1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
|
%% LyX 2.4.0-beta3-devel created this file. For more info, see https://www.lyx.org/.
%% Do not edit unless you really know what you are doing.
\documentclass[english,tableposition=top]{report}
\usepackage{lmodern}
\renewcommand{\sfdefault}{lmss}
\renewcommand{\ttdefault}{lmtt}
\usepackage[T1]{fontenc}
\usepackage{textcomp}
\usepackage[latin9]{inputenc}
\setcounter{secnumdepth}{3}
\setcounter{tocdepth}{3}
\usepackage{color}
\definecolor{shadecolor}{rgb}{0.667969, 1, 1}
\usepackage{babel}
\usepackage{array}
\usepackage{booktabs}
\usepackage{framed}
\usepackage{url}
\usepackage{multirow}
\usepackage{amsmath}
\usepackage{makeidx}
\makeindex
\usepackage[pdfusetitle,
bookmarks=true,bookmarksnumbered=true,bookmarksopen=true,bookmarksopenlevel=2,
breaklinks=false,pdfborder={0 0 1},backref=section,colorlinks=true]
{hyperref}
\makeatletter
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LyX specific LaTeX commands.
%% Because html converters don't know tabularnewline
\providecommand{\tabularnewline}{\\}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Textclass specific LaTeX commands.
\newenvironment{centred}%
{\begin{center}}{\end{center}}
\newenvironment{lyxcode}
{\par\begin{list}{}{
\setlength{\rightmargin}{\leftmargin}
\setlength{\listparindent}{0pt}% needed for AMS classes
\raggedright
\setlength{\itemsep}{0pt}
\setlength{\parsep}{0pt}
\normalfont\ttfamily}%
\item[]}
{\end{list}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% User specified LaTeX commands.
\usepackage{numerica}
\usepackage{numerica-tables}
\usepackage{numerica-plus}
\newcommand\rel{\,\varrho\;}
\DeclareMathOperator{\erf}{erf}
\DeclareMathOperator{\gd}{gd}
\usepackage{upquote}
\usepackage{xfrac}
\usepackage[indentunit=1em,totoc,columnsep=1.5em,
initsep=10.25pt plus 5pt minus 3pt]{idxlayout}
\reuse{}
\makeatother
\begin{document}
\title{\texttt{numerica-tables}~\\
{\large version 3.1.0}}
\author{Andrew Parsloe\\
(\url{ajparsloe@gmail.com})}
\maketitle
\begin{abstract}
The \texttt{numerica-tables} package defines a command \verb`\nmcTabulate`
which enables the creation of multi-column tables of mathematical
function values. Key\textendash value assignments allow presentation
in a wide variety of table styles within the `formal table' framework
of the \texttt{booktabs} package. \texttt{numerica-tables} requires
the \texttt{numerica} package to be loaded.\medskip{}
\end{abstract}
\noindent{}%
\noindent\begin{minipage}[t]{1\columnwidth}%
\begin{shaded}%
\begin{itemize}
\item This document applies to version 3.1.0 of \texttt{numerica-tables}.
\item Version 3 of \texttt{numerica} needs to be loaded before \texttt{numerica-tables};
(\texttt{numerica} requires \texttt{amsmath}, \texttt{mathtools} and
a reasonably recent \LaTeX{} system).
\item The \texttt{booktabs} package is required.
\item I refer many times in this document to \emph{Handbook of Mathematical
Functions}, edited by Milton Abramowitz and Irene A. Stegun, Dover,
1965, abbreviated to \emph{HMF}, and often followed by a reference,
like Table 1.2, to a specific table.
\item Version 3.1.0 of \texttt{numerica-tables}
\begin{itemize}
\item adds an index to the documentation;
\item adds the ability to round table entries to different values depending
on row or column (or both) in the table;
\item fixes two minor presentation bugs.
\end{itemize}
\item Version 3.0.0 of \texttt{numerica-tables}
\begin{itemize}
\item adds the ability to use numbers or expressions from
\begin{itemize}
\item a comma list for row variable values, either as values or verbatim;
\item a macro containing a comma list for row variable values, either as
values or verbatim;
\item a file for row variable values, either as values or verbatim;
\end{itemize}
\item adds the ability to use functions of a stepped variable to generate
varyingly stepped row variable values;
\item adds the ability to suppress the header row;
\item is compatible with the additional features of \texttt{numerica} version
3.0.0,
\begin{itemize}
\item including the decimal comma if the \verb`comma` package option is
used with \texttt{numerica}; and
\item fraction-form row variables, or fraction-form output if the \verb`/`
or \verb`//` `triggers' are used in the number-format option;
\end{itemize}
\item amends and adds to documentation.
\end{itemize}
\end{itemize}
\end{shaded}%
\end{minipage}
\tableofcontents{}
\chapter{Introduction}
Entering
\begin{verbatim}
\usepackage[<options>]{numerica}
\usepackage{numerica-tables}
\end{verbatim}
\noindent in the preamble of a document gives access to a command
for creating tables of function values in a wide variety of styles.
Contrary to previous practice, for version 3.0.0 of \texttt{numerica-tables},
the \texttt{numerica} package is not loaded automatically but must
be loaded explicitly (as above), with options if desired, \emph{before}
\texttt{numerica-tables}. It is \emph{essential} that the version
of \texttt{numerica} loaded is version 3.
All tables are `formal tables' in the sense of the \texttt{booktabs}\index{booktabs@\texttt{booktabs}}
package, which is loaded automatically. Such tables have no vertical
rules\index{rules} and few horizontal rules.
\section{Table structure}
I\index{table structure} take as my source of models of mathematical
tables those presented in \emph{Handbook of Mathematical Functions},
edited by Milton Abramowitz and Irene A. Stegun, Dover, 1965, not
because the typesetting is elegant (it often isn't) but because \emph{HMF}
displays a wide variety of table styles. The editors of that volume
were faced with a host of different problems requiring a host of different
solutions. The \verb`\nmcTabulate` command of \texttt{numerica-tables}
aims to reproduce most of those different solutions, within \texttt{booktabs}
\index{booktabs@\texttt{booktabs}} elegance.
To create a table we need to specify a function or functions to tabulate.
The values a function takes will generally depend on a primary parameter
and, possibly, a number of secondary parameters (which is where much
of the complexity comes from). Mathematical tables are structured
in \emph{columns}. We (nearly always) read \emph{down} a column as
the primary parameter is incremented, generally in regular steps.
We need to decide on the range of values the primary parameter will
take and how fine-grained the tabulation will be \textendash{} what
the step size of its increments will be. Assigning different values
to a second parameter generates a second, third,\ldots{} column. Sometimes
rather than a second parameter, a second, third, \ldots{} function
of the first parameter is tabulated in the successive columns.
In this document the first parameter is called the \emph{row variable}\index{row variable}
\textendash{} its value determines which row we are in; the second
parameter, if present, is called the \emph{column variable\index{column variable}}
\emph{\textendash{} }its value determines which column we are in.
A table generally (but not always) presents the values of the row
variable in the first column, the \emph{row variable column}, sometimes
in distinctive type (e.g. bolded). The values of the column variable
are presented in a \emph{header row} above the table body of function
values. Above the header row there may be a \emph{title row} and perhaps
a \emph{subtitle row} where other explanatory material can be displayed.
Sometimes there is a \emph{footer row} beneath the table body. Vertical
rules are absent, horizontal rules used sparingly \textendash{} for
example, at the top and bottom of the table, or under the header row,
but not in the body of the table.
\section{Shared syntax}
The \verb`\nmcTabulate`\index{nmcTabulate@\texttt{\textbackslash nmcTabulate}}
command (short-name form \verb`\tabulate`\index{tabulate@\texttt{\textbackslash tabulate}|see{\texttt{\textbackslash nmcTabulate}}})
shares the syntax of \verb`\nmcEvaluate` (see \texttt{numerica.pdf}).
When all options are used the command looks like
\begin{verbatim}
\nmcTabulate*[settings]{expr.}[vv-list][num. format]
\end{verbatim}
\begin{enumerate}
\item \verb`*` optional switch; if present ensures a single number output
with no formatting, or an appropriate error message if the single
number cannot be produced; see §\ref{sec:Star-option};
\item \verb`[settings]` comma-separated list of \emph{key=value }settings;
this option is at the heart of creating a table of function values;
see Chapter~\ref{chap:=00005CnmcTabulate-settings};
\item \verb`{expr.}` mandatory argument specifying the mathematical expression
or expressions in \LaTeX{} form to be tabulated;
\item \verb`[vv-list]` comma-separated list (or semicolon-separated list
if the \verb`comma` package option is used with \texttt{numerica})
of \emph{variable=value }items, in particular containing the initial
value of the row variable, and column variable if one is used;
\item \verb`[num. format]` optional format specification for presentation
of the numerical results (rounding, padding with zeros, scientific
notation, fraction-form output); see §\ref{subsec:Trailing-optional-argument}.\index{rounding value}
\end{enumerate}
Unlike \verb`\nmcEvaluate` (the main command in\texttt{ numerica}),
for \verb`\nmcTabulate` the two apparently optional arguments straddling
the main argument (\verb`settings` and \verb`vv-list`) are \emph{essential}.
Although both are delimited by square brackets, that is in order to
draw on the {\ttfamily\verb`numerica`} code. Each argument
contains items \emph{necessary} for the construction of any table
of function values.
Should \texttt{numerica} be loaded with the \verb`comma` package
option, numbers in tables will be displayed with a decimal comma\index{decimal comma}.
In this case items in the vv-list\index{vv-list!and decimal comma}
\emph{must} be separated by a semicolon\index{semicolon and decimal comma}
since the decimal comma is likely to feature there. Similarly, $n$-ary
functions \textendash{} \verb`\max`, \verb`\min` and \verb`\gcd`\index{n-ary@$n$-ary functions}
\textendash{} must use the semicolon as their argument separator.
Math environments are significant for \verb`\nmcEvaluate`. They are
essentially irrelevant for \verb`\nmcTabulate`\index{nmcTabulate@\texttt{\textbackslash nmcTabulate}}\index{environments},
although an external environment may determine how a table is positioned
on the page\index{table placement!on the page} (\verb`\[ <table> \]`
for instance will centre the table between the margins). Environments
specified in the main argument (the formula) should be avoided. \verb`$ $`,
\verb`\( \)` or \verb`\[ \]` will not cause error, but a \verb`\begin`\textendash \verb`\end`
environment there will.
Just as the syntax is shared, so the settings available to the command
\verb`\nmcEvaluate` in \texttt{numerica} are also available to \verb`\nmcTabulate`,
although not all will be relevant. See the associated document \texttt{numerica.pdf}
for a list of these and associated discussion. I will point out instances
of their use in the following examples.
\chapter{\texttt{\textbackslash nmcTabulate} settings}
\label{chap:=00005CnmcTabulate-settings}In addition to the shared
settings, \verb`\nmcTabulate` has many settings specific to it. They
are discussed in groups in subsequent sections, some in more than
one place. For the main discussion of row variable settings, see §\ref{sec:Row-variable-settings};
for column variable settings see §\ref{sec:Column-variable-settings};
for whole-of-table formatting see §\ref{sec:Whole-of-table-formatting};
for formatting the function values in table cells see §\ref{sec:Function-value-formatting}.
\section{Row-variable settings}
\label{sec:Row-variable-settings}
\subsection{Row-variable specification: uniform case}
\label{subsec:Row-var-spec-uniform}
\begin{table}[b]
\centering{}\caption{Row-variable specification}
\begin{center}
\begin{tabular}{ll>{\raggedright}p{4cm}>{\raggedright}p{3cm}}
\toprule
{\small key} & {\small type} & {\small meaning} & {\small comment}\tabularnewline
\midrule
{\small\texttt{rvar}} & {\small token(s)} & {\small row variable} & \tabularnewline
{\small\texttt{rstep}} & {\small real num.} & {\small step size} & \tabularnewline
{\small\texttt{rstop}} & {\small real num.} & {\small stop value} & \multirow{2}{3cm}{{\small use only one of rstop or rows}}\tabularnewline
{\small\texttt{rows}} & {\small int} & {\small number of rows} & \tabularnewline
{\small\texttt{rspec}} & {\small comma list} & {\small\texttt{\{rvar}}{\small , }{\small\texttt{step}}{\small , }{\small\texttt{rows\}}} & {\small short form spec.}\tabularnewline
\bottomrule
\end{tabular}
\par\end{center}
\end{table}
Deciding\index{row variable!start, step, stop values|(} on a function
to tabulate (entered in the main or mandatory argument of \verb`\nmcTabulate`)
will inevitably also mean deciding on the tabulation variable, the
\emph{row} variable, \verb`rvar`\index{rvar@\texttt{rvar}}, what
value to start tabulating from \textendash{} \emph{that} is specified
in the vv-list\index{vv-list!row/col. variable initial values}\index{row variable!initial value in vv-list}
and so does not need a specific key \textendash{} what value to tabulate
to, \verb`rstop`\index{rstop@\texttt{rstop}}, and how fine-grained
the tabulation is to be, the step size \verb`rstep`\index{rstep@\texttt{rstep}}.
In the uniform case (which makes up the overwhelming majority of cases
in \emph{HMF} for instance) the step size is constant. It does not
change as the value of the row variable changes. (The non-uniform
case, available from version 3.0.0 of \texttt{numerica-tables}, is
discussed in §\ref{subsec:Row-var-spec-nonuniform} below. Quite different
keys are required.)
The two tables in the example below tabulate $\sin x$ and $\cos x$
between $0$ and $1$ in increments of $0.2$. Note that the start
value of the tabulation variable is entered in the vv-list. The reason
for placing it there is that for more complicated functions other
parameters in the function and therefore in the vv-list may depend
on the row variable. Although it will often be the first entry in
the vv-list, it does not need to be. The initial value of the row
variable may depend on other quantities which must necessarily precede
it \textendash{} lie to the right of it \textendash{} in the list.
In the vv-list, the start value of the row variable may be a \LaTeX{}
expression. Both \verb`rstep` and \verb`rstop` may also be \LaTeX{}
expressions. They are evaluated \emph{after} the vv-list is evaluated
and so may depend on the values of variables in the vv-list, including
the \emph{initial} value of the row variable. Thus setting \verb`rstep=1/x`,
where \verb`x` is the row variable, will give a \emph{constant} step
size equal to the reciprocal of the \emph{initial }value of the row
variable.
The difference in appearance of the two tables results from padding
with zeros\index{function value formatting!padding with zeros}\index{padding with zeros}
in the second (the asterisk in the trailing optional argument has
the same effect in \verb`\nmcTabulate` as in \verb`\nmcEvaluate`).
As you can see, padding applies not only to the values of the function
but also to the values of the row variable, although that has been
padded to only $1$ decimal place rather than the $6$ of the function
values. Padding makes an obvious improvement to the appearance. (How
many digits to pad to in the row variable column is discussed in §\ref{subsec:Row-var-col-formatting}.)
\begin{verbatim}
\tabulate[rvar=x,rstep=0.2,rstop=1]
{ \sin x }[x=0]\qquad
\tabulate[rvar=x,rstep=0.2,rstop=1]
{ \cos x }[x=0][*]
\end{verbatim}
$\Longrightarrow$ \tabulate[rvar=x,rstep=0.2,rstop=1]
{ \sin x }[x=0] \qquad
\tabulate[rvar=x,rstep=0.2,rstop=1]
{ \cos x }[x=0][*]\medskip{}
Sometimes (perhaps often) it may prove more convenient to specify
the number of rows, \verb`rows`\index{rows@\texttt{rows}}, to tabulate
rather than a stop value. Only one of \verb`rows` and \verb`rstop`
should be given, but if both (inadvertently) are present, it is the
value of \verb`rows` that prevails. The first of the following three
tables shows an example where \verb`rows` is specified.
The second and third tables use an abbreviated form of the row variable
specification, \verb`rspec`\index{rspec@\texttt{rspec}}. This is
a three-element comma list, \verb`{rvar,rstep,rows}`. The second
table gives a straightforward example. In the third table a \LaTeX{}
expression has been inserted for \verb`rows` in the \verb`rspec`
comma list. Like \verb`rstep` and \verb`rstop`, \verb`rows` can
be a \LaTeX{} expression, but it is evaluated \emph{before} the vv-list
and therefore, unlike \verb`rstep` and \verb`rstop`, cannot depend
on quantites specified there like the initial row variable value.
\begin{verbatim}
\tabulate[rvar=x,rstep=0.2,rows=6]
{ \sin x/\cos x }[x=0][*] \qquad
\tabulate[rspec={x,0.2,6}]
{ \tan x }[x=0][*] \qquad
\tabulate[rspec={x,0.2,1+(1/0.2)}]
{ \sqrt{\sec^2 x - 1} }[x=0][*]
\end{verbatim}
$\Longrightarrow$ \tabulate[rvar=x,rstep=0.2,rows=6]
{ \sin x/\cos x }[x=0][*] \qquad
\tabulate[rspec={x,0.2,6}]
{ \tan x }[x=0][*] \qquad
\tabulate[rspec={x,0.2,1+(1/0.2)}]
{ \sqrt{\sec^2 x - 1} }[x=0][*]\index{row variable!start, step, stop values|)}\medskip{}
\subsection{Row variable specification: non-uniform case}
\label{subsec:Row-var-spec-nonuniform}
\begin{table}[b]
\centering{}\caption{Non-uniform row variable specification}
\begin{center}
\begin{tabular}{ll>{\raggedright}p{4cm}>{\raggedright}p{3cm}}
\toprule
{\small key} & {\small type} & {\small meaning} & {\small comment}\tabularnewline
\midrule
{\small\texttt{rdata}} & {\small comma list} & {\small list of row-var. values } & {\small comma list may be stored in a macro}\tabularnewline
{\small\texttt{rfile}} & {\small chars} & {\small filepath/name} & {\small file of comma separated values}\tabularnewline
{\small\texttt{rverb}} & {\small int (}{\small\texttt{0}}/\texttt{1}) & {\small display }{\small\texttt{rdata }}{\small or}{\small\texttt{ rfile}}{\small{}
values verbatim} & {\small initialized to }{\small\texttt{0}}\tabularnewline
{\small\texttt{rfunc}} & {\small token(s)} & {\small function of a stepped variable} & \tabularnewline
\bottomrule
\end{tabular}
\par\end{center}
\end{table}
Occasionally one wants to form a table in which the row variable does
not increase or decrease in regular steps; for examples, see \emph{HMF}
Tables 1.1 and 3.1. (Tables 9.7, 10.5, 10.10 use two step values and
could also be handled with these settings.) For instance, one might
want a table of values of simple functions of a list of constants,
or a table of function values at $\pi$, $\pi/2$, $\pi/3$, $\pi/4$,
$\dots$, or at $1$, $10$, $100$, $1000$, $\dots$, or a table
of function values at thoroughly irregular, perhaps experimentally
determined, values.
\texttt{numerica-tables} provides two means of specifying such row
variables, either by means of a row variable function (\verb`rfunc`\index{rfunc@\texttt{rfunc}}),
when the row variable values change in a non-uniform but formulaic
way, or by explicitly listing the row variable values in a comma list
(\verb`rdata`\index{rdata@\texttt{rdata}}, \verb`rfile`\index{rfile@\texttt{rfile}}).
In this latter case, a setting \verb`rverb`\index{rverb@\texttt{rverb}}
enables the row variable column to be displayed either as a sequence
of \emph{values} or verbatim as a sequence of \emph{expressions} \textendash{}
like fractions of $\pi$.
\subsubsection{\texttt{rfunc}}
\index{rfunc@\texttt{rfunc}|(}\index{row variable!variably stepped|(}Suppose
\textendash{} perhaps with an interest in the distribution of prime
numbers \textendash{} that we want to create a small table of values
of $n/\ln n$ for, say, $n=10$, $100$, 1000, $10000$, $\ldots$
The prospective row variable $n$ is not increasing in constant steps,
although clearly in a regular manner. We handle such cases with the
\verb`rfunc` setting; in the present instance \verb`rfunc=10^n`
where now \verb`n` does increment by a constant amount:
\begin{verbatim}
\tabulate[rpos=1,rfunc=10^n,rvar=n,rstep=1,
rows=7,rround=0]
{ n/\ln n }[n=1][0]
\end{verbatim}
$\Longrightarrow$ \tabulate[rpos=1,rfunc=10^n,rvar=n,rstep=1,
rows=7,rround=0]
{ n/\ln n }[n=1][0]\medskip{}
The variable \verb`n` has two different meanings here. Initially
it is the variable of a simple step function incrementing by $1$
at each step. The function takes values \verb`10^n`. Once the table
is compiled however \verb`n` is used to denote these successive function
values, $10,100,\ldots,10000000$. To the \emph{reader} of the table,
only this latter meaning is evident. Yes, it would be possible to
add further keys to specify a distinct step function variable and
its start, step and stop values, but the list of keys to specify a
table is already large. The `double usage' implemented, perhaps
confusing initially, economizes on keys and is invisible to the reader
of the table. The initial value \verb`n=1`\index{vv-list!row/col. variable initial values}
in the vv-list applies to the row variable function \verb`10^n`,
not to the function being tabulated (so the error-producing expression
\verb`1/\ln 1` does not arise).\index{rfunc@\texttt{rfunc}|)}\index{row variable!variably stepped|)}
\subsubsection{\texttt{rdata}, \texttt{rfile}, \texttt{rverb} }
\label{subsec:rdata-rfile-rverb}One\index{row variable!values from list, macro or file|(}
source of difficulty in reading the previous table is working out
just how many zeros there are in the larger numbers in the left column.
It would be more readable `at a glance' if we could write those
in scientific notation. To do that we use the \verb`rdata`\index{rdata@\texttt{rdata}|(}
and \verb`rverb`\index{rverb@\texttt{rverb}|(} keys. In the first
of the examples below, \verb`rverb` is absent (corresponding to the
default \verb`rverb=0`); in the second \verb`rverb=1`, the effect
of which is to use verbatim the row variable values provided in the
\verb`rdata` comma list:\index{row variable!verbatim values|(}
\begin{verbatim}
\tabulate[rdata={10,100,1000,10^4,10^5,10^6,10^7},
rvar=n,rround=0,ralign=l]
{ n/\ln n }[0]\qquad
\tabulate[rdata={10,100,1000,10^4,10^5,10^6,10^7},
rverb=1,rvar=n,rround=0,ralign=l]
{ n/\ln n }[0]
\end{verbatim}
$\Longrightarrow$ \tabulate[rdata={10,100,1000,10^4,10^5,10^6,10^7},
rvar=n,rround=0]
{ n/\ln n }[0]\qquad
\tabulate[rdata={10,100,1000,10^4,10^5,10^6,10^7},
rverb=1,rvar=n,rround=0]
{ n/\ln n }[0]\medskip{}
\verb`rverb` is particularly useful if you want to make a table of
simple functions of constants. In the following example, with its
initial setting (\verb`rverb=0`), the constants would be listed in
the first column as numbers and repeated in the second column (perhaps
to a different number of decimal places), which would all be rather
pointless. With \verb`rverb=1`, the constants are listed verbatim
in the first column against their numerical values in the second.
In the example, the data has been stored in macros, \verb`\mydatai`
and \verb`\mydataii`, prior to calling the \verb`\tabulate` command.
\verb`\mydataii` uses the \verb`\sfrac` command from the \texttt{xfrac}
package. By setting \verb`rdata` equal to these macros, the \verb`\tabulate`
command gains access to the values stored in them.
\begin{verbatim}
\def\mydatai{\tfrac12\pi,\tfrac13\pi,\tfrac23\pi,
\tfrac14\pi,\tfrac34\pi}
\renewcommand\arraystretch{1.2}
\tabulate[rdata=\mydatai,rverb=1,rvar=k,headless=1]
{ k }[6*]
\renewcommand\arraystretch{1} \qquad
\def\mydataii{\sfrac\pi2,\sfrac\pi3,\sfrac{2\pi}3,
\sfrac\pi4,\sfrac{3\pi}4}
\tabulate[rdata=\mydataii,rverb=1,rvar=k,headless=1]
{ k }[6*]
\end{verbatim}
$\Longrightarrow$ \renewcommand\arraystretch{1.2}
\def\mydatai{\tfrac12\pi,\tfrac13\pi,
\tfrac23\pi,\tfrac14\pi,\tfrac34\pi}
\tabulate[rdata=\mydatai,rverb=1,rvar=k,headless=1 ]
{ k }[6*]
\renewcommand\arraystretch{1} \qquad
\def\mydataii{\sfrac\pi2,\sfrac\pi3,
\sfrac{2\pi}3,\sfrac\pi4,\sfrac{3\pi}4}
\tabulate[rdata=\mydataii,rverb=1,rvar=k,headless=1]
{ k }[6*]\medskip{}
The setting \verb`headless=1`\index{headless@\texttt{headless}}
(see §\ref{subsec:Header-row-suppress})\index{header row|see{column variable header, \texttt{headless}, row variable header}}
means the tables have no header row. To accommodate the tower of \verb`\tfrac`-s
in the first column of the first table, \verb`\arraystretch`\index{arraystretch@\texttt{\textbackslash arraystretch}}
has been used to add more space between the rows (and re-set afterwards).
Through the virtues of \verb`\sfrac` \index{sfrac@\texttt{\textbackslash sfrac}}
it is unnecessary in the second table which is neater and more readable
to my eye. But even better is the example at §\ref{subsec:rfracFraction-form-rvar}.
Note that the row variable can be chosen arbitrarily \textendash{}
I earlier used \verb`n` and have used \verb`k` here but it could
be anything. Nor does the function tabulated need to be the identity
\textendash{} see the earlier $n/\ln n$ example or a later example
in a multi-column setting in §\ref{subsec:Headerstyle:-multi-column-case}.
The identity function was appropriate for tables showing the decimal
values of symbolic constants, as was the \verb`rverb=1` setting.
The \verb`rverb` setting applies \emph{only} to the \verb`rdata`
and \verb`rfile` keys. It has no effect otherwise.\index{row variable!verbatim values|)}\index{rverb@\texttt{rverb}|)}\index{rdata@\texttt{rdata}|)}
In addition to a comma list or macro, data for the row variable can
also be stored in a file of comma-separated values \textendash{} say
\verb`mydata.txt`. If \verb`mydata.txt` is placed in the directory
of the current document and \verb`rfile=mydata.txt`\index{rfile@\texttt{rfile}}
entered in the settings option of the \verb`\tabulate` command, the
file will be found and the values used for the row variable. Alternatively,
the file could be placed in your \verb`texmf` tree and your \TeX{}
distro alerted to its presence (by refreshing the filename database).
Again \verb`rfile=mydata.txt` in the settings option will ensure
the file is found and the contents used for the row variable values.
Or, the file could be stored elsewhere and the \verb`rfile` key equated
to the full path and filename \textendash{} something like \verb`rfile=e:/mydocs/mydatafiles/mydata.txt`.
This ensures the file will be found and the contents used for the
row variable values. Note that even in Windows systems (where file
paths use backslashes) the path requires that forward slashes only
be used. \index{row variable!values from list, macro or file|)}
\subsection{Formatting row variable values \& column}
\label{subsec:Row-var-col-formatting}The padding option ({*}) of
the trailing optional argument is one way of formatting the row variable
values, but to how many decimal places? Aligned left or right or centred?
Under what heading \textendash{} the example tables so far have simply
used the row variable for the header? And should the row variable
column be at the left of the table, or the right \textendash{} or
both? These and related questions are answered by assigning values
to the keys listed in Table~\ref{tab:Formatting-the-row-variable}.
\begin{table}[tb]
\centering{}\caption{\protect\label{tab:Formatting-the-row-variable}Formatting the row
variable column}
\begin{center}
\begin{tabular}{ll>{\raggedright}p{4cm}l}
\toprule
{\small key} & {\small type} & {\small meaning} & {\small initial}\tabularnewline
\midrule
{\small\texttt{rround}} & {\small int} & {\small rounding} & {\small\texttt{1}}\tabularnewline
{\small\texttt{rfont}} & {\small chars} & {\small font (}{\small\verb`\math<chars>`}{\small )} & \tabularnewline
{\small\texttt{ralign}} & {\small char (}{\small\texttt{r/c/l}}{\small )} & {\small horizontal alignment} & {\small\texttt{r}}\tabularnewline
{\small\texttt{rhead}} & {\small tokens} & {\small header} & {\small\texttt{rvar}}\tabularnewline
{\small\texttt{rhnudge}} & int & {\small nudge header }{\small{\small\verb`<int>`}}{\small{} mu} & {\small\texttt{0}}\tabularnewline
{\small\texttt{rpos}} & {\small int (}{\small\texttt{0}}{\small\ldots}{\small\texttt{4}}{\small )} & {\small column placement} & {\small\texttt{1}}\tabularnewline
{\small\texttt{rvar'}} & {\small tokens} & {\small 2nd row variable col. spec. } & {\small\texttt{rvar}}\tabularnewline
{\small\texttt{rhead'}} & {\small tokens} & {\small header of 2nd rv col. (if it exists)} & {\small\texttt{rvar'}}\tabularnewline
{\small\texttt{rhnudge'}} & int & {\small nudge 2nd rv col. header }{\small{\small\verb`<int>`}}{\small{}
mu} & {\small\texttt{0}}\tabularnewline
{\small\texttt{rfrac}} & {\small int (}{\small\texttt{0}}{\small\ldots 5)} & {\small fraction form} & {\small\texttt{0}}\tabularnewline
\bottomrule
\end{tabular}
\par\end{center}
\end{table}
\subsubsection{Rounding: \texttt{rround}}
After\index{rounding value!row variable|(}\index{rround@\texttt{rround}|(}\index{formatting!row variable values|(}
studying some of the previous tables, we might decide to adjust the
step size, say from $0.2$ to $0.25$. But changing \verb`rstep`
to the new value gives a disconcerting result. \texttt{numerica-tables}
uses a default rounding value of $1$ for the row variable and has
rounded $0.25$ down to $0.2$, then $0.2+0.25=0.45$ down to $0.4$,
then $0.4+0.25=0.65$ down to $0.6$, then $0.6+0.25=0.85$ down to
$0.8$, at which point it stops since $0.8+0.85>1$ which is the stopping
value. The rounded-down values are the values used for caclulating
the sines. The second table corrects matters by adjusting the row
variable rounding with \verb`rround=2`.
\begin{verbatim}
\tabulate[rvar=x,rstep=0.25,rstop=1]
{ \sin x }[x=0][*] (Eh???) \quad
\tabulate[rvar=x,rstep=0.25,rstop=1,rround=2]
{ \sin x }[x=0][*]
\end{verbatim}
$\Longrightarrow$ \tabulate[rvar=x,rstep=0.25,rstop=1]
{ \sin x }[x=0][*](Eh???) \quad
\tabulate[rvar=x,rstep=0.25,rstop=1,rround=2]
{ \sin x }[x=0][*]\index{rround@\texttt{rround}|)}\index{rounding value!row variable|)}
\subsubsection{Font: \texttt{rfont}}
In\index{rfont@\texttt{rfont}} the second table below bolding by
means of the setting \verb`rfont=bf` has been applied to emphasize
the distinction between the row variable values and the function values.
Possible values for this key are those characters that can be adjoined
to \verb`\math` to give a meaningful result. Thus other valid values
are \verb`it` (italic), \verb`sf` (sans serif), \verb`tt` (typewriter);
\verb`frak` (Fraktur); also \verb`rm` (roman) is available, but
that is the default.\index{formatting!row variable values|)}
\subsubsection{Alignment: \texttt{ralign}}
By\index{row variable column!alignment|(}\index{ralign@\texttt{ralign}}
default, the alignment of all columns is to the right, as in previous
examples. This lends itself to neat output when padding with zeros
is activated (the \verb`*` in the trailing argument) and when some
values are negative \textendash{} the minus signs interfere with
neat output in left or centred alignments.\index{function value formatting!sign handling}
But in a case like the second table in the last example, you might
prefer to centre the headers for both the row and function-value columns.
These alignments are independently set. For the row variable column
the default alignment is to the right \verb`ralign=r`; \verb`ralign=l`
(lowercase L) aligns entries in the row variable column to the left,
and \verb`ralign=c` centres entries in the row variable column. The
tables of the next example use a \verb`c` alignment to centre the
row variable column header. The third of those tables shows how minus
signs spoil the effect.
\subsubsection{Row-variable header: \texttt{rhead}}
In\index{rhead@\texttt{rhead}|(}\index{row variable header|(}\index{formatting!row variable header|(}
the second and third tables, the header for the row variable column
has also been bolded. The default header is the row variable symbol.
That can be replaced by giving a value to the key \verb`rhead`. I
have used \verb`rhead=\boldsymbol{x}` (rather than \verb`\mathbf{x}`)
in order to get an italicized bold symbol. Note that you do not need
to include math delimiters in the specification. It is assumed that
\verb`rhead` will sit between \verb`$ $` delimiters which are inserted
automatically by \verb`numerica-tables`.
\begin{verbatim}
\tabulate[rvar=x,rstep=0.25,rstop=1,
rround=2,ralign=c]
{ \sin x }[x=0][*]\qquad
\tabulate[rvar=x,rstep=0.25,rstop=1,rround=2,
ralign=c,rfont=bf,rhead=\boldsymbol{x}]
{ \sin x }[x=0][*]\qquad
\tabulate[rvar=x,rstep=0.25,rstop=0.5,rround=2,
ralign=c,rfont=bf,rhead=\boldsymbol{x}]
{ \sin x }[x=-0.5][*]
\end{verbatim}
$\Longrightarrow$ \tabulate
[rvar=x,rstep=0.25,rstop=1,
rround=2,ralign=c]
{ \sin x }[x=0][*]\qquad
\tabulate
[rvar=x,rstep=0.25,rstop=1,
rround=2,ralign=c,rfont=bf,rhead=\boldsymbol{x}]
{ \sin x }[x=0][*]\qquad
\tabulate
[rvar=x,rstep=0.25,rstop=0.5,rround=2,
ralign=c,rfont=bf,rhead=\boldsymbol{x}]
{ \sin x }[x=-0.5][*]\index{rfont@\texttt{rfont}}\medskip{}
In these tables the row variable column has been given a centred alignment.
The third table shows what goes wrong when \emph{some} values in the
row variable column are negative. Better then is to use padding, a
right alignment (the default), and to use a phantom in the header.
The first table below does this. The second table incorporates kerning
into the header to achieve the same effect:
\begin{verbatim}
\tabulate[rvar=x,rstep=0.25,rstop=0.5,rround=2,
rfont=bf,rhead=\boldsymbol{x}\hphantom{0}]
{ \sin x }[x=-0.5][*]\qquad
\tabulate[rvar=x,rstep=0.25,rstop=0.5,rround=2,
rfont=bf,rhead=\boldsymbol{x}\mkern 9 mu]
{ \sin x }[x=-0.5][*]
\end{verbatim}
$\Longrightarrow$ \tabulate
[rvar=x,rstep=0.25,rstop=0.5,rround=2,
rfont=bf,rhead=\boldsymbol{x}\hphantom{0}]
{ \sin x }[x=-0.5][*]\qquad
\tabulate
[rvar=x,rstep=0.25,rstop=0.5,rround=2,
rfont=bf,rhead=\boldsymbol{x}\mkern 9 mu]
{ \sin x }[x=-0.5][*]\medskip{}
(To my eye, aligning the $\boldsymbol{x}$ above the first column
of digits after the decimal point gives a better result than truly
centring it in the column; compare these examples with the first two
tables of the previous example.)\index{rhead@\texttt{rhead}}\index{formatting!row variable header|)}
\subsubsection{Nudging~the~header: \texttt{rhnudge}}
However\index{rhnudge@\texttt{rhnudge}|(}, you might prefer to avoid
inserting positioning commands into the actual row variable header,
obscuring its true content. You can avoid doing this by setting the
key \verb`rhnudge`.
The first table below reverts to the default right alignment, avoids
any positioning commands in the row variable header, but instead nudges
it into position with the setting \verb`rhnudge=9`. For positive
nudge values, nudging works in the \emph{opposite} sense to the alignment.
The units for nudging are mu (math units, 18 to a quad), but only
a number \textendash{} generally an integer \textendash{} should be
specified; the `mu' is supplied by \verb`numerica-tables`.
In the second table below the row variable takes single digit integer
values, while the row variable name now occupies more than one character.
With a right alignment the header would protrude out to the left.
By giving \verb`rhnudge` a \emph{negative} value (\verb`rhnudge=-12`
in the example) it is brought back to a centred position in the row
variable column.
\begin{verbatim}
\tabulate[rvar=x,rstep=0.25,rstop=0.5,rround=2,
rfont=bf,rhead=\boldsymbol{x},rhnudge=9]
{ \sin x }[x=-0.5][4*]\qquad
\tabulate[rvar=x_{\text{int}},rstep=1,rstop=4,
rround=0,rfont=bf,rhnudge=-12,
rhead=\boldsymbol{x_{\text{int}}}]
{ \sin x_{\text{int}} }[x_{\text{int}}=0][4*]
\end{verbatim}
$\Longrightarrow$ \tabulate
[rvar=x,rstep=0.25,rstop=0.5,rround=2,
rfont=bf,rhead=\boldsymbol{x},rhnudge=9]
{ \sin x }[x=-0.5][4*]\qquad
\tabulate
[rvar=x_{\text{int}},rstep=1,rstop=4,
rround=0,rfont=bf,rhnudge=-12,
rhead=\boldsymbol{x_{\text{int}}}]
{ \sin x_{\text{int}} }[x_{\text{int}}=0][4*]\index{row variable header|)}\index{rhnudge@\texttt{rhnudge}|)}
\subsubsection{Position in the table: \texttt{rpos}}
\label{subsec:Row-var-col-pos}\index{row variable column!position in table}\index{rpos@\texttt{rpos}}By
default, the row variable column is the \emph{first} column of the
table. Its position is determined by the value of the key \texttt{rpos}:
\begin{itemize}
\item \verb`rpos=0`, suppressed (no row variable column);
\item \verb`rpos=1`, first column (the default);
\item \verb`rpos=2`, last column;
\item \verb`rpos=3`, first and last columns;\texttt{ }
\item \verb`rpos=4`, first and last columns, with the values in the last
column a user-defined function of the first; see §\ref{subsec:Second-row-var-col};
\item Any other integer acts like \verb`rpos=1`.
\end{itemize}
An example with \verb`rpos=3` is given shortly below, §\ref{sec:Multiple-function-tables}.
\subsubsection{\texttt{rvar'}, \texttt{rhead'}, \texttt{rhnudge'}}
These settings become relevant only when \verb`rpos=4`; see §\ref{subsec:Second-row-var-col}.
\subsubsection{Fraction-form values: rfrac}
\label{subsec:rfracFraction-form-rvar}\index{row variable!fraction form|(}\index{fraction form!row variable values|(}
By giving the setting \verb`rfrac` an integer value between $1$
and $5$ inclusive it is possible to render the row variable values
as fractions with no more than \verb`rround` digits in the denominator.
Initially \verb`rfrac=0`, which gives decimal output.
\begin{itemize}
\item \verb`rfrac=1` produces a slash fraction like $2/3$;
\item \verb`rfrac=2` produces a scalable \verb`\frac`-tion like $\frac{2}{3}$
in textstyle and $\dfrac{2}{3}$ in displaystyle;
\item \verb`rfrac=3` produces a non-scalable \verb`\tfrac` like $\tfrac{2}{3}$;
\item \verb`rfrac=4` produces a non-scalable \verb`\dfrac` like $\dfrac{2}{3}$;
\item \verb`rfrac=5` produces a slash fraction like $\sfrac 23$ (by means
of the \verb`\sfrac`\index{sfrac@\texttt{\textbackslash sfrac}}
command) in text- and displaystyles if the \texttt{xfrac} package
is loaded and like $\scriptstyle 2/3$ if it isn't; when used as a
super- or sub-script, the fractions reduce in size like $e^{\sfrac23}$
or $e^{{\scriptscriptstyle 2/3}}$.
\end{itemize}
The following table repeats an earlier table from §\ref{subsec:rdata-rfile-rverb},
but more neatly, through using \verb`\sfrac` (with the \verb`rfrac=5`
call) instead of \verb`\tfrac`, and moving $\pi$ from the row variable
column into the formula:
\begin{verbatim}
\def\mydataii{1/2,1/3,2/3,1/4,3/4}
\tabulate[rdata=\mydataii,rpos=1,
rvar=k,rfrac=5,rhnudge=6,chnudge=18]
{ k\pi }[k=0][6*]
\end{verbatim}
$\Longrightarrow$ \def\mydataii{1/2,1/3,2/3,1/4,3/4}
\tabulate[rdata=\mydataii,rpos=1,
rvar=k,rfrac=5,rhnudge=6,chnudge=18]
{ k\pi }[k=0][6*]\index{fraction form!row variable values|)}\index{row variable!fraction form|)}
\subsection{Adjoined multi-function tables}
\label{subsec:Adjoining-tables}\index{adjoined tables}\index{multi-function tables}
How might one tabulate multiple functions simultaneously? \emph{HMF}
has many, many examples where multiple functions (like the trigonometric
or the hyperbolic functions) are tabulated in separate columns of
the same table.
With the settings described so far, one way is to adjoin single column
tables. In the tables below, which display as a single multi-columned
table, I have used three different\index{rpos@\texttt{rpos}} \verb`rpos`
settings (\verb`rpos=1` is implicit in the first). This is one way
to build a table that displays as multi-column. If you use this method,
note that the \verb`%` comment characters are essential at the end
of the last argument of the \verb`\tabulate` commands if you want
the tables to abut exactly. Omitting them results in a space between
the tables.
\begin{verbatim}
\tabulate[rspec={x,0.2,6}]
{ \sin x }[x=0][*]%
\tabulate[rpos=0,rspec={x,0.2,6}]
{ \cos x }[x=0][*]%
\tabulate[rpos=2,rspec={x,0.2,6}]
{ \tan x }[x=0][*]
\end{verbatim}
$\Longrightarrow$ \tabulate
[rspec={x,0.2,6}]
{ \sin x }[x=0][*]%
\tabulate
[rpos=0,rspec={x,0.2,6}]
{ \cos x }[x=0][*]%
\tabulate
[rpos=2,rspec={x,0.2,6}]
{ \tan x }[x=0][*]\medskip{}
\noindent However, tabulating more than one function at a time is
too common a need to have to resort to a fudge like adjoining tables.
\verb`numerica-tables` offers a systematic way of doing this; see
§\ref{sec:Multiple-function-tables}.
\section{Column-variable settings}
\label{sec:Column-variable-settings}
\begin{table}
\caption{Column-variable specification}
\centering{}\begin{center}
\begin{tabular}{ll>{\raggedright}p{4cm}l}
\toprule
{\small key} & {\small type} & {\small meaning} & {\small comment}\tabularnewline
\midrule
{\small\texttt{cvar}} & {\small token(s)} & {\small column variable} & \tabularnewline
{\small\texttt{cstep}} & {\small real num.} & {\small step size} & \tabularnewline
{\small\texttt{cstop}} & {\small real num.} & {\small stop value} & {\small either }{\small\texttt{cstop}}\tabularnewline
{\small\texttt{cols}} & {\small int} & {\small number of columns} & {\small or }{\small\texttt{cols}}\tabularnewline
{\small\texttt{cspec}} & {\small comma list} & {\small\texttt{\{cvar,cstep}}{\small ,}{\small\texttt{cols\}}} & {\small short form spec.}\tabularnewline
\bottomrule
\end{tabular}
\par\end{center}
\end{table}
When a function of \emph{two} variables is being tabulated, we generally
think of one variable as the primary variable and the other as a parameter.
To tabulate such a function, one way to proceed, as we have seen,
is to create and adjoin separate tables, one per parameter value,
but that is clumsy. A more systematic procedure is to specify, in
addition to the row variable, a \emph{column} variable and its start,
step and stop values\index{column variable!start, step, stop values|(}.
In \index{cvar@\texttt{cvar}|(} the following example \verb`cvar=k`
is the column variable. I have chosen a step size \verb`cstep=2`\index{cstep@\texttt{cstep}|(}
and a stop value \verb`cstop=9`\index{cstop@\texttt{cstop}|(}. As
with the row variable, the start value ({\ttfamily\verb`k=3`})
of the column variable is specified in the vv-list\index{vv-list!row/col. variable initial values}\index{column variable!initial value in vv-list}.
Although in the example these values are numbers, all three values
could be \LaTeX{} expressions that evaluate to numbers. In particular,
the expressions for step and stop values may include the row and column
variables (in the example $x$ and $k$) which are assigned their
initial vv-list values. Note also the setting for \verb`rhead`\index{rhead@\texttt{rhead}}
which shows the reader of the table that the numerical values displayed
in the column headers are values of \verb`k`. This usage occurs throughout
\emph{HMF}.
\begin{verbatim}
\tabulate[rspec={x,0.2,6},rhead=x\backslash k,
cvar=k,cstep=2,cstop=9]
{ \sin kx }[k=3,x=0][*]
\end{verbatim}
$\Longrightarrow$ \tabulate
[rspec={x,0.2,6},rhead=x\backslash k,
cvar=k,cstep=2,cstop=9]
{ \sin kx }[k=3,x=0][*] \medskip{}
Again, as with the row variable, rather than using an explicit stop
value\texttt{ }{\ttfamily\verb`cstop`}, you might prefer
to specify the number of columns, \verb`cols`\index{cols@\texttt{cols}|(},
explicitly. I could have replaced {\ttfamily\verb`cstop=9`}
with \verb`cols=4` to get the same result. Note that the number of
columns specified here is the number of \emph{function-value} columns;
the row variable column is ignored for this count.
It is worth pointing out explicitly that if \verb`cols` is specified,
then it is possible to have a \emph{zero} step size, \verb`cstep=0`.
(A similar comment applies to \verb`rows` and \verb`rstep`.)
And again, as with the row variable, it is possible to condense the
specification into a comma list with the key \verb`cspec`\index{cspec@\texttt{cspec}|(}.
This is a $3$-element comma list of the form \verb`{cvar,cstep,cols}`.
Thus, for the preceding table I could also have written
\begin{verbatim}
\tabulate[rspec={x,0.2,6},rhead=x\backslash k,
cvar=k,cstep=2,cols=4]
{ \sin kx }[k=3,x=0][*]
\end{verbatim}
or more succinctly
\begin{verbatim}
\tabulate[rspec={x,0.2,6},rhead=x\backslash k,
cspec={k,2,4}]
{ \sin kx }[k=3,x=0][*]
\end{verbatim}
and produced the same table.
As with the row equivalents, \verb`cstep`, \verb`cstop` and \verb`cols`
can all be \LaTeX{} expressions. Again like the row equivalents, the
first two are evaluated \emph{after }the vv-list and so may depend
not only on numbers and constants but also the initial values of the
row and column variables, which are given those values in the vv-list.\index{vv-list!row/col. variable initial values}
\verb`cols` is evaluated \emph{before }the vv-list; it may be a \LaTeX{}
expression but cannot depend on the row or column variable.\index{cvar@\texttt{cvar}|)}\index{cstep@\texttt{cstep}|)}\index{cstop@\texttt{cstop}|)}\index{cols@\texttt{cols}|)}\index{cspec@\texttt{cspec}|)}\index{column variable!start, step, stop values|)}
\subsection{Column header formatting}
\label{subsec:Column-header-formatting}\index{formatting!column variable header|(}\index{column variable header|(}
\begin{table}[b]
\centering{}\caption{Formatting the column variable header}
\begin{center}
\begin{tabular}{ll>{\raggedright}p{4cm}l}
\toprule
{\small key} & {\small type} & {\small meaning} & {\small initial}\tabularnewline
\midrule
{\small\texttt{chstyle}} & {\small int (0\ldots 4)} & {\small header style} & {\small\texttt{0}}\tabularnewline
{\small\texttt{ctitle}} & {\small tokens} & {\small single col. alt. header} & \tabularnewline
{\small\texttt{chead}} & {\small tokens} & {\small user-defined header } & \tabularnewline
{\small\texttt{calign}} & {\small char (r/c/l)} & {\small column alignment} & {\small\texttt{r}}\tabularnewline
{\small\texttt{chnudge}} & {\small int} & {\small nudge header }{\small{\small\verb`int`}}{\small{} mu} & {\small\texttt{0}}\tabularnewline
{\small\texttt{chround}} & {\small int} & {\small{} rounding} & {\small\texttt{0}}\tabularnewline
\bottomrule
\end{tabular}
\par\end{center}
\end{table}
There are four built-in style settings for the header to the column
variable (or function-value) columns (the `ch' prefix evoking `column
header'). If these don't meet your needs or otherwise satisfy, then
it is possible to define your own header to the function value columns
using the key \verb`chead`. First I discuss the built-in styles.
\subsubsection{Single-column header}
When\index{column variable header!single column case} there is only
one column of function values, the function being tabulated is by
default set as the header to the column. This corresponds to setting
\verb`ctitle=*`\index{ctitle@\texttt{ctitle}!* setting@\texttt{{*}} setting}
(see §\ref{subsec:Title:-ctitle-setting} below). You may want some
other header. Then give \verb`ctitle`\index{ctitle@\texttt{ctitle}}
some other value (although note that giving it the value \texttt{{*}{*}}\index{ctitle@\texttt{ctitle}!** setting@\texttt{{*}{*}} setting}
will set both the function and the vv-list as the header; again see
§\ref{subsec:Title:-ctitle-setting}). Whatever value you set, it
will be typeset between math delimiters (\verb`$` signs) and can
be nudged (see §\ref{subsec:Nudgingtheheaders:-chnudge}) left or
right to fine-tune its position in the column. (If you want an asterisk
as the header, you will need to place it between \emph{two} pairs
of braces, \verb`ctitle={{*}}`, to prevent it being misinterpreted
as the default setting.)
If you want some more complicated header, perhaps not constrained
by the \verb`$` delimiters, then give \verb`chead`\index{chead@\texttt{chead}}
a value. This key I discuss below in §\ref{subsec:chead}. \verb`chead`
is entirely up to the user to specify, including any math delimiters
and positioning (nudging) of elements.
If both \verb`ctitle` and \verb`chead` are given, the \verb`chead`
value prevails.
\subsubsection{Multi-column header: \texttt{chstyle}}
\label{subsec:Headerstyle:-multi-column-case}\index{column variable header!multi-column case|(}\verb`chstyle=0`\index{chstyle@\texttt{chstyle}|(}\index{column variable header!multi-column case!chstyle@\texttt{chstyle}|(}
which is the default gives a header of the form displayed in the last
example, with only the column variable \emph{value} at the head of
each column. This style generally requires the row variable header
to indicate what the values denote, as in the example above where
\verb`rhead=x\backslash k`, the backslash separating row from column
variable. \emph{HMF} contains a multitude of instances of this style;
see Tables~9.7, 17.5, 21.1, 24.3, 27.4, etc. for examples.
\verb`chstyle=1` changes the header of the \emph{first} function
value column to the form \emph{variable=value} \textendash{} in the
example below, to $k=1$. This may be an appropriate choice when a
small rounding value is being used and the resulting columns are narrow.
I can find only one real instance in \emph{HMF}, Table~26.7. In the
example I have used the \verb`rdata` setting to collect an assortment
of nonsense values and for some weird reason wish to tabulate the
sines of multiples of these oddballs. Note that the row variable setting
\verb`rhead` (producing $X\backslash k$) is no longer needed since
the column variable is now explicitly indicated. (But the table is
lacking a title \textendash{} what on earth are we calculating with
this strange group of numbers?)
\begin{verbatim}
\tabulate[rdata={-e^2,1.234e2,3.1416,\pi/\gamma,1/9},
^,rvar=X,rverb=1,cspec={k,1,3},chstyle=1]
{ \sin kX }[k=1][3*]
\end{verbatim}
$\Longrightarrow$ \tabulate[rdata={-e^2,1.234e2,3.1416,\pi/\gamma,1/9},
^,rvar=X,rverb=1,cspec={k,1,3},chstyle=1]
{ \sin kX }[k=1][3*]\medskip{}
\verb`chstyle=2` changes the header of all function-value columns
to the form \emph{variable=value}.\emph{ }In \emph{HMF} examples are
Tables~7.4, 7.9, 10.10, 16.6, etc. Again, the row variable setting
\verb`rhead` no longer needs the \verb`\backslash k` part since
the column variable is now explicitly indicated.
\begin{verbatim}
\tabulate[rspec={x,0.2,6},
cspec={k,2,3},chstyle=2]
{ \sin kx }[k=3,x=0][3*]
\end{verbatim}
$\Longrightarrow$ \tabulate[rspec={x,0.2,6},
cspec={k,2,3},chstyle=2]
{ \sin kx }[k=3,x=0][3*]\medskip{}
\verb`chstyle=3` fills each column variable header with the expression
being tabulated but with the column variable replaced by its respective
values. See \emph{HMF} Tables~5.4, 8.1, 9.1, 19.1, etc. for examples.
Note that if the column variable value is \verb`1`, the \verb`1`
will be displayed:
\begin{verbatim}
\tabulate[rspec={x,0.2,6},
cspec={k,2,3},chstyle=3]
{ \sin kx }[k=1,x=0][4*]
\end{verbatim}
$\Longrightarrow$ \tabulate
[rspec={x,0.2,6},
cspec={k,2,3},chstyle=3]
{ \sin kx }[k=1,x=0][4*]\medskip{}
In this last example you may not want the \verb`1` displayed. To
achieve that effect put \verb`chstyle=4`. This results in a header
as for \verb`chstyle=3` but if the column variable takes the value
\verb`1`, it has an empty replacement:
\begin{verbatim}
\tabulate[rspec={x,0.2,6},
cspec={k,2,3},chstyle=4]
{ \sin kx }[k=1,x=0][4*]
\end{verbatim}
$\Longrightarrow$ \tabulate
[rspec={x,0.2,6},
cspec={k,2,3},chstyle=4]
{ \sin kx }[k=1,x=0][4*]\index{column variable header!multi-column case!chstyle@\texttt{chstyle}|)}\index{chstyle@\texttt{chstyle}|)}
\subsubsection{User-defined header: \texttt{chead}}
\label{subsec:chead}\index{chead@\texttt{chead}|(}If the function
in the last example were, for instance, $k+\sin kx$, then neither
replacing $k$ by \verb`1` nor an empty replacement would be appropriate.
In that case the only recourse is to use the \verb`chead` key. Users
can assign whatever value they like to \verb`chead`. The assignment
must contain the correct number of tab characters (\verb`&`) for
the \emph{column variable columns only}. It is a header only to the
function-value columns. The user will need to insert \verb`$` signs
or other math delimiters as appropriate. This differs from the practice
for \verb`rhead`, but \verb`chead` is potentially far more complicated.
Thus for $k+\sin kx$,
\begin{verbatim}
\tabulate[rspec={x,0.2,6},cspec={k,2,3},
chead=$1+\sin x$&$3+\sin3x$&$5+\sin 5x$]
{ k+\sin kx }[k=1,x=0][4*]
\end{verbatim}
$\Longrightarrow$ \tabulate
[rspec={x,0.2,6},
cspec={k,2,3},
chead=$1+\sin x$&$3+\sin3x$&$5+\sin 5x$]
{ k+\sin kx }[k=1,x=0][4*]\medskip{}
\noindent Non-empty content for the \verb`chead` key overrides any
\verb`chstyle` setting and, in the case of a table with only a single
function-value column, overrides any \verb`ctitle` setting.\index{chead@\texttt{chead}|)}
\subsubsection{Alignment: \texttt{calign}}
The\index{calign@\texttt{calign}|(} function-value columns are aligned
right, \verb`calign=r`, by default. Also available are \verb`calign=c`
for centred alignment and \verb`calign=l` (lowercase L) for left
alignment. Using centred alignment with {\ttfamily\verb`chstyle=2`}
in a previous example table gives
\begin{verbatim}
\tabulate[rspec={x,0.2,6},ralign=c,
cspec={k,2,3},chstyle=2,calign=c]
{ \sin kx }[k=3,x=0][*]
\end{verbatim}
$\Longrightarrow$ \tabulate
[rspec={x,0.2,6},rhead=x,ralign=c,
cspec={k,2,3},chstyle=2,calign=c]
{ \sin kx }[k=3,x=0][*]\medskip{}
\noindent The first column of function values looks better, but the
minus signs spoil the effect in the others. Handling signs in tables
is discussed below; see §\ref{subsec:Signs}\index{calign@\texttt{calign}|)}.
\subsubsection{Nudging header entries: \texttt{chnudge}}
\label{subsec:Nudgingtheheaders:-chnudge}In\index{chnudge@\texttt{chnudge}|(}
left or right alignment it is possible to nudge the column headers
in the opposite direction by giving a numerical value to the the key
\verb`chnudge`. The header is moved by the specified number of mu
(math units; 18 to a quad). Note that the `mu' does not need to
be written. {\ttfamily\verb`numerica-tables`} provides
that. In the next example I have chosen \verb`chnudge=12` to nudge
the column headers to the left to give a centred effect to the header
but leaving the function values with their (potentially) awkward minus
signs right aligned.
\begin{verbatim}
\tabulate[rspec={x,0.2,6},ralign=c,
cspec={k,2,3},chstyle=2,chnudge=12]
{ \sin kx }[k=3,x=0][*]
\end{verbatim}
$\Longrightarrow$ \tabulate
[rspec={x,0.2,6},ralign=c,
cspec={k,2,3},chstyle=2,chnudge=12]
{ \sin kx }[k=3,x=0][*]\medskip{}
The \verb`chnudge` value does not need to be positive. Negative nudges
can be useful when a column header is \emph{longer} than the rounded
function values. In the second example below, I've reduced the rounding
value for function values to $3$, and chosen an initial $k$ value
of $100$ to ensure this circumstance. To centre the column headers
I have used \verb`chnudge=-9`.
\begin{verbatim}
\tabulate[rspec={x,0.2,6},ralign=c,
cspec={k,2,3},chstyle=2,chnudge=-9]
{ \sin kx }[k=100,x=0][3*]
\end{verbatim}
$\Longrightarrow$ \tabulate
[rspec={x,0.2,6},ralign=c,
cspec={k,2,3},chstyle=2,chnudge=-9]
{ \sin kx }[k=100,x=0][3*]\index{chnudge@\texttt{chnudge}|)}
\subsubsection{Rounding: \texttt{chround}}
In\index{chround@\texttt{chround}|(}\index{rounding value!header row|(}
the examples so far, the column variable has incremented in integer
steps. The default rounding value for the column variable is $0$
(for the row variable it is $1$), so if it increments by some non-integer
amount, the result will be confusing \textendash{} if $k$ incremented
by, say, $0.25$, starting from $k=3$, then the next column would
also have a header $k=3$ (since $3.25$ with a rounding value $0$
rounds to $3$). The appropriate key to remedy this state of affairs
is {\ttfamily\verb`chround`}. For a step size of $0.25$
the appropriate setting is {\ttfamily\verb`chround=2`}.
\begin{verbatim}
\tabulate[rspec={x,0.2,6},ralign=c,
cspec={k,0.25,3},chstyle=2,chround=2]
{ \sin kx }[k=3,x=0][*]
\end{verbatim}
$\Longrightarrow$ \tabulate
[rspec={x,0.2,6},rhead=x,ralign=c,
cspec={k,0.25,3},chstyle=2,chround=2]
{ \sin kx }[k=3,x=0][*]\index{column variable header|)}\index{rounding value!header row|)}\index{column variable header!multi-column case|)}\index{chround@\texttt{chround}|)}\index{formatting!column variable header}
\section{Multiple functions in a single table}
\label{sec:Multiple-function-tables}As\index{multi-function tables|(}
already noted in §\ref{subsec:Adjoining-tables}, tabulating more
than one function at a time is too common a need to have to resort
to a fudge like adjoining tables. The systematic way of handling this
task is to enter the functions in the main argument of a \verb`\tabulate`
command separated by a specified mark then alert \verb`\tabulate`
that this has happened with the \verb`ff`\index{ff@\texttt{ff}}
key in the settings option.
By default the multi-function delimiter\index{multi-function tables!function delimiter}
is the comma if the decimal point is a dot (or period), or the semicolon\index{semicolon and decimal comma}
if the decimal point is a comma\index{decimal comma} (\texttt{numerica}
loaded with the \verb`comma` package option). If you are content
with the default delimiter then it suffices to enter \verb`ff` in
the settings option. If not, then enter \verb`ff=<mark>` there. For
example \verb`ff=|` would make the `pipe' character \verb`|` the
multi-formula delimiter. If the \verb`ff` key is overlooked then
multiple formulas in the main argument of \verb`\tabulate` will almost
certainly cause a \LaTeX{} error.
In the following example, using the default comma, note first the
\verb`ff` setting, and then the \verb`o` setting indicating that
the arguments of the trig functions are in degrees and (just to amuse
myself) I have put the row variable column on both sides with the
\verb`rpos=3`\index{rpos@\texttt{rpos}} setting:
\begin{verbatim}
\tabulate[ff,o,rpos=3,rround=0,
rvar=\theta,rstep=10,rstop=90]
{ \sin \theta, \cos \theta }[\theta=0][*]
\end{verbatim}
$\Longrightarrow$ \tabulate[ff,o,rpos=3,rround=0,
rvar=\theta,rstep=10,rstop=90]
{ \sin \theta, \cos \theta }[\theta=0][*]\medskip{}
The tables suggest a space saving possibility: since $\sin$ and $\cos$
are complementary functions\index{complementary functions} ($\cos\theta=\sin(90-\theta)$),
the values in the bottom half of the table duplicate values in the
top half, only with the columns reversed. This is the reason for the
space saving \verb`rpos=4`\index{rpos@\texttt{rpos}} setting (§\ref{subsec:Second-row-var-col})
which enables complementary functions to be tabulated in `half tables'
(\emph{HMF} Tables 4.10\textendash 4.12 are examples for the trigonometric
functions).
In the next example, the row variable column is again duplicated,
left and right, with the \verb`rpos=3` setting, and a centred alignment
is used for the function values. Because $\sin$ and $\cos$ are complementary,
I have stopped the table at \verb`rstop=45` since continuing to \verb`90`
would simply give a mirror reflection of the preceding values. To
accommodate the use of the comma in \verb`\max` and \verb`\min`\index{n-ary@$n$-ary functions}
I have stipulated \verb`ff=|`\index{ff@\texttt{ff}}. Visually, the
table has an unsatisfactory, sprawling appearance \textendash{} which
directs attention to how tables might be titled (§\ref{subsec:Title:-ctitle-setting})\index{rpos@\texttt{rpos}}:
\begin{verbatim}
\tabulate[ff=|,o,rpos=3,rround=0,
rvar=\theta,rstep=10,rstop=45,calign=c]
{ \max(\sin \theta,\cos \theta)|
\min(\sin \theta,\cos \theta) }
[\theta=0][*]
\end{verbatim}
$\Longrightarrow$ \tabulate[ff=|,o,rpos=3,rround=0,
rvar=\theta,rstep=10,rstop=45,calign=c]
{ \max(\sin \theta,\cos \theta)|
\min(\sin \theta,\cos \theta) }
[\theta=0][*] \index{multi-function tables|)}
\section{Whole-of-table formatting}
\label{sec:Whole-of-table-formatting}There\index{formatting!title, subtitle, footer|(}
are a number of settings pertaining to the appearance of the table
as a whole, things like the position of the row variable column, division
of the function values into blocks to aid readability, the presence
of horizontal rules or of a collective column title or of a footer
row. I discuss these here.
\begin{table}
\centering{}\caption{\protect\label{tab:Table-formatting-settings}Table formatting}
\begin{center}
\begin{tabular}{ll>{\raggedright}p{4cm}l}
\toprule
{\small key} & {\small type} & {\small meaning} & {\small initial}\tabularnewline
\midrule
{\small\texttt{ctitle}} & {\small token(s)} & {\small collective title for function-value columns} & \tabularnewline
& {\small token(s)} & {\small subtitle row for} {\small function- value cols} & \tabularnewline
{\small\texttt{header}} & {\small int (}{\small\texttt{0/1}}{\small )} & {\small suppress/show header row} & {\small\texttt{1}}\tabularnewline
{\small\texttt{foot}} & {\small token(s)} & {\small table-wide footer row} & \tabularnewline
{\small\texttt{rules}} & {\small char(s)} & {\small horizontal rule spec.} & {\small\texttt{ThB}}\tabularnewline
{\small\texttt{rpos}} & {\small int (}{\small\texttt{0}}{\small\ldots}{\small\texttt{4}}{\small )} & {\small row variable col. position(s)} & {\small\texttt{1}}\tabularnewline
{\small\texttt{rbloc}} & {\small integer comma list} & {\small row block specification} & \tabularnewline
{\small\texttt{valign}} & {\small char (}{\small\texttt{t}}/{\small\texttt{m}}/{\small\texttt{b}}{\small )} & {\small vertical alignment of table relative to text baseline} & {\small\texttt{m}}\tabularnewline
\bottomrule
\end{tabular}
\par\end{center}
\end{table}
\subsection{Title for function-value columns: \texttt{ctitle}}
\label{subsec:Title:-ctitle-setting}\index{ctitle@\texttt{ctitle}|(}The\index{title row|(}
function-value columns have individual headers, formatted in the various
ways provided by the settings discussed in previous sections, but
it can also be helpful to have a collective title for these columns.
We saw the need in the last example. The need is met with the \verb`ctitle`
key. This can be set to whatever you like (e.g. \verb`ctitle=\text{Fred}`)
but, to more purpose, I shall use the setting to improve the look
of the table in the last example. Note that the content of the \verb`ctitle`
key is enclosed in braces. This is to shield the commas there from
being misinterpreted as item separators in the settings option. For
an analogous reason I have specified the semicolon (\verb`ff=;`)\index{ff@\texttt{ff}}
as the function separator in the main argument:\index{rpos@\texttt{rpos}}\index{n-ary@$n$-ary functions}
\begin{verbatim}
\tabulate[ff=;,o,rpos=3,rround=0,
rvar=\theta,rstep=10,rstop=45,
ctitle={\max,\min(\sin\theta,\cos\theta)},
chead=max\hphantom{00} & min\hphantom{00}]
{ \max(\sin \theta,\cos \theta);
\min(\sin \theta,\cos \theta) } [\theta=0][*]
\end{verbatim}
$\Longrightarrow$ \tabulate[ff=;,o,rpos=3,rround=0,
rvar=\theta,rstep=10,rstop=45,
ctitle={\max,\min(\sin\theta,\cos\theta)},
chead=max\hphantom{00} & min\hphantom{00}]
{ \max(\sin \theta,\cos \theta);
\min(\sin \theta,\cos \theta) }
[\theta=0][*]\medskip{}
\noindent Now it is clearer what is being tabulated and the wide separation
of the function-value columns is reduced.
There are two built-in values for the \verb`ctitle` key: \verb`ctitle=*`,
which forms the title from the function being tabulated, and \verb`ctitle=**`
which uses the function and vv-list for the title. Obviously these,
particularly the latter, could easily become too long to be useful.
An example of \verb`ctitle=**` is presented below in §\ref{subsec:Rules:-rules-setting}.
In the following example, inclusion of the vv-list in the title is
pointless since the variables there form the row and column variables
of the table; \verb`ctitle=*` is all that is needed:
\begin{verbatim}
\tabulate[rspec={n,1,5},rround=0,
cspec={m,1,4},chstyle=2,ctitle=*]
{ \cos(m\pi/n) }[n=3,m=2][*4]
\end{verbatim}
$\Longrightarrow$ \tabulate[rspec={n,1,5},rround=0,
cspec={m,1,4},chstyle=2,ctitle=*]
{ \cos(m\pi/n) }[n=3,m=2][*4]
\subsection{Between header \& title: \texttt{csubttl}}
Some\index{csubttl@\texttt{csubttl}}\index{title row!subtitle row}
tables need to fit more header or title material into their rows than
can be comfortably accommodated in either row alone. For examples,
see \emph{HMF} Tables 7.9 (error function for complex arguments),
17.7 (Jacobian zeta function), 21.1 (eigenvalues of spheroidal wave
functions), and 26.7 (probability integrals). One way of handling
this problem is to resort to more complicated environments in header
and title rows. Another, more direct way, is to insert a row between
the header and title rows.
I have chosen \verb`csubttl`, a contraction of `column variable
subtitle' for the key name. (In version 2 of \texttt{numerica-tables}
the name \verb`cmidrow`\index{cmidrow@\texttt{cmidrow }|see{\texttt{csubttl}}}
was used; that will still work but \verb`csubttl` gives a clearer
indication of what the key does.) The initial `c' emphasizes that
like \verb`chead` and \verb`ctitle` it is constrained to the span
of the column variable (or function-value) columns only. The content
of \verb`csubttl` is entirely the responsibility of the user, including
insertion of the necessary number of tab characters, \verb`&`, and
any math delimiters required.
\begin{verbatim}
\tabulate[ff,rspec={x,1,7},rround=0,chnudge=18,
ctitle=\text{Hyperbolic functions},
csubttl=\multicolumn{3}{c}{$\sinh x=\tfrac12
(e^x-e^{-x}),\ \cosh x=\tfrac12(e^x+e^{-x})$}]
{ \tfrac12e^x, \sinh x, \cosh x }
[{x}=0][8*]
\end{verbatim}
$\Longrightarrow$ \tabulate[ff,rspec={x,1,7},rround=0,chnudge=18,
ctitle=\text{Hyperbolic functions},
csubttl=\multicolumn{3}{c}{$\sinh x=\tfrac12
(e^x-e^{-x}),\ \cosh x=\tfrac12(e^x+e^{-x})$}]
{ \tfrac12e^x, \sinh x, \cosh x }
[{x}=0][8*]\index{ctitle@\texttt{ctitle}|)}\index{title row|)}
\subsection{Suppress/show header row}
\label{subsec:Header-row-suppress}Usually\index{headless@\texttt{headless}}
the header row in a table is shown. It carries essential information
as to the table's contents. However, there are occasions when it should
be suppressed. An example where this is appropriate is given in §\ref{subsec:rdata-rfile-rverb}
where a table listing fractions of $\pi$ and their values is shown.
As in that example, to suppress the header enter the setting \verb`headless=1`.
(Otherwise tables default to \verb`headless=0`.)
\subsection{Footer row: \texttt{foot} }
Some\index{foot@\texttt{foot}}\index{footer row} tables have a footer
row and \verb`numerica-tables` allows such a row to be inserted,
but its entire content, with one exception, is the responsibility
of the user, including insertion of the necessary number of tab characters
\verb`&`. This will usually be $1$ less than the total number of
columns (including row variable columns) in the table \textendash{}
or some adjustment thereof if you use \verb`\multicolumn`. (\emph{HMF}
uses the footer mainly for cryptic descriptions of the accuracy and
needs of interpolation methods.)
You can put into the footer what you wish with the setting \verb`foot=<tokens>`.
The one exception is when \verb`foot=*`\index{foot@\texttt{foot}}.
This will fill the footer with the header, but with the items of the
header presented in \emph{reversed} order \textendash{} the last item
first, and so on. This is useful for tabulating complementary functions
like the sine and cosine or, more generally, $f(x)$ and $g(x)$ where
$g(x)=f(k-x)$ for some constant $k$. Values for the complementary
function are read from the bottom up and require a reversed row variable
column on the right of the table; see §\ref{subsec:Second-row-var-col}.
\noindent{}%
\noindent\begin{minipage}[t]{1\columnwidth}%
\begin{shaded}%
\subsubsection{Footer functions}
In\index{footer functions} previous versions of \texttt{numerica-tables}
it was possible to perform certain simple operations on columns \textendash{}
calculate the sum, the average and maximum and minimum values. This
is no longer so in version 3. Not only does it seem tangential to
the primary function of the \verb`\tabulate` command but it was also
acutely dependent on the format of the numbers being operated on.
A simple change in the number-format option could cause a \LaTeX{}
error.\end{shaded}%
\end{minipage}\index{formatting!title, subtitle, footer|)}
\subsection{Horizontal rules: \texttt{rules}}
\label{subsec:Rules:-rules-setting}\index{rules@\texttt{rules}|(}\index{rules|(}\index{formatting!rules|(}
\begin{table}[!b]
\centering{}\caption{\protect\label{tab:Rules}Rules. {\small (In the \textquoteleft span\textquoteright{}
column, \textquoteleft f-v\textquoteright =function-value; \textquoteleft r-v\textquoteright =row
variable; \textquoteleft$<$~table\textquoteright{} indicates that
the rule spans the table but is trimmed at each end.)}}
\begin{center}
\begin{tabular}{lll>{\raggedright}p{3cm}l}
\toprule
{\small char} & {\small rule} & {\small position} & {\small span} & {\small default rule thickness}\tabularnewline
\midrule
{\small\texttt{T}} & {\small top} & {\small above table} & {\small table} & {\small\texttt{\textbackslash heavyrulewidth=.08em}}\tabularnewline
{\small\texttt{t}} & {\small title} & {\small below title} & {\small f-v cols} & {\small\texttt{\textbackslash cmidrulewidth =.03em}}\tabularnewline
{\small\texttt{s}} & {\small subtitle} & {\small below subtitle} & {\small f-v cols (if $1$ r-v col.)}{\small\par}
{\small$<$ table (if $2$ r-v cols)} & {\small\texttt{\textbackslash cmidrulewidth =.03em}}\tabularnewline
{\small\texttt{h}} & {\small header} & {\small below header} & {\small table} & {\small\texttt{\textbackslash lightrulewidth=.05em}}\tabularnewline
{\small\texttt{f}} & {\small footer} & {\small above footer} & {\small < table} & {\small\texttt{\textbackslash cmidrulewidth =.03em}}\tabularnewline
{\small\texttt{B}} & {\small bottom} & {\small below table} & {\small table} & {\small\texttt{\textbackslash heavyrulewidth=.08em}}\tabularnewline
\bottomrule
\end{tabular}
\par\end{center}
\end{table}
The \texttt{booktabs} \index{booktabs@\texttt{booktabs}} package
which \texttt{numerica} uses is most emphatic that one should `1.
Never, ever use vertical rules.\index{rules!edicts} 2. Never use
double rules.' Most of the tables proper in \emph{HMF} lack rules
of any kind although closer inspection shows smaller tables within
the text generally \emph{are} delimited by horizontal rules (often
also with vertical rules). In the various examples in the present
document I have used horizontal rules because these too are tables
within text. Some form of delineation seems necessary. (Although many
of \emph{HMF}'s tables are inelegantly typeset, I have used it as
a valuable source for the variety of structures that one might need
for presenting a multitude of different kinds of numerical data.)
The \verb`rules` key allows one to specify precisely which rules
are used. The content of the key is a `word' \textendash{} a sequence
of letters \textendash{} where the characters have the significance
and default thicknesses (from \texttt{booktabs}\index{booktabs@\texttt{booktabs}})
shown in Table~\ref{tab:Rules}. The default setting is \verb`rules=ThB`.
To insert a rule beneath the title, for example, change this to \verb`rules=TthB`.
If you are using a subtitle row between header and title rows and
want a rule beneath that too, then the spec. is \verb`rules=TtshB`.
(For legacy reasons, \verb`m` \textendash{} from `midrow' \textendash{}
can also be used instead of \verb`s`, as in version 2 of \texttt{numerica-tables}.)
To my eye rules beneath both title and subtitle don't work; a rule
beneath the subtitle alone gives a better result. The subtitle rule
changes its behaviour depending on whether there are two row variable
columns \textendash{} on the left and right of the table \textendash{}
or not. If there is only such column then, like the title rule, the
subtitle rule spans only the function-value columns. If there are
two row variable columns then the subtitle rule spans the table but
is trimmed by 0.5 em at each end. That degree of trim is the \texttt{booktabs}\index{booktabs@\texttt{booktabs}}
default but can be changed by giving a different value to \verb`\cmidrulekern`\index{cmidrulekern@\texttt{\textbackslash cmidrulekern}}
in the preamble, e.g. \verb`\cmidrulekern=1em`. Note that the changed
trim will also apply to the title rule.
If you are using a footer row\index{footer row} and want a rule above
it, then add \verb`f` to the specification, e.g. \verb`rules=TthfB`.
In version 3 of \texttt{numerica-tables} the rule is trimmed at each
end. Visually, having two table-spanning rules close together, the
\verb`f` and \verb`B` rules, doesn't work. The trimming makes a
difference. (For the \verb`T` and \verb`h` rules, the occurrence
of the table body beneath the \verb`h` rule seems to make a difference
to the visual impact of the rules.) But the question should always
be: is a rule necessary at all? Usually, less is more.
If you wish to change the thickness of a rule from its default, then
enter new values for any or all of \verb`\heavyrulewidth`\index{heavyrulewidth@\texttt{\textbackslash heavyrulewidth}},
\verb`\lightrulewidth`\index{lightrulewidth@\texttt{\textbackslash lightrulewidth}},
\verb`\cmidrulewidth`\index{cmidrulewidth@\texttt{\textbackslash cmidrulewidth}}
in the preamble. The values listed in Table~\ref{tab:Rules} are
the default values in the \texttt{booktabs}\index{booktabs@\texttt{booktabs}}
package (except for the midrow and footer rules, which \texttt{booktabs}\index{booktabs@\texttt{booktabs}}
does not cover; in \texttt{numerica-tables} these rules are assigned
a thickness of \verb`\cmidrulewidth`).
The order in which rules are placed in the specification doesn't matter.
I have entered them in their `natural' order simply because it feels
natural to do so, but it is their occurrence in the spec., not their
position, that matters.
In the example table below, a rule for the column title has been specified
(the \verb`t` in the setting \verb`rules=TthB`). Also note the use
of \verb`ctitle=**`\index{ctitle@\texttt{ctitle}!** setting@\texttt{{*}{*}} setting}.
The formula contains an extra parameter $a$, assigned a value in
the vv-list. It now makes sense to display the vv-list in the column
title (but note the braces around \verb`k` and \verb`x` in the vv-list
so that \emph{they} don't display).
\begin{verbatim}
\tabulate
[rspec={x,0.25,5},rround=2,rhnudge=9,
cspec={k,0.25,3},chstyle=2,chround=2,
ctitle=**,rules=TthB]
{ a\sin kx }[a=2/\pi,{k}=3,{x}=0][*]
\end{verbatim}
$\Longrightarrow$ \tabulate
[rspec={x,0.25,5},rround=2,rhnudge=9,
cspec={k,0.25,3},chstyle=2,chround=2,
ctitle=**,rules=TthB]
{ a\sin kx }[a=2/\pi,{k}=3,{x}=0][*]\index{rules|)}\index{rules@\texttt{rules}|)}\index{formatting!rules}
\subsection{Second row variable column: \texttt{rpos=4}}
\label{subsec:Second-row-var-col}In\index{row variable column!position in table}
\index{rpos@\texttt{rpos}|(}§\ref{subsec:Row-var-col-pos} I discussed
the settings \verb`rpos=0,1,2` and in §\ref{sec:Multiple-function-tables}
gave an example of using {\ttfamily\verb`rpos=3`} where
repeating the row variable column on the right is helpful. There is
another value available for this key, \verb`rpos=4`. Like {\ttfamily\verb`rpos=3`}
this adds the row variable column to both left and right sides of
the table, but for the right column the values are a function of those
in the left column ({\ttfamily\verb`rpos=3`} corresponds
to the function being the identity). The value given to the key \verb`rvar'`\index{rvar@\texttt{rvar'}|(}
determines the function used and the value given to the key \verb`rhead'`\index{rhead@\texttt{rhead'}|(}
determines the header for the right-hand row variable column. If \verb`rhead'`
is omitted it defaults to a blank header, unless the \verb`rvar'`
setting is also omitted, when \verb`rpos=4` behaves like \verb`rpos=3`.
For example, the sine and cosine are complementary functions\index{complementary functions|(};
when working in degrees, $\cos\theta=\sin(90-\theta)$. We can exploit
this fact to halve the table size needed to tabulate the two functions.
In the table, $\theta'=90-\theta$ and \verb`rhead'=\theta'`. Simply
to illustrate the use of \verb`rhnudge'`\index{rhnudge@\texttt{rhnudge'}|(}
I have nudged the header in the second (right) row variable column
to sit above the tens digits of the row variable values. The example
also gives an illustration of the use of an expression in the third
element of \verb`rspec`.\index{foot@\texttt{foot}}
\begin{verbatim}
\tabulate[ff=;,o,rpos=4,
rspec={\theta,5,1+45/5},rround=0,
chnudge=14,rvar'=90-\theta,rhnudge'=4,
rhead'=\theta',rules=ThfB,foot=*]
{ \sin\theta;\cos\theta }[\theta=0][*]
\end{verbatim}
$\Longrightarrow$ \tabulate[ff=;,o,rpos=4,
rspec={\theta,5,1+45/5},rround=0,
chnudge=14,rvar'=90-\theta,rhnudge'=4,
rhead'=\theta',rules=ThfB,foot=*]
{ \sin\theta;\cos\theta }[\theta=0][*]\index{footer row!complementary functions}\index{rhnudge@\texttt{rhnudge'}|)}\index{rhead@\texttt{rhead'}|)}\index{ff@\texttt{ff}}\medskip{}
\noindent The values of sines from $0$ to $45$ degrees are read
downwards from the first column of function values, and from 45 to
90 degrees are read upwards from the second column of function values.
For cosines it is downwards from the second column and upwards from
the first column. The reversed footer line indicates the change of
columns to use. In the example note
\begin{itemize}
\item the setting of \verb`rvar'`\index{rvar@\texttt{rvar'}|)} to a function
\verb`90-\theta` of the row variable;
\item the footer setting \verb`foot=*` to obtain the reversed header in
the footer;
\item the rule \emph{above} the footer row specified by the \verb`f` added
to the \verb`rules` setting, \verb`rules=ThfB`.
\end{itemize}
Note also the degree setting \verb`o` in the settings option.
Although there is a significant space saving with tables like this
(see \emph{HMF} Tables 4.10, 4.11, 4.12), they are not `kind to the
reader'. They require a certain concentration to read and in my view
should be avoided unless space is seriously constrained. \emph{HMF}
Tables 6.1 and 6.2 are tables of the gamma function and its relatives
where $y=x-1$ is used in the row variable column on the right (stemming
from $y!=\Gamma(x-1)$); \emph{HMF }Table 6.5 in effect uses $\langle1/x\rangle$
(the nearest integer to $1/x$) for the row variable on the right.\index{complementary functions|)}
\subsection{Separating blocks of rows: \texttt{rbloc}}
Readability\index{formatting!grouping rows|(}\index{row grouping|(}
of long columns of figures can be aided by breaking the columns into
blocks with extra white space between blocks of rows. This is achieved
with the \verb`rbloc`\index{rbloc@\texttt{rbloc}|(} key:
\begin{verbatim}
rbloc = <comma list of positive integers>
\end{verbatim}
specifies how many rows belong to each block. For example, \verb`rbloc={5,5,6}`
breaks the table into blocks of $5$ rows, $5$ rows, then $6$ rows.
If the number of rows in the table is greater than the sum of the
entries in the comma list, then division into blocks continues as
specified by the last entry in the comma list. Thus \verb`rbloc=5`
(strictly \verb`rbloc={5}` but the braces can be omitted in this
case since no comma is enclosed) divides a table into blocks of $5$
rows; \verb`rbloc={1,5}` divides a table into $1$ row followed by
blocks of $5$ rows. A division of this kind may be appropriate when,
say, the row variable runs from $0$ to $1$ in increments of $0.1$
\textendash{} there are $11$ rows of which the first (when the row
variable is zero) may have distinctive values.
\noindent{}%
\noindent\begin{minipage}[t]{1\columnwidth}%
\begin{shaded}%
\subsubsection*{The pull of the nice round number}
However, this is not how \emph{HMF} sets out its tables.\emph{ }The
dominant practice in \emph{HMF} is division into blocks of (generally)
$5$ rows, many of which start with a zero value for the row variable.
Rather than isolate this initial value, they include it in the first
block of $5$, then continue with blocks of $5$ until a single isolated
row is left at the bottom of the page or the table. There seems to
be a psychological need to finish a page or table with the row variable
set to a nice round number. Thus: tabulate from $0$ to $10$ rather
than $0$ to $9$, from $0$ to $1$ rather than $0$ to $0.9$, and
even from $0$ to $30$ or $0$ to $2$ rather than $0$ to $29$
or $0$ to $1.9$. Using blocks of $5$ the consequence is that there
is always an isolated line at the end \textendash{} a kind of punctuation
mark to signal the end of the page or the table.\end{shaded}%
\end{minipage}
\medskip{}
In the next example I have divided the rows into blocks of $5$ by
means of the setting \verb`rbloc=5`.
\begin{verbatim}
\tabulate[ff=;,o,rspec={\theta,10,1+90/10},
rround=0,rbloc=5]
{ \sin\theta; \cos\theta }[\theta=0][*]
\end{verbatim}
$\Longrightarrow$ \tabulate[ff=;,o,rspec={\theta,10,1+90/10},
rround=0,rbloc=5]
{ \sin \theta; \cos \theta}[\theta=0][*]\index{rbloc@\texttt{rbloc}|)}
\subsubsection{Adjusting the extra space\texttt{ rblocsep} }
By default \texttt{numerica} sets the extra space between blocks of
rows at \verb`1 ex`. This value can easily by changed with the setting
\verb`rblocsep=<length>`\index{rblocsep@\texttt{rblocsep}}. The
units need to be included in the specification. \index{formatting!grouping rows|)}\index{row grouping|)}
\subsection{Table placement}
\label{sec:Table-placement}Tables\index{table placement!on the page}
can be nudged vertically with the \LaTeX{} commands \verb`\bigskip`\index{bigskip@\texttt{\textbackslash bigskip}},
\verb`\medskip`\verb`\medskip`, \verb`\smallskip`\index{smallskip@\texttt{\textbackslash smallskip}},
usually about $1$, $\sfrac12$ and $\sfrac14$ line spaces (with
stretch and shrink). \texttt{booktabs}\index{booktabs@\texttt{booktabs}}
provides \verb`\abovetopsep`\index{abovetopsep@\texttt{\textbackslash abovetopsep}}
and \verb`\belowbottomsep`\index{belowbottomsep@\texttt{\textbackslash belowbottomsep}},
both set by default to \verb`0ex` and easily changed by writing,
e.g., \verb`\abovetopsep=1.25ex` if you want to insert \verb`1.25ex`
of space above the table (perhaps to fit captions).
\subsubsection{Vertical~alignment}
\label{subsec:Verticalalignment}By\index{table placement!on the line}
writing\texttt{ }{\ttfamily\verb`valign=<char>`}\index{valign@\texttt{valign}}
where \verb`<char>` is one of \verb`t`, \verb`m` or \verb`b` the
vertical alignment of the table can be set relative to the text baseline.\texttt{ }\verb`valign=t`\texttt{
}aligns the top of the table with the text baseline, \verb`valign=b`
the bottom of the table with the text baseline, \verb`valign=m` aligns
the middle of the table with the text baseline. By default \verb`valign=m`
is set. Repeating an example from earlier (§\ref{sec:Row-variable-settings})
I have added letters A, B, C to show where the baseline is. In the
first table the top of the table aligns with the baseline; in the
second table (default case) the middle of the table aligns with the
baseline; in the third table, the bottom of the table aligns with
the baseline.
\begin{verbatim}
A \tabulate[valign=t,rvar=x,rstep=0.2,rows=6]
{ \sin x/\cos x }[x=0][*] \quad
B \tabulate[rspec={x,0.2,1+(1/0.2)}]
{ \tan x }[x=0][*] \quad
C \tabulate[valign=b,rspec={x,0.2,(6)}]
{ \sqrt{\sec^2 x - 1} }[x=0][*]
\end{verbatim}
$\Longrightarrow$ A \tabulate[valign=t,rvar=x,rstep=0.2,rows=6,rstop=2]
{ \sin x/\cos x }[x=0][*] \quad
B \tabulate[rspec={x,0.2,1+(1/0.2)}]
{ \tan x }[x=0][*] \quad
C \tabulate[valign=b,rspec={x,0.2,6}]
{ \sqrt{\sec^2 x - 1} }[x=0][*]\medskip{}
As explained in §\ref{subsec:Adjoining-tables}, tables can be adjoined
to give the appearance of a single larger table. If tables with different
numbers of rows are adjoined in this manner, then a middle alignment
fails and a top alignment is necessary (so that the header rows of
the tables align).
\section{Function value formatting}
\label{sec:Function-value-formatting}\index{formatting!function values|(}\index{function value formatting|(}
\begin{table}
\centering{}\caption{\protect\label{tab:Function-value-formatting}Formatting function
values}
\begin{center}
\begin{tabular}{cc>{\raggedright}p{5cm}c}
\toprule
{\small key} & {\small type} & {\small meaning} & {\small initial}\tabularnewline
\midrule
{\small\texttt{(pad)}} & {\small int} & {\small t-notation phantom padding} & \tabularnewline
{\small\texttt{signs}} & {\small int} & {\small sign handling for function-values} & {\small\texttt{0}}\tabularnewline
{\small\texttt{diffs}} & {\small int} & {\small insert differences \& pre-pad with zeros} & {\small\texttt{0}}\tabularnewline
{\small\texttt{round}} & {\small tokens} & {\small row or col. dependent rounding value} & \tabularnewline
{\small\texttt{Q?}} & {\small tokens} & {\small special cell conditional} & \tabularnewline
{\small\texttt{A!}} & {\small tokens} & {\small special cell formatting} & \tabularnewline
\bottomrule
\end{tabular}
\par\end{center}
\end{table}
In previous tables in this document, function values have generally
been limited to a fairly narrow range of values. What happens when
function values span orders of magnitude? Can we accommodate scientific
notation, expressly designed to cope with such orders of magnitude,
in a natural way? Can we round rows or columns to different rounding
values? Or, in a different direction, can we form tables of function
values in fraction form?
\subsection{Trailing optional argument}
\label{subsec:Trailing-optional-argument}The primary tool for function-value
formatting is the trailing optional argument of the \verb`\tabulate`
command where the rounding value\index{rounding value} is specified,
padding with zeros is set or not (generally \emph{set} in tables),
scientific notation is set or not, and fraction-form output can be
specified.
\subsubsection{Fraction-form output}
\label{subsec:Fraction-form-output}In\index{fraction form!function values|(}\index{function value formatting!fraction form|(}
§\ref{subsec:rfracFraction-form-rvar} we saw how to display the row
variable in fraction form. Function values can also be presented in
that form. The problem is that such output requires far more computation
than other output since finding denominators at the specified accuracy
is an iterative process that needs to be performed for every function
value. However, it is feasible for small tables. In the tables below,
approximations to small positive and inverse powers of $\pi$ are
listed to $2$ and $4$ decimal places of accuracy. It is interesting
that all the powers listed can be approximated to $4$-place accuracy
by $3$-figure denominators (and $\pi^{2}$ by a $2$-figure denominator).\index{row variable!verbatim values|(}\index{sfrac@\texttt{\textbackslash sfrac}}
\begin{verbatim}
\def\mydataiii{\pi,\pi^2,\pi^3,
\pi^{\sfrac12},\pi^{\sfrac13}}
\tabulate[rdata=\mydataiii,rverb=1,rpos=1,
rvar=k,ralign=l,chead={\small $2$ places}]
{ k }[2/s] \qquad
\tabulate[rdata=\mydataiii,rverb=1,rpos=1,
rvar=k,ralign=l,chead={\small $4$ places}]
{ k }[4/s]
\end{verbatim}
$\Longrightarrow$ \def\mydataiii{\pi,\pi^2,\pi^3,
\pi^{\sfrac12},\pi^{\sfrac13}}
\tabulate[rdata=\mydataiii,rverb=1,rpos=1,
rvar=k,ralign=l,chead={\small $2$ places}]
{ k }[2/s]\qquad
\tabulate[rdata=\mydataiii,rverb=1,rpos=1,
rvar=k,ralign=l,chead={\small $4$ places}]
{ k }[4/s]\medskip{}
A second example shows that all four built-in constants to \texttt{numerica}
and their first few inverse powers can be approximated to $5$ decimal
places with $3$-figure denominators:\index{sfrac@\texttt{\textbackslash sfrac}}
\begin{verbatim}
\tabulate[rdata={\pi ,e,\phi,\gamma},rverb=1,rvar=k,
cspec={n,1,4},chstyle=3,chnudge=9,rules=TthB,/max=1000,
ctitle=\lvert k^{\sfrac1n}-p/q \rvert<0.5\times10^{-5}]
{ k^{\sfrac1n} }[n=1,k=1][/s5]
\end{verbatim}
$\Longrightarrow$ \tabulate[rdata={\pi ,e,\phi,\gamma},rverb=1,rvar=k,
cspec={n,1,4},chstyle=3,chnudge=9,rules=TthB,/max=1000,
ctitle=\lvert k^{\sfrac1n}-p/q \rvert<0.5\times10^{-5}]
{ k^{\sfrac1n} }[n=1,k=1][/s5]\index{function value formatting!fraction form|)}\index{fraction form!function values|)}\index{row variable!verbatim values|)}
\subsubsection{Scientific notation}
Elegant\index{function value formatting!scientific notations|(} scientific
notation\index{scientific notation},\index{scientific notation|seealso{t-notation}}
set with an \verb`x` in the trailing optional argument, is generally
not appropriate for use in tables; see the first table below. Repeating
the \verb`x` \textendash{} \verb`xx` \textendash{} in the trailing
optional argument (the second table) so that scientific notation extends
to numbers in the range $[1,10)$ helps, particularly with the \emph{left}
alignment chosen for the function-value column, but the result is
wasteful of space and the repetition of the `$\times10$' is distracting
and would be more so for a larger table. The \verb`x` specification
should be used in tables, if at all, only for \emph{small} tables
and special cases. The \verb`t` option is much preferred; see §\ref{subsec:t-option}
below.
\begin{verbatim}
\tabulate[rspec={x,1,2*3+1},rround=0]
{ e^x}[x=-5][*x]\qquad
\tabulate[rspec={x,1,2*3+1},rround=0,calign=l]
{ e^x}[x=-3][*xx]
\end{verbatim}
$\Longrightarrow$ \tabulate[rspec={x,1,2*3+1},rround=0]
{ e^x}[x=-3][*x]\qquad
\tabulate[rspec={x,1,2*3+1},rround=0,calign=l]
{ e^x}[x=-3][*xx]
\subsection{The \texttt{t} option}
\label{subsec:t-option}\emph{HMF}\index{t-notation|(} uses a special
notation\index{function value formatting|(seealso{t-notation}} for
coping with function values spanning orders of magnitude. This notation
can be invoked by inserting \verb`t` in the trailing optional argument.
Repeating the previous two tables, and adding a \verb`chnudge` value,
gives a more compact and visually appealing result:
\begin{verbatim}
\tabulate[rspec={x,1,2*3+1},rround=0,chnudge=24]
{ e^x}[x=-3][*t]\qquad
\tabulate[rspec={x,1,2*3+1},rround=0,chnudge=24]
{ e^x}[x=-3][*tt]
\end{verbatim}
$\Longrightarrow$ \tabulate[rspec={x,1,2*3+1},rround=0,chnudge=24]
{ e^x}[x=-3][*t] \qquad
\tabulate[rspec={x,1,2*3+1},rround=0,chnudge=24]
{ e^x}[x=-3][*tt]
\subsubsection{Padding the exponent: \texttt{(pad)}}
In\index{padding with phantoms|(} the second table of the last example
some might quibble at the lack of alignment of the left parentheses.
\emph{HMF} tends to align these and \verb`numerica-tables` offers
the setting
\begin{verbatim}
(pad) = <integer>
\end{verbatim}
to achieve the effect. (The parentheses are part of the key \textendash{}
a reminder of the \verb`t`-form of scientific notation.) \verb`<integer>`
is the number of digits/characters to pad to. Repeating the last two
tables with the setting \verb`(pad)=2` produces the following results:
\begin{verbatim}
\tabulate[rspec={x,1,2*3+1},rround=0,
chnudge=24,(pad)=2]
{ e^x}[x=-3][*t]\qquad
\tabulate[rspec={x,1,2*3+1},rround=0,
chnudge=24,(pad)=2]
{ e^x}[x=-3][*tt]
\end{verbatim}
$\Longrightarrow$ \tabulate[rspec={x,1,2*3+1},rround=0,
chnudge=24,(pad)=2]
{ e^x}[x=-3][*t]\qquad
\tabulate[rspec={x,1,2*3+1},rround=0,
chnudge=24,(pad)=2]
{ e^x}[x=-3][*tt]\medskip{}
Note that this setting is relevant only when the \texttt{t} option
is used in the trailing number-formatting argument of the \verb`\tabulate`
command. Examples in \emph{HMF} of the style exemplified by the first
table are, among others, Tables 8.6, 9.2, 20.1, and of the style exemplified
by the second table, among many, Tables 9.9, 10.5, 13.1, 14.1, 19.1.\index{padding with phantoms|)}
\paragraph{Accommodating signs: \texttt{signs}}
\label{subsec:Signs}Instead\index{t-notation!accommodating signs}\index{function value formatting!sign handling|(}
of $e^{x}$ as the test function, use $e^{x}-1.$ Now there are positive,
zero and negative function values to contend with. Recall that in
the \verb`t`-notation the \emph{exponent} is the parenthesized integer
part of a number and the \emph{significand} the following decimal
figures. \verb`numerica-tables` offers the \verb`signs`\index{signs@\texttt{signs}|(}
key to align (or not) the exponents. The setting is
\begin{verbatim}
signs = <integer>
\end{verbatim}
Besides the do-nothing default \verb`(signs=0)`, there are four effective
values for \verb`<integer>`:
\begin{itemize}
\item \verb`signs=2`\texttt{ }inserts a $+$ sign between exponent and
significand of every non-negative number;
\item \verb`signs=1`\texttt{ }inserts a $+$ sign between exponent and
significand of every non-negative number that immediately precedes
or follows a negative number;
\item \verb`signs=-1`\texttt{ }inserts a $+$ sign between exponent and
significand of any non-negative number that immediately precedes or
follows a negative number, and inserts a \emph{phantom} $+$ sign
between exponent and significand of every other non-negative number;
\item \verb`signs=-2`\texttt{ }inserts a \emph{phantom} $+$ sign between
exponent and significand of every non-negative number;
\end{itemize}
In the following examples, \verb`signs=-2`, \verb`signs=-1` and
\verb`signs=2`, all give acceptable results.
\begin{verbatim}
\tabulate[rspec={x,1,2*3+1},rround=0,
(pad)=2,signs=-2]
{ e^x-1}[x=-3][4*tt]\qquad
\tabulate[rspec={x,1,2*3+1},rround=0,
(pad)=2,signs=-1]
{ e^x-1}[x=-3][4*tt]\qquad
\tabulate[rspec={x,1,2*3+1},rround=0,
(pad)=2,signs=2]
{ e^x-1}[x=-3][4*tt]
\end{verbatim}
$\Longrightarrow$ \tabulate[rspec={x,1,2*3+1},rround=0,
(pad)=2,signs=-2]
{ e^x-1}[x=-3][4*t']\qquad
\tabulate[rspec={x,1,2*3+1},rround=0,
(pad)=2,signs=-1]
{ e^x-1}[x=-3][4*t']\qquad
\tabulate[rspec={x,1,2*3+1},rround=0,
(pad)=2,signs=2]
{ e^x-1}[x=-3][4*t']\medskip{}
\noindent In \emph{HMF} Table 23.2 illustrates \verb`signs=-2`; Tables
10.1, 13.1, 14.1, 19.1 among many others illustrate \verb`signs=-1`;
and Tables 9.4, 10.6, 20.2, 22.11 among others illustrate \verb`signs=2`.
\verb`signs=1`, however, is an inappropriate setting for these function
values in the \verb`t`-notation:
\begin{verbatim}
\tabulate[rspec={x,1,2*3+1},rround=0,
(pad)=2,signs=1]
{ e^x-1}[x=-3][4*tt] \qquad
\end{verbatim}
$\Longrightarrow$ \tabulate[rspec={x,1,2*3+1},rround=0,
(pad)=2,signs=1]
{ e^x-1}[x=-3][4*tt]\index{t-notation|)}\index{function value formatting!scientific notations|)}\index{padding with phantoms|)}\medskip{}
\subsection{Indicating signs outside the t-notation}
The \verb`signs` key is not limited to the \verb`t`-notation. In
the following tables where the notation is not used, positive values
for the key, including \verb`signs=1`\index{signs@\texttt{signs}},
give good results (I've included also the default setting \textendash{}
the third table):
\begin{verbatim}
\tabulate[rspec={x,0.1,9},(pad)=2,signs=2]
{ 10\sin 5x}[x=-0.4][*4]\qquad
\tabulate[rspec={x,0.1,9},(pad)=2,signs=1]
{ 10\sin 5x}[x=-0.4][*4]\qquad
\tabulate[rspec={x,0.1,9},(pad)=2]
{ 10\sin 5x}[x=-0.4][*4]
\end{verbatim}
$\Longrightarrow$ \tabulate[rspec={x,0.1,9},(pad)=2,signs=2]
{ 10\sin 5x}[x=-0.4][*4]\qquad
\tabulate[rspec={x,0.1,9},(pad)=2,signs=1]
{ 10\sin 5x}[x=-0.4][*4]\qquad
\tabulate[rspec={x,0.1,9},(pad)=2]
{ 10\sin 5x}[x=-0.4][*4]\medskip{}
\noindent\emph{HMF} seems to use \verb`signs=2` when the sign of
the function values changes every few entries and \verb`signs=1`
when there are runs of entries of the same sign. Over the range tabulated
here for $10\sin5x$, they would use the middle table of the three,
\verb`signs=1`.\index{function value formatting!sign handling|)}\index{signs@\texttt{signs}|)}
\subsection{Rounding to varying values}
\label{subsec:Rounding-varying} Above\index{rounding value!row/col-dependent|(},
in §\ref{subsec:Fraction-form-output}, we created two tables of fraction-form
approximations to simple power functions of $\pi$, one accurate to
two places of decimals, one to four places. Version 3.1 of \texttt{numerica-tables}
(as distinct from version 3.0) offers the means of producing tables
with rounding values depending on position in the table. This is effected
through the key \index{round@\texttt{round}|(}
\begin{verbatim}
round = f(rvar,cvar)
\end{verbatim}
where \texttt{f(rvar,cvar)} denotes a function of row and column variables.
Usually this will mean dependence either on row variable or column
variable rather than both. In the present instance we form a multi-function
table and with the \verb`round` key let the rounding value equal
the row variable value \verb`r` (\verb`round=r`) to obtain fractional
approximations to simple powers of $\pi$ at rounding values from
$1$ to $5$ (and discover that all these values can be approximated
to $5$ decimal places with $3$ figure denominators \textendash{}
$\pi^{2}$ only just).\index{multi-function tables}\index{fraction form!row/col-dependent rounding}
\begin{verbatim}
\tabulate[ff,rspec={r,1,5},round=r,/max=999,chstyle=2,
ctitle=\lvert\pi^k-\sfrac mn\rvert<0.5\times10^{-r}]
{ \pi,\pi^2,\pi^3,\pi^{1/2},\pi^{1/3}}[r=1][/s]
\end{verbatim}
$\Longrightarrow$ \tabulate[ff,rspec={r,1,5},round=r,/max=999,chstyle=2,
ctitle=\lvert\pi^k-\sfrac mn\rvert<0.5\times10^{-r}]
{ \pi ,\pi^2,\pi^3,\pi^{1/2},\pi^{1/3}}[r=1][/s]\index{fraction form!function values}\index{function value formatting!fraction form}\medskip{}
Another place where a variable rounding value can be of value is when
a function being tabulated changes slowly for each step in the row
variable value; the value of the cosine for instance changes from
$1.0000$ to $\eval{\cos10\degree}[4]$ between $0\degree$ and $10\degree$.
\emph{Part} of a table of the cosine might be something like the following,
where values in the initial rows of the table are rounded to a higher
value than in later rows. \verb`round` is set to an expression involving
the row variable in boolean elements \verb`\theta<11` and \verb`\theta>10`
which evaluate to $0$ or $1$ so that \verb`round` takes the value
$6$ for the initial rows of the table and the value $4$ thereafter.
\begin{verbatim}
\tabulate[o,rspec={\theta,1,6},calign=l,chnudge=15,
round=6(\theta<11)+4(\theta>10)]
{ \cos\theta }[\theta=8]
\end{verbatim}
$\Longrightarrow$ \tabulate[o,rspec={\theta,1,6},calign=l,chnudge=15,
round=6(\theta<11)+4(\theta>10)]
{ \cos\theta }[\theta=8]\index{rounding value!row/col-dependent|)}\index{round@\texttt{round}|)}
\subsection{Differences: \texttt{diffs}}
In\index{differences|(} fine-grained tables where function values
change only slowly from entry to entry it can be helpful to include
a difference entry between function-value entries as an aid to interpolation
(and a test of eyesight). By entering
\begin{lyxcode}
diffs~=~<non-negative~integer>
\end{lyxcode}
the \verb`\tabulate` command will include differences in a table.
The \texttt{<non-negative integer>} is the maximum number of digits
in a difference.
\begin{verbatim}
\tabulate[rspec={x,0.01,1+(1.05-1)/0.01},rround=2,
rhnudge=9,chnudge=21,diffs=3]
{ \sinh x }[x=1][*4]
\end{verbatim}
$\Longrightarrow$ \tabulate[rspec={x,0.01,1+(1.05-1)/0.01},rround=2,
rhnudge=9,chnudge=21,diffs=3]
{ \sinh x }[x=1][*4]\medskip{}
I have deliberately chosen the function and settings here \textendash{}
particularly \texttt{diffs=3} \textendash{} to give a good result.
With the default right alignment of the function-value columns, it
is easy to get this wrong. The evidence will be either in the misalignment
of the first row of function values or unnecessary padding of differences
with leading zeros. It is a good idea to create your table first,
see how function values change between successive rows and judge how
many digits there will be in a difference. In the following examples
I have deliberately put \texttt{diffs=2} and \texttt{diffs=4} to show
the effect of a misjudgement. In the first table the first row of
function values is misaligned by one character. (\texttt{diffs=1}
would have produced a two-character misalignment.) In the second table
the unnecessary fourth digit for the differences results in pre-padding
with $0$.
In the second table the function $-\sinh x$ is \emph{decreasing},
showing how it is the \emph{absolute value of the difference} between
successive function values that is tabulated. A difference is always
a non-negative value.
\begin{verbatim}
\tabulate[rspec={x,0.01,1+(1.05-1)/0.01},rround=2,
rhnudge=9,chnudge=21,diffs=2]
{ \sinh x }[x=1][*4]\qquad
\tabulate[rspec={x,0.01,1.05},rround=2,
rhnudge=9,chnudge=30,diffs=4]
{ -\sinh x }[x=1][*4]
\end{verbatim}
$\Longrightarrow$ \tabulate[rspec={x,0.01,1+(1.05-1)/0.01},rround=2,
rhnudge=9,chnudge=21,diffs=2]
{ \sinh x }[x=1][*4]\qquad
\tabulate[rspec={x,0.01,1+(1.05-1)/0.01},rround=2,
rhnudge=9,chnudge=21,diffs=4]
{ -\sinh x }[x=1][*4]\medskip{}
\noindent When the \texttt{diffs} setting is too small, function values
in the first row are misaligned, the amount depending on how much
too small. (A left alignment of the function value column is another
way of tackling this issue.) When the \texttt{diffs} setting is too
big, alignment is fine but differences are padded with unnecessary
leading zeros, meaning the column header will need a bigger nudge
to bring \emph{it} into alignment. \index{differences|)}
\subsection{Formatting special values: \texttt{Q?} and \texttt{A!}}
You\index{function value formatting!highlighting special values|(}\index{Q?@\texttt{Q?}|(}\index{A@\texttt{A"!}|(}
may wish to highlight or display in some special way a particular
function value or values. \verb`\nmcTabulate` has two related settings
that enable this: \verb`Q?=<tokens>` and \verb`A!=<tokens>`. As
the names suggest: Question? and Answer!
The question should be an expression that \texttt{l3fp} can digest
and produce a boolean answer to (1 for `true', 0 for `false').
\emph{This is not a \LaTeX{} expression};\emph{ this is an }\verb`l3fp`
\emph{expression}.\footnote{Documentation about \texttt{l3fp }can be found in \texttt{interface3.pdf},
which is part of the \texttt{l3kernel} bundle.} For the user it should be enough to know that an expression formed
from decimal numbers (but only with the dot decimal point), parentheses
\verb`( )`, the familiar arithmetic symbols, \verb`+`,\texttt{ }\verb`-`,\texttt{
}\verb`*`,\texttt{ }\verb`/` and \verb`^`, relation symbols \verb`<`,\texttt{
}\verb`>`,\texttt{ }\verb`=` and combinations like \verb`!=` (for
$\ne$),\texttt{ }\verb`>=` (for $\ge$), and\texttt{ }\verb`<=`
(for $\le$) will be digested by \verb`l3fp`. In addition there are
\verb`||` for logical Or, \verb`&&` for logical And, and \verb`!`
for logical Not; \verb`exp(1)` for $e$ and \verb`pi` (no backslash)
for $\pi$. \texttt{numerica-tables} provides \verb`MAX`\index{MAX@\texttt{MAX}}
and \verb`MIN`\index{MIN@\texttt{MIN}} for the maximum and minimum
function values tabulated, and uses \verb`@` to denote the current
function value.
So, a query might be \verb`Q?=@<0`, \emph{Is the current function
value negative?}, or \verb`Q?={@>=pi}`, \emph{Is the current function
value greater than or equal to $\pi$?} (The braces hide the equality
sign in the \emph{key=value} settings option.) \verb`Q?={@=MIN}`
(again note the braces) is the question: \emph{Is the current function
value equal to the minimum function value for the whole table?}
The answer must be in the form of a \LaTeXe{} formatting statement,
again using \verb`@` to denote the current function value. Thus \verb`A!=\mathbf{@}`
is a valid answer; so is \verb`A!=\color{red}{@}` (provided you have
\verb`\usepackage{color}` in the preamble); and so is \verb`A!=(@)`.
Another valid answer is \verb`A!= ` , meaning that function values
satisfying the \verb`Q?` question are omitted from the output.
This can be useful to suppress `irrelevant' values in a particular
context. For example, suppose we wish to focus on the values of $\cos(m\pi/n)$
lying between $0$ and $\tfrac{1}{2}$ inclusive for certain values
of $m$ and $n$. Rather than cluttering the table with values outside
that interval, we suppress them (the two occurrences of `\verb`1e-14`'
in the query are there to prevent rounding errors confusing the result):
\begin{verbatim}
\tabulate[rspec={n,1,1+(15-4)},rules=Tth,rround=0,
rpos=2,cspec={m,1,1+(5-2)},chstyle=2,
ctitle=*,Q?={@<-1e-14||@>0.5+1e-14},A!=]
{ \cos(m\pi/n) }[n=4,m=2][*4]
\end{verbatim}
$\Longrightarrow$ \tabulate
[rspec={n,1,1+(15-4)},rround=0,rpos=2,rules=Tth,
cspec={m,1,1+(5-2)},ctitle=*,chstyle=2,
Q?={@<-1e-14||@>0.5+1e-14},A!=]
{ \cos(m\pi/n) }[n=4,m=2][*4]
\subsubsection{Star option: \texttt{\textbackslash nmcTabulate{*}}}
\label{sec:Star-option}If\index{nmcTabulate@\texttt{\textbackslash nmcTabulate}!star (*) option@star (\texttt{{*}}) option}
the \verb`Q?` question is satisfied by at least one function value
then adding a star (asterisk) to the \verb`\tabulate` command will
display the first such instance. Like other starred commands in the
\verb`numerica` suite (\verb`\eval*`, \verb`info*`, \verb`\macros*`,
\verb`\constants*`, \verb`\iter*`, \verb`\solve*` and \verb`\recur*`),
\verb`\tabulate*` outputs a single number. Using the star means
you do not need an answering \verb`A!` to the query \verb`Q?` since
no formatting of table values is involved.
\begin{verbatim}
\tabulate*[rspec={n,1,1+(15-4)},cspec={m,1,1+(5-2)},
Q?={@<-1e-14||@>0.5+1e-14}]
{ \cos(m\pi/n) }[n=4,m=2][*4]
\end{verbatim}
$\Longrightarrow$ \tabulate*
[rspec={n,1,1+(15-4)},cspec={m,1,1+(5-2)},
Q?={@<-1e-14||@>0.5+1e-14}]
{ \cos(m\pi/n) }[n=4,m=2][*4]. Indeed, if you omit the \verb`Q?` and \verb`A!` settings from
the previous table so that all function values are visible then this
is the value that follows $0.5000$ in the \verb`m=2` column \textendash{}
the first function value encountered outside the interval $[0,0.5]$.
If you want the \emph{maximum} value that has been tabulated then,
from version 3 of \texttt{numerica-tables}, you do not even need the
query: when \verb`\tabulate` is starred, \verb`Q?` is initialized
behind the scenes to \verb`@=MAX`\index{MAX@\texttt{MAX}}.\footnote{\noindent In the unlikely event that someone \emph{consistently} wanted
some other query to be asked \textendash{} the minimum value perhaps,
or first negative value or \ldots{} \textendash{} please let the author
know. It would be straightforward to use a package option to give
a choice in this matter.} Thus, repeating the example from §\ref{sec:Column-variable-settings},
\begin{verbatim}
\tabulate[rspec={x,0.2,6},rhead=x\backslash k,
cvar=k,cstep=2,cstop=9]
{ \sin kx }[k=3,x=0]
\tabulate*[rspec={x,0.2,6},rhead=x\backslash k,
cvar=k,cstep=2,cstop=9]
{ \sin kx }[k=3,x=0]
\end{verbatim}
$\Longrightarrow$ \tabulate
[rspec={x,0.2,6},rhead=x\backslash k,
cvar=k,cstep=2,cstop=9]
{ \sin kx }[k=3,x=0][*]
\tabulate*
[rspec={x,0.2,6},rhead=x\backslash k,
cvar=k,cstep=2,cstop=9]
{ \sin kx }[k=3,x=0] [*]
\paragraph{Errors}
If\index{error messages} \emph{no} function value satisfies a query
then a message is generated:
\begin{verbatim}
\tabulate*[rspec={n,1,1+(15-4)},
cspec={m,1,1+(5-2)},Q?=@>1]
{ \cos(m\pi/n) }[n=4,m=2][*4]
\end{verbatim}
$\Longrightarrow$ \tabulate*
[rspec={n,1,1+(15-4)},cspec={m,1,1+(5-2)},
Q?=@>1]
{ \cos(m\pi/n) }[n=4,m=2][*4]\index{Q?@\texttt{Q?}|)}\index{A@\texttt{A"!}|)}
\paragraph{Scientific notation}
If you want the number output in scientific notation when the star
option is chosen, then enter the exponent mark in the trailing number-format
option. This is straightforward for a letter like the commonly used
\verb`e`, but remember that if you enter the \verb`x` option you
will need to place the \verb`\tabulate*` command between math delimiters,
otherwise the \verb`\times` symbol resulting from the \verb`x` option
will generate a \LaTeX{} error (`Missing \$ inserted'):
\begin{verbatim}
$
\tabulate*[rspec={n,1,1+(15-4)},cspec={m,1,1+(5-2)},
Q?={@<-1e-14||@>0.5+1e-14},A!=]
{ \cos(m\pi/n) }[n=4,m=2][*4x]
$
\end{verbatim}
$\Longrightarrow$ $
\tabulate*
[rspec={n,1,1+(15-4)},cspec={m,1,1+(5-2)},
Q?={@<-1e-14||@>0.5+1e-14},A!=]
{ \cos(m\pi/n) }[n=4,m=2][*4x]
$.\index{formatting!function values|)}\index{function value formatting|)}\index{function value formatting!highlighting special values|)}
\section{Other matters}
Here I group items that do not fit naturally into the earlier categories.
\subsection{Nesting}
\label{subsec:Nesting}A\index{nmcTabulate@\texttt{\textbackslash nmcTabulate}!nesting}
\verb`\tabulate` command can be nested within other commands from
the \verb`numerica` suite, and those other commands can be nested
within a \verb`\tabulate` command.
Occasionally one might want to extract a value from a table to insert
in another command. This can be done by nesting a \verb`\tabulate*`
command with an appropriate \verb`Q?` setting within the other command.
In fact, from version 2 of \verb`numerica` on, the star is unnecessary.
All we require is that the \verb`Q?` setting is satisfied by at least
one tabulated function value.
\begin{verbatim}
\eval[env=$]{(\tabulate
[rspec={n,1,15},cspec={m,1,5},Q?={@=MAX}]
{ \cos(m\pi/n) }[n=4,m=2][*4])\sinh t +
(\tabulate[rspec={n,1,15},cspec={m,1,5},
Q?={@=MIN}]
{ \sin(m\pi/n) }[n=4,m=2][*4])\cosh t
}[t=2][4]
\end{verbatim}
$\Longrightarrow$ \eval{$
(\tabulate
[rspec={n,1,15},cspec={m,1,5},
Q?={@=MAX}]
{ \cos(m\pi/n) }[n=4,m=2][*4])\sinh t +
(\tabulate
[rspec={n,1,15},cspec={m,1,5},
Q?={@=MIN}]
{ \sin(m\pi/n) }[n=4,m=2][*4])\cosh t
$}[t=2][4].
Forming the table
\begin{verbatim}
\tabulate[rspec={n,1,15},rround=0,rpos=2,rules=Tth,
cspec={m,1,5},ctitle=*,chstyle=2]
{ \cos(m\pi/n) }[n=4,m=2][*4]
\end{verbatim}
for the cosine and the table
\begin{verbatim}
\tabulate[rspec={n,1,15},rround=0,rpos=2,rules=Tth,
cspec={m,1,5},ctitle=*,chstyle=2]
{ \sin(m\pi/n) }[n=4,m=2][*4]
\end{verbatim}
for the sine and checking the entries shows that indeed the maximum
and minimum values are $0.9397$ and $-1.0000$ respectively.
If the \verb`Q?` setting is not satisfied by any function value a
familiar error message is shown \textendash{} with a tweak:
\begin{verbatim}
\eval{$ (\tabulate
[rspec={n,1,15},cspec={m,1,5},Q?=@>2]
{ \cos(m\pi/n) }[n=4,m=2][*4])\sinh t
$}[t=2][4]
\end{verbatim}
$\Longrightarrow$ \eval{$
(\tabulate
[rspec={n,1,15},cspec={m,1,5},
Q?=@>2]
{ \cos(m\pi/n) }[n=4,m=2][*4])\sinh t
$}[t=2][4]
\noindent Here, the \verb`(2)` tells us that the message refers to
a command at the second level, a \emph{nested} command.
Perhaps a more likely situation is to want to nest other commands
within a \verb`\tabulate` command. I give an example in the documentation
to the associated package \verb`numerica-plus` around the timing
of signals between points fixed on a rotating disk.
\subsection{Saving tables to file}
\label{sec:reuse-setting}In\index{tables!saving to file}\index{saving tables to file}
earlier versions of \texttt{numerica-tables} it was possible to save
a table to file, or a row or a column or a particular value from a
table, by giving a \emph{setting} \verb`reuse` a value. From version
3.0.0, in the interests of simplifying use (and avoiding code complications)
the \verb`reuse` \emph{setting} has been discontinued. The \verb`\reuse`
(or \verb`\nmcReuse`) \emph{command} remains (as part of the \texttt{numerica}
package) and can be used to save the most recent table to file.
In the following example, a table is created and then saved to file
and to the macro \verb`\mytable` by the subsequent \verb`\reuse`
command:
\begin{verbatim}
\tabulate
[rspec={x,0.25,5},rround=2,rhead=x,
ralign=r,rhnudge=9,
cspec={k,0.25,3},chstyle=2,
chround=2,calign=r,ctitle=**,
rules=TthB]
{ a\sin kx }[a=2/\pi,{k}=3,{x}=0][*]
\reuse{mytable}
\end{verbatim}
$\Longrightarrow$ \tabulate
[rspec={x,0.25,(5)},rround=2,
rhead=x,ralign=r,rhnudge=9,
cspec={k,0.25,(3)},chstyle=2,
chround=2,calign=r,ctitle=**,rules=TthB]
{ a\sin kx }[a=2/\pi,{k}=3,{x}=0][*]
\reuse[renew]{mytable}\medskip{}
\noindent Now test the content of the control sequence \medskip{}
\noindent\verb`\mytable` $\Longrightarrow$ \mytable \medskip{}
\noindent Certainly \verb`\mytable` contains the table.
If we use the \verb`view` setting with \verb`\reuse` we can see
that \verb`\mytable` and its contents have also been saved to file:
\begin{verbatim}
\reuse[view]{}
\end{verbatim}
$\Longrightarrow$ \reuse[view]{}
The file that \verb`\mytable` is saved to is the \texttt{.nmc} file
of the current document, hence \texttt{numerica-tables.nmc} in the
present instance. The contents of this file can be edited in a text
editor, or some limited file operations can be effected with the \verb`\reuse`
command. These have been described in the associated document \texttt{numerica.pdf}.
\subsection{Viewing the \protect\LaTeX{} form}
In\index{tables!viewing LaTeX form@viewing \LaTeX{} form} previous
versions of \texttt{numerica-tables} the \verb`dbg` and \verb`view`\index{view@\texttt{view}}
settings were disabled. In version 3, they have been enabled to the
extent that the \LaTeX{} form of a table can be viewed by entering
either \verb`dbg=11` or, less nerdishly, \verb`view` into the settings
option of \verb`\nmcTabulate`. In the example I first create the
table and then use the \verb`view` setting:
\begin{verbatim}
\tabulate[view,rvar=x,rstep=0.2,rstop=1]
{ \sin x }[x=0]
\end{verbatim}
$\Longrightarrow$ \tabulate [view,rvar=x,rstep=0.2,rstop=1]
{ \sin x }[x=0]
\chapter{Reference summary}
\section{Commands defined in \texttt{numerica-tables}}
\texttt{\textbackslash nmcTabulate, \textbackslash tabulate}
\section{Settings for \texttt{\textbackslash nmcTabulate}}
\subsubsection*{Row-variable specification: uniform case §\ref{subsec:Row-var-spec-uniform}}
\begin{center}
\begin{center}
\begin{tabular}{ll>{\raggedright}p{4cm}>{\raggedright}p{3cm}}
\toprule
{\small key} & {\small type} & {\small meaning} & {\small comment}\tabularnewline
\midrule
{\small\texttt{rvar}} & {\small token(s)} & {\small row variable} & \tabularnewline
{\small\texttt{rstep}} & {\small real num} & {\small step size} & \tabularnewline
{\small\texttt{rstop}} & {\small real num} & {\small stop value} & \multirow{2}{3cm}{either {\small\texttt{rstop}}{\small{} or }{\small\texttt{rows}}{\small ,
not both}}\tabularnewline
{\small\texttt{rows}} & {\small int} & {\small number of rows} & \tabularnewline
{\small\texttt{rspec}} & {\small comma list} & {\small\texttt{\{start}}{\small , }{\small\texttt{step}}{\small , }{\small\texttt{rows\}}} & {\small short form spec.}\tabularnewline
\bottomrule
\end{tabular}
\par\end{center}
\par\end{center}
\subsubsection*{Row-variable specification: non-uniform case §\ref{subsec:Row-var-spec-nonuniform}}
\begin{center}
\begin{center}
\begin{tabular}{ll>{\raggedright}p{4cm}>{\raggedright}p{3cm}}
\toprule
{\small key} & {\small type} & {\small meaning} & {\small comment}\tabularnewline
\midrule
{\small\texttt{rdata}} & {\small comma list} & {\small list of row-var. values} & {\small may be stored in a macro}\tabularnewline
{\small\texttt{rfile}} & {\small chars} & {\small file of row-var. values} & {\small file path/name}\tabularnewline
{\small\texttt{rverb}} & {\small int (}{\small\texttt{0}}{\small /}{\small\texttt{1}}{\small )} & {\small display }{\small\texttt{rdata}}{\small{} or }{\small\texttt{rfile}}{\small{}
values verbatim} & {\small default }{\small\texttt{0}}\tabularnewline
{\small\texttt{rfunc}} & {\small token(s)} & {\small step function specifying row-var. values} & \tabularnewline
\bottomrule
\end{tabular}
\par\end{center}
\par\end{center}
\subsubsection*{Row-variable column formatting §\ref{subsec:Row-var-col-formatting}}
\begin{center}
\begin{center}
\begin{tabular}{ll>{\raggedright}p{4cm}l}
\toprule
{\small key} & {\small type} & {\small meaning} & {\small initial}\tabularnewline
\midrule
{\small\texttt{rround}} & {\small int} & {\small rounding} & {\small\texttt{1}}\tabularnewline
{\small\texttt{ralign}} & {\small char (}{\small\texttt{r/c/l}}{\small )} & {\small horizontal alignment} & {\small\texttt{r}}\tabularnewline
{\small\texttt{rfont}} & {\small chars} & {\small font (}{\small\verb`\math<chars>`}{\small )} & \tabularnewline
{\small\texttt{rhead}} & {\small tokens} & {\small header} & {\small\texttt{rvar}}\tabularnewline
{\small\texttt{rhnudge}} & int & {\small nudge header }{\small{\small\verb`rhnudge`}}{\small{}
mu} & {\small\texttt{0}}\tabularnewline
{\small\texttt{rpos}} & {\small int (}{\small\texttt{0}}{\small\ldots}{\small\texttt{4}}{\small )} & & {\small\texttt{1}}\tabularnewline
{\small\texttt{rvar'}} & {\small token(s)} & {\small 2nd row variable col. spec.} & {\small\texttt{rvar}}\tabularnewline
{\small\texttt{rhead'}} & {\small token(s)} & {\small header of 2nd r-v col. (if it exists)} & {\small\texttt{rvar'}}\tabularnewline
{\small\texttt{rhnudge'}} & int & {\small nudge 2nd r-v col. header }{\small{\small\verb`rhnudge'`}}{\small{}
mu} & {\small\texttt{0}}\tabularnewline
{\small\texttt{rfrac}} & {\small int (}{\small\texttt{0}}{\small\ldots 5)} & {\small fraction form} & {\small\texttt{0}}\tabularnewline
\bottomrule
\end{tabular}
\par\end{center}
\par\end{center}
\subsubsection*{Column-variable specification §\ref{sec:Column-variable-settings}.}
\begin{center}
\begin{center}
\begin{tabular}{ll>{\raggedright}p{4cm}l}
\toprule
{\small key} & {\small type} & {\small meaning} & {\small default}\tabularnewline
\midrule
{\small\texttt{cvar}} & {\small token(s)} & {\small column variable} & \tabularnewline
{\small\texttt{cstep}} & {\small real num} & {\small step size} & \tabularnewline
{\small\texttt{cstop}} & {\small real num} & {\small stop value} & {\small either }{\small\texttt{cstop}}\tabularnewline
{\small\texttt{cols}} & {\small int} & {\small number of columns} & {\small or }{\small\texttt{cols}}{\small , not both}\tabularnewline
{\small\texttt{cspec}} & {\small comma list} & {\small\texttt{\{cvar,cstep}}{\small ,}{\small\texttt{cols\}}} & {\small short form spec.}\tabularnewline
\bottomrule
\end{tabular}
\par\end{center}
\par\end{center}
\subsubsection*{Column-variable header formatting §\ref{subsec:Column-header-formatting}.}
\begin{center}
\begin{center}
\begin{tabular}{ll>{\raggedright}p{4cm}l}
\toprule
{\small key} & {\small type} & {\small meaning} & {\small default}\tabularnewline
\midrule
{\small\texttt{chstyle}} & {\small int (}{\small\texttt{0}}{\small\ldots}{\small\texttt{4}}{\small )} & {\small header style} & {\small\texttt{0}}\tabularnewline
{\small\texttt{ctitle}} & {\small token(s)} & {\small single col. alternative header} & \tabularnewline
{\small\texttt{chead}} & {\small token(s)} & {\small user-defined header} & \tabularnewline
{\small\texttt{calign}} & {\small char (r/c/l)} & {\small column alignment} & {\small\texttt{r}}\tabularnewline
{\small\texttt{chnudge}} & {\small int} & {\small nudge header }{\small{\small\verb`chnudge`}}{\small{}
mu} & {\small\texttt{0}}\tabularnewline
{\small\texttt{chround}} & {\small int} & {\small{} rounding} & {\small\texttt{0}}\tabularnewline
\bottomrule
\end{tabular}
\par\end{center}\newpage{}
\par\end{center}
\subsubsection*{Function-value formatting §\ref{sec:Function-value-formatting}.}
\begin{center}
\begin{center}
\begin{tabular}{cc>{\raggedright}p{4cm}c}
\toprule
{\small key} & {\small type} & {\small meaning} & {\small default}\tabularnewline
\midrule
{\small\texttt{(pad)}} & {\small int} & {\small t-notation phantom padding} & \tabularnewline
{\small\texttt{signs}} & {\small int} & {\small sign handling for function-values} & {\small\texttt{0}}\tabularnewline
{\small\texttt{diffs}} & {\small int} & {\small insert differences \& pre-pad with zeros} & {\small\texttt{0}}\tabularnewline
{\small\texttt{Q?}} & {\small tokens} & {\small special cell conditional} & \tabularnewline
{\small\texttt{A!}} & {\small token(s)} & {\small special cell formatting} & \tabularnewline
\bottomrule
\end{tabular}
\par\end{center}
\par\end{center}
\subsubsection*{Whole-of-table formatting §\ref{sec:Whole-of-table-formatting}.}
\begin{center}
\begin{center}
\begin{tabular}{ll>{\raggedright}p{4cm}l}
\toprule
{\small key} & {\small type} & {\small meaning} & {\small default}\tabularnewline
\midrule
{\small\texttt{ctitle}} & {\small token(s)} & {\small collective title for function-value columns} & \tabularnewline
& {\small token(s)} & {\small inter-header/title row for} {\small function-value columns} & \tabularnewline
{\small\texttt{header}} & {\small int (}{\small\texttt{0/1}}{\small )} & {\small suppress/show header row} & {\small\texttt{1}}\tabularnewline
{\small\texttt{rules}} & {\small char(s)} & {\small horizontal rules template} & {\small\texttt{ThB}}\tabularnewline
{\small\texttt{foot}} & {\small token(s)} & {\small content of footer line} & \tabularnewline
{\small\texttt{rpos}} & {\small int (}{\small\texttt{0}}{\small\ldots}{\small\texttt{4}}{\small )} & {\small row variable } & {\small\texttt{1}}\tabularnewline
{\small\texttt{rbloc}} & {\small comma list} & {\small division of rows into blocks} & \tabularnewline
{\small\texttt{valign}} & {\small char (}{\small\texttt{t}}/{\small\texttt{m}}/{\small\texttt{b}}{\small )} & {\small vertical alignment of table relative to text baseline} & {\small\texttt{m}}\tabularnewline
\bottomrule
\end{tabular}
\par\end{center}
\par\end{center}
\subsubsection*{Miscellaneous settings}
\verb`view`, equivalent to \verb`dbg=11`: show the \LaTeX{} expression
for the table.
{\small\printindex}{\small\par}
\end{document}
|