blob: 8ee134a99638602362fa81920aec71a8e34b3770 (
plain)
1
2
3
4
5
6
7
8
9
10
|
\documentclass{article}
\begin{document}
\noindent
Applying l'Hopital's rule, one has
\[ \lim_{x\to0}\frac{\ln\sin\pi x}{\ln\sin x}
= \lim_{x\to0}\frac{\pi\frac{\cos\pi x}{\sin\pi x}}{\frac{\cos x}{\sin x}}
= \lim_{x\to0}\frac{\pi\tan x}{\tan\pi x}
= \lim_{x\to0}\frac{\pi/\cos^2 x}{\pi/\cos^2 \pi x}
= \lim_{x\to0}\frac{\cos^2\pi x}{\cos^2 x} = 1 \]
\end{document}
|