1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
|
%Introductory beamer presentation: quickbeamer1.tex
\documentclass{beamer}
\usetheme{Berkeley}
\begin{document}
\title{A construction of complete-simple\\
distributive lattices}
\author{George~A. Menuhin}
\institute{Computer Science Department\\
University of Winnebago\\
Winnebago, MN 53714}
\date{March 15, 2006}
\begin{frame}
\titlepage
\end{frame}
\begin{frame}
\frametitle{Outline}
\tableofcontents[pausesections]
\end{frame}
\section{Introduction}
\begin{frame}
\frametitle{Introduction}
In this note, we prove the following result:
\begin{theorem}
There exists an infinite complete distributive
lattice~$K$ with only the two trivial complete
congruence relations.
\end{theorem}
\end{frame}
\section{The $\Pi^{*}$ construction}
\begin{frame}
\frametitle{The $\Pi^{*}$ construction}
The following construction is crucial in the proof
of our Theorem:
\begin{definition}
Let $D_{i}$, for $i \in I$, be complete distributive
lattices satisfying condition~\textup{(J)}. Their
$\Pi^{*}$ product is defined as follows:
\[
\Pi^{*} ( D_{i} \mid i \in I ) =
\Pi ( D_{i}^{-} \mid i \in I ) + 1;
\]
that is, $\Pi^{*} ( D_{i} \mid i \in I )$ is
$\Pi ( D_{i}^{-} \mid i \in I )$ with a new
unit element.
\end{definition}
\end{frame}
\begin{frame}
\frametitle{Illustrating the construction}
\centering\includegraphics{products}
\end{frame}
\begin{frame}
\frametitle{Notation}
If $i \in I$ and $d \in D_{i}^{-}$, then
\[
\langle \ldots, 0, \ldots, d, \ldots, 0, \ldots \rangle
\]
is the element of $\Pi^{*} ( D_{i} \mid i \in I )$ whose
$i$-th component is $d$ and all the other components
are $0$.
See also Ernest~T. Moynahan, 1957.
\end{frame}
\begin{frame}
\frametitle{The second result}
Next we verify the following result:
\begin{theorem}
Let $D_{i}$, $i \in I$, be complete distributive
lattices satisfying condition~\textup{(J)}.
Let $\Theta$ be a complete congruence relation on
$\Pi^{*} ( D_{i} \mid i \in I )$.
If there exist $i \in I$ and $d \in D_{i}$ with
$d < 1_{i}$ such that, for all $d \leq c < 1_{i}$,
\begin{equation*}
\langle \ldots, d, \ldots, 0, \ldots \rangle \equiv
\langle \ldots, c, \ldots, 0, \ldots \rangle
\pmod{\Theta},
\end{equation*}
then $\Theta = \iota$.
\end{theorem}
\end{frame}
\begin{frame}
\frametitle{Starting the proof}
Since
\begin{equation*}
\langle \ldots, d, \ldots, 0, \ldots \rangle \equiv
\langle \ldots, c, \ldots, 0, \ldots \rangle
\pmod{\Theta},
\end{equation*}
and $\Theta$ is a complete congruence relation,
it follows from condition~(J) that
\begin{equation*}
\langle \ldots, d, \ldots, 0, \ldots \rangle \equiv
\bigvee ( \langle \ldots, c, \ldots, 0, \ldots \rangle
\mid d \leq c < 1 ) \pmod{\Theta}.
\end{equation*}
\end{frame}
\begin{frame}
\frametitle{Completing the proof}
Let $j \in I$, $j \neq i$, and let $a \in D_{j}^{-}$.
Meeting both sides of the congruence
with $\langle \ldots, a, \ldots, 0, \ldots \rangle$,
we obtain that
\begin{equation*}
0 = \langle \ldots, a, \ldots, 0, \ldots \rangle
\pmod{\Theta},
\end{equation*}
Using the completeness of $\Theta$ and the penultimate equation,
we get:
\[
0 \equiv \bigvee ( \langle \ldots, a, \ldots, 0,
\ldots \rangle \mid a \in D_{j}^{-} ) = 1
\pmod{\Theta},
\]
hence $\Theta = \iota$.
\end{frame}
\begin{frame}
\frametitle{References}
\begin{thebibliography}{9}
\bibitem{sF90}
Soo-Key Foo,
\emph{Lattice Constructions},
Ph.D. thesis,
University of Winnebago, Winnebago, MN, December, 1990.
\bibitem{gM68}
George~A. Menuhin,
\emph{Universal Algebra},
D.~van Nostrand, Princeton, 1968.
\bibitem{eM57}
Ernest~T. Moynahan,
\emph{On a problem of M. Stone},
Acta Math. Acad. Sci. Hungar. \textbf{8} (1957),
455--460.
\bibitem{eM57a}
Ernest~T. Moynahan,
\emph{Ideals and congruence relations in lattices.} II,
Magyar Tud. Akad. Mat. Fiz. Oszt. K\"{o}zl. \textbf{9}
(1957), 417--434.
\end{thebibliography}
\end{frame}
\end{document}
|