summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/lstbayes/examples.tex
blob: 48a1c91be51e4579d22aae888fa1ed93150b653e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
\documentclass{article}

\title{Examples for the \textsf{lstbayes} package}
\author{Jeffrey B. Arnold}

\usepackage{lstbayes}
\usepackage{hyperref}

\begin{document}

\maketitle{}

Some example programs typset using the \textsf{listings} language drivers provideb by the \textsf{lstbayes} package.

\section{BUGS}

The Rats model from the OpenBUGS Examples Volume I: \url{http://www.openbugs.net/Examples/Rats.html}.
\begin{lstlisting}[language=BUGS]
model {
  for( i in 1 : N ) {
     for( j in 1 : T ) {
        Y[i , j] ~ dnorm(mu[i , j],tau.c)
        mu[i , j] <- alpha[i] + beta[i] * (x[j] - xbar)
        culmative.Y[i , j] <- culmative(Y[i , j], Y[i , j])
        post.pv.Y[i , j] <- post.p.value(Y[i , j])
        prior.pv.Y[i , j] <- prior.p.value(Y[i , j])
        replicate.post.Y[i , j] <- replicate.post(Y[i , j])
        pv.post.Y[i , j] <- step(Y[i , j] - replicate.post.Y[i , j])
        replicate.prior.Y[i , j] <- replicate.prior(Y[i , j])
        pv.prior.Y[i , j] <- step(Y[i , j] - replicate.prior.Y[i , j])
     }
     alpha[i] ~ dnorm(alpha.c,alpha.tau)
     beta[i] ~ dnorm(beta.c,beta.tau)
  }
  tau.c ~ dgamma(0.001,0.001)
  sigma <- 1 / sqrt(tau.c)
  alpha.c ~ dnorm(0.0,1.0E-6)   
  alpha.tau ~ dgamma(0.001,0.001)
  beta.c ~ dnorm(0.0,1.0E-6)
  beta.tau ~ dgamma(0.001,0.001)
  alpha0 <- alpha.c - xbar * beta.c   
} 
\end{lstlisting}


\section{JAGS}

Linear regression example from John Myles White, \url{http://www.johnmyleswhite.com/notebook/2010/08/20/using-jags-in-r-with-the-rjags-package/}.

\begin{lstlisting}[language=JAGS]
model {
	for (i in 1:N){
		y[i] ~ dnorm(y.hat[i], tau)
		y.hat[i] <- a + b * x[i]
	}
	a ~ dnorm(0, .0001)
	b ~ dnorm(0, .0001)
	tau <- pow(sigma, -2)
	sigma ~ dunif(0, 100)
}
\end{lstlisting}


\section{Stan}

Rats example from \url{https://github.com/stan-dev/example-models/blob/master/bugs_examples/vol1/rats/rats_vec.stan}.

\begin{lstlisting}[language=Stan]
# http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/Vol1.pdf
# Page 3: Rats
data {
  int<lower=0> N;
  int<lower=0> T;
  real x[T];
  real y[N,T];
  real xbar;
}
transformed data {
  real x_minus_xbar[T];
  real y_linear[N*T];

  for (t in 1:T)
    x_minus_xbar[t] <- x[t] - xbar;

  for (n in 1:N)
    for (t in 1:T)
      y_linear[(n-1)*T + t] <- y[n, t];
}
parameters {
  real alpha[N];
  real beta[N];

  real mu_alpha;
  real mu_beta;

  real<lower=0> sigmasq_y;
  real<lower=0> sigmasq_alpha;
  real<lower=0> sigmasq_beta;
}
transformed parameters {
  real<lower=0> sigma_y;
  real<lower=0> sigma_alpha;
  real<lower=0> sigma_beta;

  sigma_y <- sqrt(sigmasq_y);
  sigma_alpha <- sqrt(sigmasq_alpha);
  sigma_beta <- sqrt(sigmasq_beta);
}
model {
  real pred[N*T];

  for (n in 1:N)
    for (t in 1:T)
      pred[(n-1)*T + t] <- fma(beta[n], x_minus_xbar[t], alpha[n]);

  mu_alpha ~ normal(0, 100);
  mu_beta ~ normal(0, 100);
  sigmasq_y ~ inv_gamma(0.001, 0.001);
  sigmasq_alpha ~ inv_gamma(0.001, 0.001);
  sigmasq_beta ~ inv_gamma(0.001, 0.001);
  alpha ~ normal(mu_alpha, sigma_alpha); // vectorized
  beta ~ normal(mu_beta, sigma_beta);  // vectorized

  y_linear ~ normal(pred, sigma_y);  // vectorized
}
\end{lstlisting}

\end{document}