1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
|
\documentclass[a4paper,12pt]{report}
\usepackage{amsmath}
\usepackage[colorlinks]{hyperref}
\usepackage[style=long3colheader,counter=equation]{glossaries}
\newcommand{\erf}{\operatorname{erf}}
\newcommand{\erfc}{\operatorname{erfc}}
\makeglossaries
% Change the glossary headings
\renewcommand{\entryname}{Notation}
\renewcommand{\descriptionname}{Function Name}
\renewcommand{\pagelistname}{Number of Formula}
% define glossary entries
\newglossaryentry{Gamma}{name=\ensuremath{\Gamma(z)},
description=Gamma function,
sort=Gamma}
\newglossaryentry{gamma}{name={\ensuremath{\gamma(\alpha,x)}},
description=Incomplete gamma function,
sort=gamma}
\newglossaryentry{iGamma}{name={\ensuremath{\Gamma(\alpha,x)}},
description=Incomplete gamma function,
sort=Gamma}
\newglossaryentry{psi}{name=\ensuremath{\psi(x)},
description=Psi function,sort=psi}
\newglossaryentry{erf}{name=\ensuremath{\erf(x)},
description=Error function,sort=erf}
\newglossaryentry{erfc}{name=\ensuremath{\erfc},
description=Complementary error function,sort=erfc}
\newglossaryentry{B}{name={\ensuremath{B(x,y)}},
description=Beta function,sort=B}
\newglossaryentry{Bx}{name={\ensuremath{B_x(p,q)}},
description=Incomplete beta function,sort=Bx}
\newglossaryentry{Tn}{name=\ensuremath{T_n(x)},
description=Chebyshev's polynomials of the first kind,sort=Tn}
\newglossaryentry{Un}{name=\ensuremath{U_n(x)},
description=Chebyshev's polynomials of the second kind,sort=Un}
\newglossaryentry{Hn}{name=\ensuremath{H_n(x)},
description=Hermite polynomials,sort=Hn}
\newglossaryentry{Ln}{name=\ensuremath{L_n^\alpha(x)},
description=Laguerre polynomials,sort=Lna}
\newglossaryentry{Znu}{name=\ensuremath{Z_\nu(z)},
description=Bessel functions,sort=Z}
\newglossaryentry{Phi}{name={\ensuremath{\Phi(\alpha,\gamma;z)}},
description=confluent hypergeometric function,sort=Pagz}
\newglossaryentry{knu}{name=\ensuremath{k_\nu(x)},
description=Bateman's function,sort=kv}
\newglossaryentry{Dp}{name=\ensuremath{D_p(z)},
description=Parabolic cylinder functions,sort=Dp}
\newglossaryentry{F}{name={\ensuremath{F(\phi,k)}},
description=Elliptical integral of the first kind,sort=Fpk}
\newglossaryentry{C}{name=\ensuremath{C},
description=Euler's constant,sort=C}
\newglossaryentry{G}{name=\ensuremath{G},
description=Catalan's constant,sort=G}
\begin{document}
\title{A Sample Document Using glossaries.sty}
\author{Nicola Talbot}
\maketitle
\begin{abstract}
This is a sample document illustrating the use of the \textsf{glossaries}
package. The functions here have been taken from ``Tables of
Integrals, Series, and Products'' by I.S.~Gradshteyn and I.M~Ryzhik.
The glossary is a list of special functions, so
the equation number has been used rather than the page number. This
can be done using the \texttt{counter=equation} package
option.
\end{abstract}
\printglossary[title={Index of Special Functions and Notations}]
\chapter{Gamma Functions}
\begin{equation}
\gls{Gamma} = \int_{0}^{\infty}e^{-t}t^{z-1}\,dt
\end{equation}
\verb|\ensuremath| is only required here if using
hyperlinks.
\begin{equation}
\glslink{Gamma}{\ensuremath{\Gamma(x+1)}} = x\Gamma(x)
\end{equation}
\begin{equation}
\gls{gamma} = \int_0^x e^{-t}t^{\alpha-1}\,dt
\end{equation}
\begin{equation}
\gls{iGamma} = \int_x^\infty e^{-t}t^{\alpha-1}\,dt
\end{equation}
\newpage
\begin{equation}
\gls{Gamma} = \Gamma(\alpha, x) + \gamma(\alpha, x)
\end{equation}
\begin{equation}
\gls{psi} = \frac{d}{dx}\ln\Gamma(x)
\end{equation}
\chapter{Error Functions}
\begin{equation}
\gls{erf} = \frac{2}{\surd\pi}\int_0^x e^{-t^2}\,dt
\end{equation}
\begin{equation}
\gls{erfc} = 1 - \erf(x)
\end{equation}
\chapter{Beta Function}
\begin{equation}
\gls{B} = 2\int_0^1 t^{x-1}(1-t^2)^{y-1}\,dt
\end{equation}
Alternatively:
\begin{equation}
\gls{B} = 2\int_0^{\frac\pi2}\sin^{2x-1}\phi\cos^{2y-1}\phi\,d\phi
\end{equation}
\begin{equation}
\gls{B} = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} = B(y,x)
\end{equation}
\begin{equation}
\gls{Bx} = \int_0^x t^{p-1}(1-t)^{q-1}\,dt
\end{equation}
\chapter{Polynomials}
\section{Chebyshev's polynomials}
\begin{equation}
\gls{Tn} = \cos(n\arccos x)
\end{equation}
\begin{equation}
\gls{Un} = \frac{\sin[(n+1)\arccos x]}{\sin[\arccos x]}
\end{equation}
\section{Hermite polynomials}
\begin{equation}
\gls{Hn} = (-1)^n e^{x^2} \frac{d^n}{dx^n}(e^{-x^2})
\end{equation}
\section{Laguerre polynomials}
\begin{equation}
L_n^{\alpha} (x) = \frac{1}{n!}e^x x^{-\alpha}
\frac{d^n}{dx^n}(e^{-x}x^{n+\alpha})
\end{equation}
\chapter{Bessel Functions}
Bessel functions $Z_\nu$ are solutions of
\begin{equation}
\frac{d^2\glslink{Znu}{Z_\nu}}{dz^2}
+ \frac{1}{z}\,\frac{dZ_\nu}{dz} +
\left( 1-\frac{\nu^2}{z^2}Z_\nu = 0 \right)
\end{equation}
\chapter{Confluent hypergeometric function}
\begin{equation}
\gls{Phi} = 1 + \frac{\alpha}{\gamma}\,\frac{z}{1!}
+ \frac{\alpha(\alpha+1)}{\gamma(\gamma+1)}\,\frac{z^2}{2!}
+\frac{\alpha(\alpha+1)(\alpha+2)}{\gamma(\gamma+1)(\gamma+2)}\,
\frac{z^3}{3!} + \cdots
\end{equation}
\begin{equation}
\gls{knu} = \frac{2}{\pi}\int_0^{\pi/2}
\cos(x \tan\theta - \nu\theta)\,d\theta
\end{equation}
\chapter{Parabolic cylinder functions}
\begin{equation}
\gls{Dp} = 2^{\frac{p}{2}}e^{-\frac{z^2}{4}}
\left\{
\frac{\surd\pi}{\Gamma\left(\frac{1-p}{2}\right)}
\Phi\left(-\frac{p}{2},\frac{1}{2};\frac{z^2}{2}\right)
-\frac{\sqrt{2\pi}z}{\Gamma\left(-\frac{p}{2}\right)}
\Phi\left(\frac{1-p}{2},\frac{3}{2};\frac{z^2}{2}\right)
\right\}
\end{equation}
\chapter{Elliptical Integral of the First Kind}
\begin{equation}
\gls{F} = \int_0^\phi \frac{d\alpha}{\sqrt{1-k^2\sin^2\alpha}}
\end{equation}
\chapter{Constants}
\begin{equation}
\gls{C} = 0.577\,215\,664\,901\ldots
\end{equation}
\begin{equation}
\gls{G} = 0.915\,965\,594\ldots
\end{equation}
\end{document}
|