{\vfil\color{gray}$\bigcirc$\vfil}};}}%
\def\dbox{\tikz[baseline=(x.base)]{\node[text width=15pt,text centered,font=\Large,draw,thick,rounded corners=.5pt,inner sep=0pt,fill=white] (x) {\vbox to 15pt{\vfil\color{gray}$\Delta$\vfil}};}}%
\mymfbox{%
\textbf{\underline{EXERCISE}:}
\\ [3pt]Using the following notation,
\begin{itemize}
\item[\xbox] for the elements in the gaseous state (NTP),
\item[\obox] for the elements in the liquid state (NTP) and
\item[\dbox] for the synthetic elements,
\end{itemize}
fill in the following Periodic Table:
\\ [10pt]\makebox[\linewidth][c]{\scalebox{.6}{\pgfPT[only cells]}}
}
\vspace{15pt}%
\blue{\textit{For the source of this example please see the file} pgf-PeriodicTableManual\_Examples.tex}%
\endinput