1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
|
% pb-examples.tex: nifty example using pb-diagram.sty
% Authors: Bill Richter et al.
% Version Number: 5.0
% Version Date: 20 Oct 1998
%
\def\tooee{LaTeX2e}
\ifx\fmtname\tooee
\documentclass[12pt]{article}\usepackage{pb-diagram}
\else
\documentstyle[12pt,pb-diagram]{article}
\fi
\title{Examples of the Diagram Environment}
\author{Stolen from Various Sources}
\begin{document}
\maketitle
\setlength{\fboxsep}{0pt}
This ridiculous example shows how the package fits
arrows in between the formulas, taking into account the
exact size of every formula. (The box around the diagram
shows how the shape of the entire diagram is made known to
\LaTeX.) Note that diagonal arrows are fitted to either
the tops or sides of the formulas, depending individual
circumstances.
\begin{center}\fbox{$
\begin{diagram}
\node{\left[\begin{array}{cc} A_{00} & A_{01} \\
A_{10} & A_{11}\end{array}\right]}
\arrow{e,t}{a} \arrow{s,l}{c} \arrow{ese,b,1}{u}
\node{B^*} \arrow{e,t}{b^*}
\node{C} \arrow{s,r}{d} \arrow{wsw,b,1}{v}
\\
\node{D} \arrow[2]{e,b}{e}
\node[2]{H^2(X,\, \omega_X \otimes L^{\otimes(-n^2+n)})}
\end{diagram}
$}\end{center}
% Catcode hack to get typewriter `\' inside arg of another command
% where \verb is illegal.
\begingroup \catcode`|=0 \catcode`\\=12
|gdef|bbb{{|tt\}}%
|endgroup
%
\makeatletter
\@ifundefined{lamsvector}{%
(There are some additional diagrams at this point in the file,
which you can see if you add
\ifx\fmtname\tooee
{\tt\bbb usepackage\{lamsarrow\}\bbb usepackage\{pb-lams\}}
at the end of the list of included packages.)
\else
\mbox{\tt lamsarrow,pb-lams} at the end of the
document style options.)
\fi
}{%
\newpage
This diagram shows off the fancy arrows fonts from LamS-\TeX.
\[
\begin{diagram}
\node{A} \arrow{e,t,V}{a} \arrow{s,l,'}{c} \arrow{ese,b,1,`}{u}
\node{B} \arrow{e,t,A}{b}
\node{C} \arrow{s,r,J}{d} \arrow{wsw,b,1,L}{v} \\
\node{D} \arrow[2]{e,b,S}{e}
\node[2]{E}
\end{diagram}
\]
The two diagrams below differ only in that the second has an extra diagonal
arrow. Because the first diagram is naturally very long, this diagonal arrow
could not be drawn into the first diagram even with the LamS-\TeX\ fonts. So
the diagram automatically compromises the diagram's aspect ratio to make the
arrow possible.
\[
\begin{diagram}
\node{\rule{80pt}{1pt}} \arrow[3]{e} % remove arrow: \arrow{seee,..}
\node[3]{\rule{80pt}{1pt}} \arrow{s}\\
\node{\rule{80pt}{1pt}} \arrow{e}
\node{\rule{80pt}{1pt}} \arrow{e}
\node{\rule{80pt}{1pt}} \arrow{e}
\node{\rule{80pt}{1pt}}
\end{diagram}
\]
\[
\begin{diagram}
\node{\rule{80pt}{1pt}} \arrow[3]{e} \arrow{seee,..}
\node[3]{\rule{80pt}{1pt}} \arrow{s}\\
\node{\rule{80pt}{1pt}} \arrow{e}
\node{\rule{80pt}{1pt}} \arrow{e}
\node{\rule{80pt}{1pt}} \arrow{e}
\node{\rule{80pt}{1pt}}
\end{diagram}
\]}
\makeatother
\newpage
These examples show how to simulate split arrows by placing the diagram on a finer grid than logically necessary.
\[
\dgARROWLENGTH=0.6\dgARROWLENGTH
\begin{diagram}
\node[2]{A}\arrow[2]{s}\\
\node{B}\arrow{e,-} \node{}\arrow{e,t}{\alpha} \node{C} \\
\node[2]{D}\arrow{ne,b}{\beta}
\end{diagram}
\]
\[
\begin{diagram}
\node{A} \arrow[2]{e,t}{a} \arrow[2]{s,l}{c} \arrow[2]{ese,t,3}{u}
\node[2]{B^*} \arrow[2]{e,t}{b^*}
\node[2]{C} \arrow[2]{s,r}{d} \arrow{wsw,-}
\\
\node[3]{} \arrow{wsw,t}{v}
\\
\node{D} \arrow[4]{e,b}{e}
\node[4]{E}
\end{diagram}
\]
\newpage
Here are several ``real life'' examples from Bill Richter's work:
%%%% Note: for ease of tex-ing we don't assume extra fonts.
\let\frak\relax
\let\Bbb=\relax
%%%%
%\font\tenfrak=eufm10 scaled \magstep1
%\font\sevenfrak=eufm7 scaled \magstep1
%\font\fivefrak=eufm5 scaled \magstep1
%\newfam\frakfam \def\frak{\fam\frakfam\tenfrak} \textfont\frakfam=\tenfrak
%\scriptfont\frakfam=\sevenfrak \scriptscriptfont\frakfam=\fivefrak
%%%%
%%%%
\def\a{ \alpha }
\def\d{ \delta }
\def\s{ \sigma }
\def\l{ \lambda }
\def\p{ \partial }
\def\st{{\tilde\s}}
\def\O{ \Omega }
\def\S{\Sigma}
\def\Z{{\Bbb Z }}
\def\@{ \otimes }
\def\^{ \wedge }
\def\({ \left( }
\def\){ \right) }
\def\K#1{{ K\(\Z/2,#1\) }}
\def\KZ#1{{K\(\Z/4,#1\) }}
\def\id{ \mathop{id}\nolimits }
\def\h{ {\frak h} }
\def\e{ {\frak e} }
\def\G{ G }
\def\pinch{{ \mathop{{\rm pinch}} }}
\def\tuber{{ \bar\tau }}
%%%%
%%%%
\[
\begin{diagram}
\node[4]{ \K{8n+1} }
\\
\node[2]{ \KZ{8n-1} } \arrow{e} \arrow{ene,t}{Sq^2}
\node{E} \arrow{ne,b}{\Theta} \arrow{s,l}{\pi}
\\
\node{ \S\O X \^ \O X } \arrow{e,t}{H_\mu} \arrow{ne,t}{\s(\a\@\a)}
\node{ \Sigma \O X } \arrow{e,t}{\sigma} \arrow{ne,t}{\st}
\node{ X } \arrow{e,t}{\a^2}
\node{ \KZ{8n}. }
\end{diagram}
\]
\[
\begin{diagram}
\node[3]{\O\S A} \arrow[2]{e,t}{\l_2}
\node[2]{\O^2 \( \S A \^ \S A \)}
\\
\node[4]{\#}
\\
% Note: the next two lines are like
% \node{\O B} \arrow[2]{e,t,1}{\d} \arrow[2]{ne,t}{\O\(\p\)}
% but put a gap in first arrow to make room for crossing arrow
\node{\O B} \arrow{e,t,-}{\d} \arrow[2]{ne,t}{\O\(\p\)}
\node{} \arrow{e}
\node{F} \arrow[2]{e,t}{\h} \arrow[2]{s,r}{\pi} \arrow[2]{n,r}{J}
\node[2]{\O^2 \( B \^ \S A \)} \arrow[2]{n,r}{\O^2\(\p\^\id\)}
\\
\\
\node{A} \arrow[2]{ne,t}{\e} \arrow[2]{e,t}{f} \arrow[2]{nne,t,1}{E}
\node[2]{X} \arrow[2]{e,t}{h}
\node[2]{B.}
\end{diagram}
\]
\[
\divide\dgARROWLENGTH by3
\begin{diagram}
\node[9]{\O S^5}
\\
\\
\\
\node[8]{\scriptstyle\quad (\beta)}
\\
\node{\O\( M^5_{2\iota}\)} \arrow[4]{e,t}{\O\(\pinch\)}
\node[4]{\O S^5} \arrow[2]{e,t,-}{\d} \arrow[4]{ne,t}{\O\(2\iota\)}
\node[2]{} \arrow[2]{e}
\node[2]{\G} \arrow[4]{e,t}{\h_2}
\arrow[2]{s,r,-}{\pi} \arrow[4]{n,r}{J}
\node[4]{J\(S^4\^S^4\)}
\\
\\
\node[3]{J_2\( M^4_{2\iota}\)} \arrow[3]{e,t,3,-}{\d_2} \arrow[2]{ne,t}{\iota}
\node[3]{} \arrow{e}
\node{\G_2} \arrow[4]{e,t,3}{\h_2} \arrow[2]{ne,t}{\iota}
\node[2]{} \arrow[2]{s}
\node[2]{S^8} \arrow[2]{ne,b}{E}
\\
\node[4]{\scriptstyle (\alpha)}
\\
\node{M^{12}_{2\iota}} \arrow[4]{e,t}{\tuber} \arrow[2]{ne,t}{\tau}
\node[4]{S^4} \arrow[4]{e,t}{\iota} \arrow[2]{ne,t}{\e} \arrow[4]{nne,t,3}{E}
\node[4]{M^5_{2\iota}} \arrow[4]{e,t}{\pinch}
\node[4]{S^5}
\end{diagram}
\]
\newpage
Example by Anders Thorup (thorup@math.ku.dk), originally done with a
package developed by himself and Steven Kleiman
(kleiman@math.mit.edu):
\[
\begin{diagram}
\node{H^k(B_G\times N;Q)=H^k_G(N;Q)}
\arrow[2]{e,t}{f^*_j} \arrow[2]{s,l}{p^*} \arrow{se,t}{\tilde f^*}
\node[2]{H^k_G(F_j;Q)} \arrow[2]{s,r}{q^*_j}
\\
\node[2]{H^k_G(M;Q)} \arrow{ne,t}{i^*_j} \arrow[2]{s,l,1}{i^*}
\\
\node{H^k(N;Q)}\arrow{e,t,-}{\tilde f^*_j=f^*_j}\arrow{se,b}{\tilde f^*=f^*}
\node{} \arrow{e}
\node{H^k(F_j;Q)}
\\
\node[2]{H^k(M;Q)} \arrow{ne,b}{i^*_j}
\end{diagram}
\]
\end{document}
|