1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
|
\documentclass{amsart}
\title[The Dynkin diagrams package]%
{The Dynkin diagrams package \\
Version 3.141592653589}
%% My name:
\makeatletter
\DeclareRobustCommand{\scotsMc}{\scotsMcx{c}}
\DeclareRobustCommand{\scotsMC}{\scotsMcx{\textsc{c}}}
\DeclareRobustCommand{\scotsMcx}[1]{%
M%
\raisebox{\dimexpr\fontcharht\font`M-\height}{%
\check@mathfonts\fontsize{\sf@size}{0}\selectfont
\kern.3ex\underline{\kern-.3ex #1\kern-.3ex}\kern.3ex
}%
}
\expandafter\def\expandafter\@uclclist\expandafter{%
\@uclclist\scotsMc\scotsMC
}
\makeatother
\author{Ben \scotsMc{}Kay}
\address{School of Mathematical Sciences, University College Cork, Cork, Ireland}
\email{b.mckay@ucc.ie}
\date{16 March 2020}
\usepackage{etex}
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenx}
\usepackage{etoolbox}
\usepackage{lmodern}
\RequirePackage[tt=lining]{cfr-lm}
\usepackage[kerning=true,tracking=true]{microtype}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{mathtools}
\usepackage{array}
\usepackage{xstring}
\usepackage{longtable}
\usepackage[listings]{tcolorbox}
\tcbuselibrary{breakable}
\tcbuselibrary{skins}
\usepackage[pdftex]{hyperref}
\hypersetup{
colorlinks = true, %Colours links instead of ugly boxes
urlcolor = black, %Colour for external hyperlinks
linkcolor = black, %Colour of internal links
citecolor = black %Colour of citations
}
\usepackage{booktabs}
\usepackage{colortbl}
\usepackage{varwidth}
\usepackage{dynkin-diagrams}
\usepackage{fancyvrb}
\usepackage{xspace}
\newcommand{\TikZ}{Ti\textit{k}Z\xspace}
\usepackage{filecontents}
\usetikzlibrary{decorations.markings}
\usetikzlibrary{decorations.pathmorphing}
%% Use white rulings in tables.
\arrayrulecolor{white}
\makeatletter
\def\rulecolor#1#{\CT@arc{#1}}
\def\CT@arc#1#2{%
\ifdim\baselineskip=\z@\noalign\fi
{\gdef\CT@arc@{\color#1{#2}}}}
\let\CT@arc@\relax
\rulecolor{white}
\makeatother
\newcommand{\C}[1]{\mathbb{C}^{#1}}
\renewcommand*{\arraystretch}{1.5}
\newcommand{\wdtA}{.7cm}
\newcommand{\wdtD}{3cm}
\newcommand{\wdtE}{6cm}
\newcommand{\wdtL}{3cm}
\newcolumntype{A}{@{}>{\columncolor[gray]{.9}$}m{\wdtA}<{$}}
\newcolumntype{B}{@{}>{\columncolor[gray]{.9}}m{\wdtA}}
\newcolumntype{D}{>{\columncolor[gray]{.9}}m{\wdtD}}
\newcolumntype{E}{>{\columncolor[gray]{.9}}m{\wdtE}}
\newcolumntype{L}{>{\columncolor[gray]{.9}}p{\wdtL}}
\newcolumntype{M}{>{\columncolor[gray]{.9}}l}
\newcolumntype{P}{>{\columncolor[gray]{.9}}p{10cm}}
\NewDocumentCommand\textleftcurly{}{\texttt{\char'173}}%
\NewDocumentCommand\textrightcurly{}{\texttt{\char'175}}%
\newcount\seriesLength
\newcount\rankLength
\NewDocumentCommand\csDynkin{omom}%
{%
\texttt{\detokenize{\dynkin}\!\!%
\IfNoValueTF{#1}{}{[#1]}%
\StrLen{#2}[\thatseriesLength]%
\seriesLength\thatseriesLength\relax%
\ifnum\seriesLength=1\relax%
\IfNoValueT{#1}{\ }%
#2%
\else%
\textleftcurly#2\textrightcurly%
\fi%
\IfNoValueTF{#3}{}{[#3]}%
\StrLen{#4}[\thatrankLength]%
\rankLength\thatrankLength\relax%
\ifnum\rankLength=1\relax%
#4%
\else%
\textleftcurly#4\textrightcurly%
\fi%
}%
}%
\NewDocumentCommand\dynk{omom}%
{%
\dynkin[#1]{#2}[#3]{#4}&\csDynkin[#1]{#2}[#3]{#4}\\
}%
\NewDocumentCommand\typesetSubseries{m}%
{%
\IfInteger{#1}{#1}{\IfStrEq{#1}{}{n}{#1}}
}%
\NewDocumentCommand\dyn{omom}%
{%
{#2}_{\typesetSubseries{#4}}^{\IfInteger{#3}{#3}{\IfStrEq{#1}{extended}{1}{}}} & \dynk[#1]{#2}[#3]{#4}%
}%
\NewDocumentEnvironment{dynkinTable}{mmm}%
{%
\renewcommand{\wdtD}{#2}
\renewcommand{\wdtL}{#3}
\begin{longtable}{ADM}
\caption{#1}\\
\endfirsthead
\caption{\dots continued}\\
\endhead
\multicolumn{2}{c}{continued \dots}\\
\endfoot
\endlastfoot
}%
{%
\end{longtable}
}%
\definecolor{example-color}{gray}{.85}
\definecolor{example-border-color}{gray}{.7}
\tcbset{coltitle=black,colback=example-color,colframe=example-border-color,enhanced,breakable,pad at break*=1mm,
toprule=1.2mm,bottomrule=1.2mm,leftrule=1mm,rightrule=1mm,toprule at break=-1mm,bottomrule at break=-1mm,
before upper={\widowpenalties=3 10000 10000 150}}
\makeatletter
\def\@tocline#1#2#3#4#5#6#7{\relax
\ifnum #1>\c@tocdepth%
\else
\par \addpenalty\@secpenalty\addvspace{#2}%
\begingroup \hyphenpenalty\@M
\@ifempty{#4}{%
\@tempdima\csname r@tocindent\number#1\endcsname\relax
}{%
\@tempdima#4\relax
}%
\parindent\z@ \leftskip#3\relax \advance\leftskip\@tempdima\relax
#5\leavevmode\hskip-\@tempdima #6\nobreak\relax
,~#7\par
\endgroup
\fi}
\makeatother
\fvset{fontsize=\small}
\begin{document}
\maketitle
\begin{center}
\begin{varwidth}{\textwidth}
\tableofcontents
\end{varwidth}
\end{center}
\setlength{\arrayrulewidth}{1.5pt}
\section{Quick introduction}
\begin{tcolorbox}[title={Load the Dynkin diagram package (see options below)}]
\begin{verbatim}
\documentclass{amsart}
\usepackage{dynkin-diagrams}
\begin{document}
The Dynkin diagram of \(B_3\) is \dynkin B3.
\end{document}
\end{verbatim}
\end{tcolorbox}
\begin{tcblisting}{title={Invoke it}}
The Dynkin diagram of \(B_3\) is \dynkin B3.
\end{tcblisting}
\begin{tcblisting}{title={Inside a \TikZ statement}}
The Dynkin diagram of \(B_3\) is
\tikz \dynkin B3;
\end{tcblisting}
\begin{tcblisting}{title={Inside a Dynkin diagram environment}}
The Dynkin diagram of \(B_3\) is
\begin{dynkinDiagram}B3
\draw[very thick,red] (root 1) to [out=-45, in=-135] (root 3);
\end{dynkinDiagram}
\end{tcblisting}
\begin{tcblisting}{title={Inside a \TikZ environment}}
Baseline controls vertical alignment:
the Dynkin diagram of \(B_3\) is
\begin{tikzpicture}[baseline=(origin.base)]
\dynkin B3
\draw[very thick,red] (root 1) to [out=-45, in=-135] (root 3);
\end{tikzpicture}
\end{tcblisting}
In a TikZ picture, you might need to kill the default vertical shift (needed to allow inline Dynkin diagrams):
\begin{tcblisting}{title={Inside TikZ pictures}}
\begin{tikzpicture}
\draw (0,0) -- (.5,1) -- (1,0);
\dynkin[vertical shift=0,edge length=1cm]G2
\end{tikzpicture}
\end{tcblisting}
\begin{tcblisting}{title={Indefinite rank Dynkin diagrams}}
\dynkin B{}
\end{tcblisting}
\renewcommand\do[1]{\dyn#1}
\begin{dynkinTable}{The Dynkin diagrams of the reduced simple root systems \cite{Bourbaki:2002} pp. 265--290, plates I--IX}{2.25cm}{2.5cm}
\docsvlist{A{},C{},D{},E6,E7,E8,F4,G2}
\end{dynkinTable}
\section{Set options globally}
\begin{tcolorbox}[title={Most options set globally \dots}]
\begin{verbatim}
\pgfkeys{/Dynkin diagram,
edge length=.5cm,
fold radius=.5cm,
indefinite edge/.style={
draw=black,fill=white,thin,densely dashed}}
\end{verbatim}
\end{tcolorbox}
You can also pass options to the package in \verb!\usepackage!.
\emph{Danger:} spaces in option names are replaced with hyphens: \texttt{edge length=1cm} is \texttt{edge-length=1cm} as a global option; moreover you should drop the extension \verb!/.style! on any option with spaces in its name (but not otherwise). For example,
\begin{tcolorbox}[title={\dots or pass global options to the package}]
\begin{verbatim}
\usepackage[
ordering=Kac,
edge/.style=blue,
indefinite-edge={draw=green,fill=white,densely dashed},
indefinite-edge-ratio=5,
mark=o,
root-radius=.06cm]
{dynkin-diagrams}
\end{verbatim}
\end{tcolorbox}
\section{Coxeter diagrams}
\begin{tcblisting}{title={Coxeter diagram option}}
\dynkin[Coxeter]{F}{4}
\end{tcblisting}
\begin{tcblisting}{title={gonality option for \(G_2\) and \(I_n\) Coxeter diagrams}}
\(G_2=\dynkin[Coxeter,gonality=n]G2\), \
\(I_n=\dynkin[Coxeter,gonality=n]I{}\)
\end{tcblisting}
\renewcommand\do[1]{\dyn#1}
\begin{dynkinTable}{The Coxeter diagrams of the simple reflection groups}{2.25cm}{6cm}
\forDynkinSemicolonsvlist{\do}{
[Coxeter]A{};
[Coxeter]B{};
[Coxeter]C{};
[Coxeter]E6;
[Coxeter]E7;
[Coxeter]E8;
[Coxeter]F4;
[Coxeter,gonality=n]G2;
[Coxeter]H3;
[Coxeter]H4;
[Coxeter,gonality=n]I{}}
\end{dynkinTable}
\section{Satake diagrams}\label{section:Satake}
\begin{tcblisting}{title={Satake diagrams use the standard name instead of a rank}}
\(A_{IIIb}=\dynkin A{IIIb}\)
\end{tcblisting}
We use a solid gray bar to denote the folding of a Dynkin diagram, rather than the usual double arrow, since the diagrams turn out simpler and easier to read.
\renewcommand\do[1]{\dyn#1}
\begin{dynkinTable}{The Satake diagrams of the real simple Lie algebras \cite{Helgason:2001} p. 532--534}{2.75cm}{3cm}
\docsvlist{A{I},A{II},A{IIIa},A{IIIb},A{IV},B{I},B{II},C{I},C{IIa},C{IIb},
D{Ia},D{Ib},D{Ic},D{II},D{IIIa},D{IIIb},
E{I},E{II},E{III},E{IV},E{V},E{VI},E{VII},E{VIII},E{IX},F{I},F{II},GI}
\end{dynkinTable}
\section{How to fold}
\begin{tcblisting}{title={If you don't like the solid gray ``folding bar'', most people use arrows. Here is \(E_{II}\)}}
\dynkin[%
edge length=.75cm,
labels*={1,...,6},
involutions={16;35}]E6
\end{tcblisting}
\newpage
\begin{tcblisting}{title={The double arrows for \(A_{IIIa}\) are big}}
\dynkin[edge length=.75cm,
involutions={1{10};29;38;47;56}]{A}{oo.o**.**o.oo}
\end{tcblisting}
\begin{tcblisting}{title={We can add labels}}
\dynkin[edge length=.75cm,
involutions={
1<below>[\sigma]{10};
2<below>[\sigma]9;
3<below>[\sigma]8;
4<below>[\sigma]7;
5<below>[\sigma]6}
]{A}{oo.o**.**o.oo}
\end{tcblisting}
\begin{tcblisting}{title={Style options}}
\dynkin[%
edge length=.75cm,
involution/.style={blue!50,stealth-stealth,thick},
involutions={1{10};29;38;47;56}
]{A}{oo.o**.**o.oo}
\end{tcblisting}
\newpage
\begin{tcblisting}{title={Arrow angles}}
\dynkin[%
edge length=.75cm,
involutions={[in=-120,out=-60,relative]1{10};29;38;47;56}
]{A}{oo.o**.**o.oo}
\end{tcblisting}
\begin{tcblisting}{title={Control over arrow angles}}
\dynkin[involutions={16;60;01}]E[1]{6}
\dynkin[involutions={[out=-80,in=-100,relative]16;60;01}]E[1]{6}
\end{tcblisting}
\begin{tcblisting}{title={If you don't like the solid gray ``folding bar'', most people use arrows \dots}}
\tikzset{/Dynkin diagram/fold style/.style={stealth-stealth,thick,
shorten <=1mm,shorten >=1mm,}}
\dynkin[ply=3,edge length=.75cm]D4
\begin{dynkinDiagram}[ply=4]D[1]%
{****.*****.*****}
\dynkinFold 1{13}
\dynkinFold[bend right=90] 0{14}
\end{dynkinDiagram}
\end{tcblisting}
\begin{tcblisting}{title={\dots but you could try springs pulling roots together}}
\tikzset{/Dynkin diagram/fold style/.style=
{decorate,decoration={name=coil,aspect=0.5,
segment length=1mm,amplitude=.6mm}}}
\dynkin[ply=3,edge length=.75cm]D4
\begin{dynkinDiagram}[ply=4]D[1]%
{****.*****.*****}
\dynkinFold 1{13}
\dynkinFold[bend right=90]0{14}
\end{dynkinDiagram}
\end{tcblisting}
\section{Labels for the roots}
\begin{tcblisting}{title={Make a macro to assign labels to roots}}
\dynkin[label,label macro/.code={\alpha_{\drlap{#1}}},edge length=.75cm]D5
\end{tcblisting}
\begin{tcblisting}{title={Labelling several roots}}
\dynkin[labels={,2,...,5,,7},label macro/.code={\alpha_{\drlap#1}}]A7
\end{tcblisting}
\begin{tcblisting}{title={The \texttt{foreach} notation I}}
\dynkin[labels={1,3,...,7},]A9
\end{tcblisting}
\begin{tcblisting}{title={The \texttt{foreach} notation II}}
\dynkin[labels={,\alpha_2,\alpha_...,\alpha_7},]A7
\end{tcblisting}
\begin{tcblisting}{title={The \texttt{foreach} notation III}}
\dynkin[label macro/.code={\beta_{\drlap{#1}}},labels={,2,...,7},]A7
\end{tcblisting}
\begin{tcblisting}{title={Label the roots individually by root number}}
\dynkin[label]B3
\end{tcblisting}
\begin{tcblisting}{title={Access root labels via TikZ}}
\begin{dynkinDiagram}B3
\node[below] at (root 2) {\(\alpha_{\drlap{2}}\)};
\end{dynkinDiagram}
\end{tcblisting}
\begin{tcblisting}{title={The labels have default locations, mostly below roots}}
\dynkin[edge length=.75cm,labels={1,2,3}]E8
\end{tcblisting}
\begin{tcblisting}{title={The starred form flips labels to alternate locations, mostly above roots}}
\dynkin[edge length=.75cm,labels*={1,2,3}]E8
\end{tcblisting}
\newpage
\begin{tcblisting}{title={Labelling several roots and alternates}}
\dynkin[%
label macro/.code={\alpha_{\drlap{#1}}},
label macro*/.code={\gamma_{\drlap{#1}}},
labels={,2,...,5,,7},
labels*={1,3,4,5,6}]A7
\end{tcblisting}
\section{Label subscripts}
Note the slight improvement that \verb!\drlap! makes: the labels are centered on the middle of the letter \(\alpha\), ignoring the space taken up by the subscripts, using the \verb!mathtools! command \verb!\mathrlap!, but only for labels which are \emph{not} placed to the left or right of a root.
\begin{tcblisting}{title={Label subscript spacing}}
\dynkin[label,label macro/.code={\alpha_{#1}},
edge length=.75cm]D{15}
\par\noindent{}%
\dynkin[label,label macro/.code={\alpha_{\drlap{#1}}},
edge length=.75cm]D{15}
\end{tcblisting}
\newpage
\begin{tcblisting}{title={Label subscript spacing}}
\dynkin[label,label macro/.code={\alpha_{#1}},
edge length=.75cm]E8
\dynkin[label,label macro/.code={\alpha_{#1}},backwards,
edge length=.75cm]E8
\par\noindent{}%
\dynkin[label,label macro/.code={\alpha_{\mathrlap{#1}}},
edge length=.75cm]E8
\dynkin[label,label macro/.code={\alpha_{\mathrlap{#1}}},backwards,
edge length=.75cm]E8
\par\noindent{}%
\dynkin[label,label macro/.code={\alpha_{\drlap{#1}}},
edge length=.75cm]E8
\dynkin[label,label macro/.code={\alpha_{\drlap{#1}}},backwards,
edge length=.75cm]E8
\end{tcblisting}
\newpage
\section{Height and depth of labels}
Labels are set with default maximum height the height of the character \(b\), and default maximum depth the depth of the character \(g\).
To change these, set \verb!label height! and \verb!label depth!:
\begin{tcblisting}{title={Change height and depth of characters}}
\dynkin[labels={a,b,c,d},label height=d,label depth=d]F4
\dynkin[labels*={a,b,c,d},label height=d,label depth=d]F4
\dynkin[%
label macro/.code={\alpha_{\drlap{#1}}},
label macro*/.code={\gamma_{\drlap{#1}}},
label height=$\alpha_1$,
label depth=$\alpha_1$,
labels={,2,...,5,,7},
labels*={1,3,4,5,6}]A7
\dynkin[labels={A,B,C,D},label height=$A$,label depth=$A$]F4
\dynkin[labels={a^1,b^2,c^3,d^4},label height=$X^X$]F4
\end{tcblisting}
\section{Text style for the labels}
\begin{tcblisting}{title={Use a text style: big and blue}}
\begin{dynkinDiagram}[text style={scale=1.2,blue},
edge length=.75cm,
labels={1,2,n-1,n},
label macro/.code={\alpha_{\drlap{#1}}}
]A{}
\end{dynkinDiagram}
\end{tcblisting}
\begin{tcblisting}{title={Use a text style; font selection is in the label macro}}
\begin{dynkinDiagram}[text style={scale=1.2,blue},
edge length=.75cm,
labels={1,2,n-1,n},
label macro/.code={\mathbb{A}_{\drlap{#1}}}]A{}
\end{dynkinDiagram}
\end{tcblisting}
\section{Bracing roots}
\begin{tcblisting}{title={Bracing roots}}
\begin{dynkinDiagram}A{*.*x*.*}
\dynkinBrace[p]12
\dynkinBrace[q]45
\end{dynkinDiagram}
\end{tcblisting}
\begin{tcblisting}{title={Bracing roots, and a starred form}}
\begin{dynkinDiagram}A{10}
\dynkinBrace[\text{Roots 2 to 9}]29
\dynkinBrace*[\text{Roots 3 to 8}]38
\end{dynkinDiagram}
\end{tcblisting}
\begin{tcblisting}{title={Bracing roots}}
\newcommand\circleRoot[1]{\draw (root #1) circle (3pt);}
\begin{dynkinDiagram}A{**.***.***.***.***.**}
\circleRoot 4\circleRoot 7\circleRoot 10\circleRoot 13
\dynkinBrace[y-1]13
\dynkinBrace[z-1]56
\dynkinBrace[t-1]{11}{12}
\dynkinBrace[x-1]{14}{16}
\end{dynkinDiagram}
\end{tcblisting}
\newpage
\section{Label placement}
Take a \(D_8\):
\begin{tcblisting}{}
\dynkin[label,edge length=.75cm]D8
\end{tcblisting}
\noindent{}If you want to fold this diagram,
\begin{tcblisting}{}
\dynkin[fold right=true,label,edge length=.75cm]D8
\end{tcblisting}
\noindent{}you will be glad that the \(6\) sits where it does, under and to the left.
If you don't want to fold, you might prefer instead to put the \(6\) on the right side.
\begin{tcblisting}{}
\dynkin[label,edge length=.75cm,label directions={,,,,,right,,}]D8
\end{tcblisting}
\noindent{}The default locations are overridden by the \verb!label directions!.
For extended diagrams, this list starts at \(0\)-offset.
\begin{tcblisting}{}
\dynkin[%
label,
label directions={above,,,,,,},
involutions={[out=-60,in=-120,relative]16;60;01}
]E[1]{6}
\end{tcblisting}
\begin{filecontents*}{EulerProducts.tex}
\tikzset{/Dynkin diagram,ordering=Dynkin,label macro/.code={\alpha_{\drlap{#1}}}}
\newcounter{EPNo}
\setcounter{EPNo}{0}
\NewDocumentCommand\EP{smmmm}%
{%
\stepcounter{EPNo}\roman{EPNo}. &%
\def\eL{.6cm}%
\IfStrEqCase{#2}%
{%
D{\gdef\eL{1cm}}%
E{\gdef\eL{.75cm}}%
F{\gdef\eL{.35cm}}%
G{\gdef\eL{.35cm}}%
}%
\IfBooleanTF{#1}%
{\dynkin[edge length=\eL,backwards,labels*={#4},labels={#5}]{#2}{#3}}
{\dynkin[edge length=\eL,labels*={#4},labels={#5}]{#2}{#3}}
\\
}%
\renewcommand*\do[1]{\EP#1}%
\begin{longtable}{MM}
\caption{Dynkin diagrams from Euler products \cite{Langlands:1967}}\\
\endfirsthead
\caption{\dots continued}\\
\endhead
\multicolumn{2}{c}{continued \dots}\\
\endfoot
\endlastfoot
\docsvlist{
A{***.**}{1,1,1,1,1}{,1,2,n-1,n},
A{***.**}{1,1,1,1,1}{1,2,n-1,n},
A{**.***.*}{1,1,1,1,1,1}{1,2,m-1,,m,n},
B{**.***}{2,2,2,2,1}{1,2,n-1,n},
*B{***.**}{2,2,2,2,1}{n,n-1,2,1,},
C{**.***}{1,1,1,1,2}{1,2,n-1,},
*C{***.**}{1,1,1,1,2}{n,n-1,2,1,},
D{**.****}{1,1,1,1,1,1}{1,2,n-2,n-1,n},
D{**.****}{1,1,1,1,1,1}{1,2,n-2,n-1,n},
E6{1,1,1,1,1,1}{1,...,5},
*E7{1,1,1,1,1,1,1}{6,...,1},
E7{1,1,1,1,1,1,1}{1,...,6},
*E8{1,1,1,1,1,1,1,1}{7,...,1},
E8{1,1,1,1,1,1,1,1}{1,...,7},
G2{1,3}{,1},
G2{1,3}{1},
B{**.*.**}{2,2,2,2,1}{,1,2,n-1,n},
F4{1,1,2,2}{,3,2,1},
C3{1,1,2}{,2,1},
C{**.***}{1,1,1,1,2}{,1,n-2,n-1,n},
*B3{2,2,1}{1,2},
F4{1,1,2,2}{1,2,3},
D{**.****}{1,1,1,1,1,1}{1,2,n-2,n-2,n,n},
E6{1,1,1,1,1,1}{1,2,3,4,,5},
E6{1,1,1,1,1,1}{1,2,3,5,,4},
*E7{1,1,1,1,1,1,1}{,5,...,1,6},
*E7{1,1,1,1,1,1,1}{,6,4,3,2,1,5},
*E8{1,1,1,1,1,1,1,1}{,6,...,1,7},
*E8{1,1,1,1,1,1,1,1}{,7,5,4,3,2,1,6},
*E7{1,1,1,1,1,1,1}{5,...,1,,6},
*E7{1,1,1,1,1,1,1}{1,...,5,,6},
*E8{1,1,1,1,1,1,1,1}{6,...,1,,7}}
\end{longtable}
\end{filecontents*}
{\input{EulerProducts}}\VerbatimInput{EulerProducts.tex}
\newpage
\section{Style}
\begin{tcblisting}{title={Colours}}
\dynkin[
edge/.style={blue!50,thick},
*/.style=blue!50!red,
arrow style={red,width=2mm,line width=1pt}]{F}{4}
\end{tcblisting}
\begin{tcblisting}{title={Arrow shapes}}
\dynkin[arrow shape/.style={-{Stealth[blue,width=3mm]}}] F4
\end{tcblisting}
\begin{tcblisting}{title={Edge lengths}}
The Dynkin diagram of \(A_3\) is \dynkin[edge length=1.2]A3
\end{tcblisting}
\begin{tcblisting}{title={Root marks}}
\dynkin E8
\dynkin[mark=*]E8
\dynkin[mark=o]E8
\dynkin[mark=O]E8
\dynkin[mark=t]E8
\dynkin[mark=x]E8
\dynkin[mark=X]E8
\end{tcblisting}
At the moment, you can only use:
\par\noindent\begin{tabular}{>{\ttfamily}ccl}
* &\dynkin[mark=*]A1& solid dot \\
o &\dynkin[mark=o]A1& hollow circle \\
O&\dynkin[mark=O]A1 & double hollow circle \\
t &\dynkin[mark=t]A1& tensor root \\
x &\dynkin[mark=x]A1& crossed root \\
X &\dynkin[mark=X]A1& thickly crossed root
\end{tabular}
\begin{tcblisting}{title={Mark styles}}
The parabolic subgroup \(E_{8,124}\) is \dynkin[parabolic=124,x/.style={brown,very thick}]E8
\end{tcblisting}
\begin{tcblisting}{title={Sizes of root marks}}
\(A_{3,3}\) with big root marks is \dynkin[root radius=.08cm,parabolic=3]A3
\end{tcblisting}
\section{Suppress or reverse arrows}
\begin{tcblisting}{title={Some diagrams have double or triple edges}}
\dynkin F4
\dynkin G2
\end{tcblisting}
\begin{tcblisting}{title={Suppress arrows}}
\dynkin[arrows=false]F4
\dynkin[arrows=false]G2
\end{tcblisting}
\newpage
\begin{tcblisting}{title={Reverse arrows}}
\dynkin[reverse arrows]F4
\dynkin[reverse arrows]G2
\end{tcblisting}
\section{Backwards and upside down}
\begin{tcblisting}{title={Default}}
\dynkin E8
\dynkin F4
\dynkin G2
\end{tcblisting}
\begin{tcblisting}{title={Backwards}}
\dynkin[backwards]E8
\dynkin[backwards]F4
\dynkin[backwards]G2
\end{tcblisting}
\begin{tcblisting}{title={Reverse arrows}}
\dynkin[reverse arrows]F4
\dynkin[reverse arrows]G2
\end{tcblisting}
\begin{tcblisting}{title={Backwards, reverse arrows}}
\dynkin[backwards,reverse arrows]F4
\dynkin[backwards,reverse arrows]G2
\end{tcblisting}
\begin{tcblisting}{title={Backwards versus upside down}}
\dynkin[label]E8
\dynkin[label,backwards]E8
\dynkin[label,upside down]E8
\dynkin[label,backwards,upside down]E8
\end{tcblisting}
\section{Drawing on top of a Dynkin diagram}
\begin{tcblisting}{title={TikZ can access the roots themselves}}
\begin{dynkinDiagram}A4
\fill[white,draw=black] (root 2) circle (.15cm);
\fill[white,draw=black] (root 2) circle (.1cm);
\draw[black] (root 2) circle (.05cm);
\end{dynkinDiagram}
\end{tcblisting}
\begin{tcblisting}{title={Draw curves between the roots}}
\begin{dynkinDiagram}[label]E8
\draw[very thick, black!50,-latex]
(root 3.south) to [out=-45, in=-135] (root 6.south);
\end{dynkinDiagram}
\end{tcblisting}
\begin{tcblisting}{title={Change marks}}
\begin{dynkinDiagram}[mark=o,label]E8
\dynkinRootMark{*}5
\dynkinRootMark{*}8
\end{dynkinDiagram}
\end{tcblisting}
\section{Mark lists}
The package allows a list of root marks instead of a rank:
\begin{tcblisting}{title={A mark list}}
\dynkin E{oo**ttxx}
\end{tcblisting}
The mark list \verb!oo**ttxx! has one mark for each root: \verb!o!, \verb!o!, \dots, \verb!x!.
Roots are listed in the current default ordering.
(Careful: in an affine root system, a mark list will \emph{not} contain a mark for root zero.)
If you need to repeat a mark, you can give a \emph{single digit} positive integer to indicate how many times to repeat it.
\begin{tcblisting}{title={A mark list with repetitions}}
\dynkin A{x4o3t4}
\end{tcblisting}
\NewDocumentCommand\ClassicalLieSuperalgebras{om}%
{%
\IfValueT{#1}{\tikzset{/Dynkin diagram,root radius=#1}}
\renewcommand{\wdtE}{10cm}
\begin{dynkinTable}{Classical Lie superalgebras \cite{Frappat/Sciarrino/Sorba:1989}. #2}{3.5cm}{6.5cm}
\IfValueT{#1}{
& & \texttt{\textbackslash{}tikzset\{/Dynkin diagram,root radius=#1\}} \\
}
A_{mn} & \dynk A{o3.oto.oo}
B_{mn} & \dynk B{o3.oto.oo}
B_{0n} & \dynk B{o3.o3.o*}
C_{n} & \dynk C{too.oto.oo}
D_{mn} & \dynk D{o3.oto.o4}
D_{21\alpha} & \dynk A{oto}
F_4 & \dynk F{ooot}
G_3 & \dynk[extended,affine mark=t,
reverse arrows]G2
\end{dynkinTable}
\IfValueT{#1}{\tikzset{/Dynkin diagram,root radius=.05cm}}
}%
\ClassicalLieSuperalgebras[.07cm]{We need a slightly larger root radius parameter to distinguish the tensor product symbols from the solid dots.}
\newpage
\ClassicalLieSuperalgebras{Here we see the problem with using the default root radius parameter, which is too small for tensor product symbols.}
\section{Indefinite edges}
An \emph{indefinite edge} is a dashed edge between two roots, \dynkin A{*.*} indicating that an indefinite number of roots have been omitted from the Dynkin diagram.
In between any two entries in a mark list, place a period to indicate an indefinite edge:
\begin{tcblisting}{title={Indefinite edges}}
\dynkin D{o.o*.*.t.to.t}
\end{tcblisting}
In certain diagrams, roots may have an edge between them even though they are not subsequent in the ordering.
For such rare situations, there is an option:
\begin{tcblisting}{title={Indefinite edge option}}
\dynkin[make indefinite edge={3-5},label]D5
\end{tcblisting}
\begin{tcblisting}{title={Give a list of edges to become indefinite}}
\dynkin[make indefinite edge/.list={1-2,3-5},label]D5
\end{tcblisting}
\begin{tcblisting}{title={Indefinite edge style}}
\dynkin[indefinite edge/.style={
draw=black,fill=white,thin,densely dashed},
edge length=1cm,
make indefinite edge={3-5}]D5
\end{tcblisting}
\begin{tcblisting}{title={The ratio of the lengths of indefinite edges to those of other edges}}
\dynkin[edge length = .5cm,
indefinite edge ratio=3,
make indefinite edge={3-5}]D5
\end{tcblisting}
%\begingroup
\renewcommand{\wdtA}{.35cm}
\renewcommand{\wdtE}{6.55cm}
\begin{dynkinTable}{Springer's table of indices \cite{Springer:2009}, pp. 320-321, with one form of \(E_7\) corrected}{2.5cm}{3.7cm}
% 1
A_n &
\multicolumn{2}{E}{
\begin{dynkinDiagram}A{o.o*o.o*o.o}
\dynkinLabelRoot 3d
\dynkinLabelRoot 6{n-d}
\end{dynkinDiagram}
}
\\
% 2
A_n &
\multicolumn{2}{E}{
\begin{dynkinDiagram}{A}{o.o*o.o*o.o*o.o*o.o}
\dynkinLabelRoot 3d
\dynkinLabelRoot 6{rd}
\dynkinLabelRoot 9{n-rd}
\dynkinLabelRoot{12}{n-d}
\end{dynkinDiagram}
}
\\
% 3
B_n &
\multicolumn{2}{E}{
\begin{dynkinDiagram}B{**.*.o.oo}
\dynkinLabelRoot{3}{r}
\end{dynkinDiagram}
}
\\
% 4
C_n &
\multicolumn{2}{E}{
\begin{dynkinDiagram}C{o.o*o.o*o.oo}
\dynkinLabelRoot 3d
\dynkinLabelRoot 6{rd}
\end{dynkinDiagram}
}
\\
% 5
D_n &
\multicolumn{2}{E}{
\begin{dynkinDiagram}D{o.o*o.o*o.ooo}
\dynkinLabelRoot 3d
\dynkinLabelRoot 6{rd}
\end{dynkinDiagram}
}
\\
% 6
E_6 &
\dynk E{*oooo*}
% 7
E_6 &
\dynk E{o*o*oo}
% 8
E_6 &
\dynk E{o*oooo}
% 9
E_6 &
\dynk E{**ooo*}
% 10
E_7 &
\dynk E{*oooooo}
% 11
E_7 &
\dynk E{ooooo*o}
% 12
E_7 &
\dynk E{oooooo*}
% 13
E_7 &
\dynk E{*oooo*o}
% 14 - corrected from Springer.
E_7 &
\dynk E{*oooo**}
% 15
E_7 &
\dynk E{*o**o*o}
% 16
E_8 &
\dynk E{*ooooooo}
% 17
E_8 &
\dynk E{ooooooo*}
% 18
E_8 &
\dynk E{*oooooo*}
% 19
E_8 &
\dynk E{oooooo**}
% 20
E_8 &
\dynk E{*oooo***}
% 21
F_4 &
\dynk F{ooo*}
% 22
D_4 &
\dynk D{o*oo}
\end{longtable}
\endgroup
\section{Root ordering}\label{section:order}
\begin{tcblisting}{title={Root ordering}}
\dynkin[label,ordering=Adams]E6
\dynkin[label,ordering=Bourbaki]E6
\dynkin[label,ordering=Carter]E6
\dynkin[label,ordering=Dynkin]E6
\dynkin[label,ordering=Kac]E6
\end{tcblisting}
Default is Bourbaki.
Sources are Adams \cite{Adams:1996} p. 56--57, Bourbaki \cite{Bourbaki:2002} p. pp. 265--290 plates I-IX, Carter \cite{Carter:2005} p. 540--609, Dynkin \cite{Dynkin:1952}, Kac \cite{Kac:1990} p. 43.
\newpage
\NewDocumentCommand\tablerow{mm}%
{%
#1_{#2}&
\dynkin[label,ordering=Adams]{#1}{#2}&
\dynkin[label]{#1}{#2}&
\dynkin[label,ordering=Carter]{#1}{#2}&
\dynkin[label,ordering=Dynkin]{#1}{#2}&
\dynkin[label,ordering=Kac]{#1}{#2}\\
}%
\begin{center}
\renewcommand{\wdtA}{.7cm}
\renewcommand{\wdtL}{2.2cm}
\begin{longtable}{@{}ALLLLL@{}}
\toprule
& Adams & Bourbaki & Carter & Dynkin & Kac \\ \midrule
\endfirsthead
\toprule
& Adams & Bourbaki & Carter & Dynkin & Kac \\ \midrule
\endhead
\bottomrule
\endfoot
\bottomrule
\endlastfoot
\tablerow E6\tablerow E7\tablerow E8\tablerow F4\tablerow G2
\end{longtable}
\end{center}
The marks are set down in order according to the current root ordering:
\begin{tcblisting}{}
\dynkin[label]E{*otxXOt*}
\dynkin[label,ordering=Carter]E{*otxXOt*}
\dynkin[label,ordering=Kac]E{*otxXOt*}
\end{tcblisting}
\begin{tcblisting}{title={Convert between orderings}}
\newcount\r
\dynkinOrder E8.Carter::6->Bourbaki.{\r}
In \(E_8\), root 6 in Carter's ordering is root \the\r{} in Bourbaki's ordering.
\end{tcblisting}
\section{Parabolic subgroups}
Each set of roots is assigned a number, with each binary digit zero or one to say whether the corresponding root is crossed or not:
\begin{tcblisting}{}
The flag variety of pointed lines in
projective 3-space is associated to
the Dynkin diagram \dynkin[parabolic=3]A3.
\end{tcblisting}
\begin{filecontents*}{hermitian-symmetric-spaces.tex}
\NewDocumentCommand\HSS{mommm}
{#1&\IfNoValueTF{#2}{\dynkin{#3}{#4}}{\dynkin[parabolic=#2]{#3}{#4}}\\}
\renewcommand*{\arraystretch}{1.5}
\begin{longtable}
{>{\columncolor[gray]{.9}}>$l<$>{\columncolor[gray]{.9}}>$l<$>{\columncolor[gray]{.9}}l}
\caption{The Hermitian symmetric spaces}\endfirsthead
\caption{\dots continued}\\ \endhead
\caption{continued \dots}\\ \endfoot
\endlastfoot
\HSS{A_n}A{**.*x*.**}{Grassmannian of $k$-planes in $\C{n+1}$}
\HSS{B_n}[1]B{}{$(2n-1)$-dimensional hyperquadric, i.e. the variety of null lines in $\C{2n+1}$}
\HSS{C_n}[16]C{}{space of Lagrangian $n$-planes in $\C{2n}$}
\HSS{D_n}[1]D{}{$(2n-2)$-dimensional hyperquadric, i.e. the variety of null lines in $\C{2n}$}
\HSS{D_n}[32]D{}{one component of the variety of maximal dimension null subspaces of $\C{2n}$}
\HSS{D_n}[16]D{}{the other component}
\HSS{E_6}[1]E6{complexified octave projective plane}
\HSS{E_6}[32]E6{its dual plane}
\HSS{E_7}[64]E7{the space of null octave 3-planes in octave 6-space}
\end{longtable}
\end{filecontents*}
\begingroup
\input{hermitian-symmetric-spaces.tex}
\endgroup
\VerbatimInput{hermitian-symmetric-spaces.tex}
\section{Extended Dynkin diagrams}
\begin{tcblisting}{title={Extended Dynkin diagrams}}
\dynkin[extended]A7
\end{tcblisting}
The extended Dynkin diagrams are also described in the notation of Kac \cite{Kac:1990} p. 55 as affine untwisted Dynkin diagrams: we extend \verb!\dynkin{A}{7}! to become \verb!\dynkin A[1]7!:
\begin{tcblisting}{title={Extended Dynkin diagrams}}
\dynkin A[1]7
\end{tcblisting}
\renewcommand{\do}[1]{\dyn[extended]#1}
\renewcommand*{\arraystretch}{1.5}
\begin{dynkinTable}{The Dynkin diagrams of the extended simple root systems}{3cm}{5cm}
\docsvlist{A{1},A{},B{},C{},D{},E6,E7,E8,F4,G2}
\end{dynkinTable}
\begin{tcblisting}{title={Directed edges}}
\dynkin[%
edge length=.75cm,
edge/.style={-{stealth[sep=2pt]}},
labels={,1,2,\ell-1,\ell},
labels*={0}]
A[1]{}
\end{tcblisting}
\newpage
\section{Affine twisted and untwisted Dynkin diagrams}
The affine Dynkin diagrams are described in the notation of Kac \cite{Kac:1990} p. 55:
\begin{tcblisting}{title={Affine Dynkin diagrams}}
\(A^{(1)}_7=\dynkin A[1]7, \
E^{(2)}_6=\dynkin E[2]6, \
D^{(3)}_4=\dynkin D[3]4\)
\end{tcblisting}
\renewcommand{\do}[1]{\dyn#1}
\begin{dynkinTable}{The affine Dynkin diagrams}{3cm}{3.75cm}
\docsvlist{A[1]1,A[1]{},B[1]{},C[1]{},D[1]{},E[1]6,E[1]7,E[1]8,F[1]4,G[1]2,
A[2]2,A[2]{even},A[2]{odd},D[2]{},E[2]6,D[3]4}
\end{dynkinTable}
\newpage
\begin{dynkinTable}{Some more affine Dynkin diagrams}{3cm}{3.25cm}
\docsvlist{A[2]4,A[2]5,A[2]6,A[2]7,A[2]8,D[2]3,D[2]4,D[2]5,D[2]6,D[2]7,D[2]8,
D[3]4,E[2]6}
\end{dynkinTable}
\renewcommand{\do}[1]{\dyn[ordering=Kac,label]#1}
\begin{dynkinTable}{Some more Kac--Moody Dynkin diagrams, only allowed in Kac ordering}{3cm}{3.25cm}
\docsvlist{E6,E7,E8,E9,E{10},E{11}}
\end{dynkinTable}
\section{Extended Coxeter diagrams}
\begin{tcblisting}{title={Extended and Coxeter options together}}
\dynkin[extended,Coxeter]F4
\end{tcblisting}
\renewcommand{\do}[1]{\dyn[extended,Coxeter]#1}
\begin{dynkinTable}{The extended (affine) Coxeter diagrams}{3cm}{6cm}
\docsvlist{A{},B{},C{},D{},E6,E7,E8,F4,G2,H3,H4,I1}
\end{dynkinTable}
\section{Kac style}
We include a style called \verb!Kac! which tries to imitate the style of \cite{Kac:1990}.
\begin{tcblisting}{title={Kac style}}
\dynkin[Kac]F4
\end{tcblisting}
\newpage
\begingroup
\pgfkeys{/Dynkin diagram,Kac}
\renewcommand{\do}[1]{\dyn#1}
\begin{dynkinTable}{The Dynkin diagrams of the simple root systems in Kac style}{5cm}{4.5cm}
\docsvlist{A{},B{},C{},D{},E6,E7,E8,F4,G2}
\end{dynkinTable}
\renewcommand{\do}[1]{\dyn[extended]#1}
\begin{dynkinTable}{The Dynkin diagrams of the extended simple root systems in Kac style}{5cm}{4.5cm}
\docsvlist{A1,A{},B{},C{},D{},E6,E7,E8,F4,G2}
\end{dynkinTable}
\begin{dynkinTable}{The Dynkin diagrams of the twisted simple root systems in Kac style}{6cm}{4.5cm}
\docsvlist{A[2]2,A[2]{even},A[2]{odd},D[2]{},E[2]6,D[3]4}
\end{dynkinTable}
\endgroup
\section{Ceref style}
We include a style called \verb!ceref! which paints oblong root markers with shadows.
The word ``ceref'' is an old form of the word ``serif''.
\begin{tcblisting}{title={Ceref style}}
\dynkin[ceref]F4
\end{tcblisting}
\begingroup
\renewcommand{\do}[1]{\dyn#1}
\pgfkeys{/Dynkin diagram,ceref}
\begin{dynkinTable}{The Dynkin diagrams of the simple root systems in ceref style}{5cm}{4.5cm}
\docsvlist{A{},B{},C{},D{},E6,E7,E8,F4,G2}
\end{dynkinTable}
\renewcommand{\do}[1]{\dyn[extended]#1}
\begin{dynkinTable}{The Dynkin diagrams of the extended simple root systems in ceref style}{5cm}{4.5cm}
\docsvlist{A1,A{},B{},C{},D{},E6,E7,E8,F4,G2}
\end{dynkinTable}
\begin{dynkinTable}{The Dynkin diagrams of the twisted simple root systems in ceref style}{6cm}{4.5cm}
\docsvlist{A[2]2,A[2]{even},A[2]{odd},D[2]{},E[2]6,D[3]4}
\end{dynkinTable}
\endgroup
\section{More on folded Dynkin diagrams}
The Dynkin diagrams package has limited support for folding Dynkin diagrams.
\begin{tcblisting}{title={Folding}}
\dynkin[fold]A{13}
\end{tcblisting}
\begin{tcblisting}{title={Big fold radius}}
\dynkin[fold,fold radius=1cm]A{13}
\end{tcblisting}
\begin{tcblisting}{title={Small fold radius}}
\dynkin[fold,fold radius=.2cm]A{13}
\end{tcblisting}
Some Dynkin diagrams have multiple foldings, which we attempt to distinguish (not entirely successfully) by their \emph{ply}: the maximum number of roots folded together.
Most diagrams can only allow a 2-ply folding, so \verb!fold! is a synonym for \verb!ply=2!.
\begin{tcblisting}{title={3-ply}}
\dynkin[ply=3]D4
\dynkin[ply=3,fold right]D4
\dynkin[ply=3]D[1]4
\end{tcblisting}
\newpage
\begin{tcblisting}{title={4-ply}}
\dynkin[ply=4]D[1]4
\end{tcblisting}
The \(D^{(1)}_{\ell}\) diagrams can be folded on their left end and separately on their right end:
\begin{tcblisting}{title={Left, right and both}}
\dynkin D[1]{} \
\dynkin[fold left]D[1]{} \
\dynkin[fold right]D[1]{} \
\dynkin[fold]D[1]{}
\end{tcblisting}
We have to be careful about the 4-ply foldings of \(D^{(1)}_{2\ell}\), for which we can have two different patterns, so by default, the package only draws as much as it can without distinguishing the two:
\begin{tcblisting}{title={Default \(D^{(1)}_{2\ell}\) and the two ways to finish it}}
\dynkin[ply=4]D[1]{****.*****.*****}%
\
\begin{dynkinDiagram}[ply=4]{D}[1]{****.*****.*****}%
\dynkinFold[bend right=90]1{13}%
\dynkinFold[bend right=90]0{14}%
\end{dynkinDiagram} \
\begin{dynkinDiagram}[ply=4]{D}[1]{****.*****.*****}%
\dynkinFold01%
\dynkinFold1{13}%
\dynkinFold{13}{14}%
\end{dynkinDiagram}
\end{tcblisting}
\begingroup
\renewcommand{\wdtA}{.7cm}
\renewcommand{\wdtD}{3.5cm}
\renewcommand{\wdtL}{7cm}
\NewDocumentCommand\seriesName{mmm}%
{%
\IfStrEq{#2}{0}{#1_{#3}}{#1^{#2}_{#3}}%
}%
\NewDocumentCommand\foldingTable{smmmmmmmm}%
{%
\begin{tabular}{ADL}%
\seriesName{#2}{#3}{#4}
\seriesName{#6}{#7}{#8}&\IfBooleanTF{#1}{\reflectbox{#9}}{#9}%
\end{tabular}%
\\ \hline
}%
\NewDocumentCommand\fold{smmmmmm}%
{%
\IfBooleanTF{#1}%
{%
\foldingTable%
{#2}{#3}{#4}{\dynk[fold]{#2}[#3]{#4}}%
{#5}{#6}{#7}{\dynk[reverse arrows]{#5}[#6]{#7}}%
}%
{%
\foldingTable%
{#2}{#3}{#4}{\dynk[fold]{#2}[#3]{#4}}%
{#5}{#6}{#7}{\dynk{#5}[#6]{#7}}%
}%
}%
\begin{filecontents*}{DoneTwoElBendy.tex}
\begin{dynkinDiagram}[ply=4]{D}[1]%
{****.*****.*****}
\dynkinFold[bend right=90]1{13}
\dynkinFold[bend right=90]0{14}
\end{dynkinDiagram}
\end{filecontents*}
\begin{filecontents*}{DoneTwoElStraight.tex}
\begin{dynkinDiagram}[ply=4]D[1]%
{****.*****.*****}
\dynkinFold01
\dynkinFold1{13}
\dynkinFold{13}{14}
\end{dynkinDiagram}
\end{filecontents*}
\pgfkeys{/Dynkin diagram,fold radius=.35cm}
\begin{longtable}{@{}p{15cm}@{}}
\caption{Some foldings of Dynkin diagrams. For these diagrams, we want to compare a folding diagram with the diagram that results when we fold it, so it looks best to set \texttt{fold radius} and \texttt{edge length} to equal lengths.}\\
\endfirsthead
\caption{\dots continued}\\
\endhead
\multicolumn{1}{c}{continued \dots}\\
\endfoot
\endlastfoot
\fold A03C02
\foldingTable A0{2\ell-1}{\dynk[fold]A{**.*****.**}}%
C0{\ell}{\dynk C{}}
\fold*B03G02
\foldingTable D04{\dynk[ply=3,fold right]D4}%
G02{\dynk G2}
\foldingTable D0{\ell+1}{\dynk[fold]D{}}%
B0{\ell}{\dynk B{}}
\fold* E06F04
\foldingTable A13{\dynk[ply=4]A[1]3}%
A11{\dynk A[1]1}
\foldingTable A1{2\ell-1}{\dynk[fold]A[1]{**.*****.**}}%
C1{\ell}{\dynk C[1]{}}
\foldingTable B13{\dynk[ply=3]B[1]3}%
A22{\dynk A[2]2}
\foldingTable B13{\dynk[ply=2]B[1]3}%
G12{\dynk G[1]2}
\foldingTable B1{\ell}{\dynk[fold]B[1]{}}D2{\ell}{\dynk D[2]{}}
\foldingTable D14{\dynk[ply=3]D[1]4}%
B13{\dynk B[1]3}
\foldingTable D14{\dynk[ply=3]D[1]4}%
G12{\dynk G[1]2}
\foldingTable D1{\ell+1}{\dynk[fold]D[1]{}}%
D2{\ell}{\dynk D[2]{}}
\foldingTable D1{\ell+1}{%
\dynk[fold right]D[1]{}}%
B1{\ell}{\dynk B[1]{}}
\foldingTable D1{2\ell}{%
\input{DoneTwoElStraight.tex}
&
\VerbatimInput{DoneTwoElStraight.tex} \\
}%
A2{\text{odd}}{\dynk A[2]{odd}}
\foldingTable D1{2\ell}{%
\input{DoneTwoElBendy.tex}
&
\VerbatimInput{DoneTwoElBendy.tex} \\
}%
A2{\text{even}}{\dynk A[2]{even}}
\fold* E16F14
\foldingTable E16{\dynk[ply=3]E[1]6}%
D34{\dynk D[3]4}
\fold E17E26
\fold F14G12
\foldingTable A2{\text{odd}}{%
\dynk[odd,fold]A[2]{****.***}
}%
A2{\text{even}}{\dynk A[2]{even}}
\foldingTable D23{\dynk[fold]D[2]3}%
A22{\dynk A[2]2}
\end{longtable}
\endgroup
\begingroup
\renewcommand{\wdtA}{.8cm}
\begin{dynkinTable}{Frobenius fixed point subgroups of finite simple groups of Lie type \cite{Carter:1995} p. 15}{3cm}{6cm}
A_{\ell\ge 1} & \dynk A{}
{}^2\!A_{\ell\ge 2} & \dynk[fold]A{}
B_{\ell\ge 2} & \dynk B{}
{}^2\!B_2 & \dynk[fold]B2
C_{\ell\ge3} & \dynk C{}
D_{\ell\ge4} & \dynk D{}
{}^2\!D_{\ell\ge4} & \dynk[fold]D{}
{}^3\!D_4 & \dynk[ply=3]D4
E_6 & \dynk E6
{}^2\!E_6 & \dynk[fold]E6
E_7 & \dynk E7
E_8 & \dynk E8
F_4 & \dynk F4
{}^2\!F_4 & \dynk[fold]F4
G_2 & \dynk G2
{}^2G_2 & \dynk[fold]G2
\end{dynkinTable}
\endgroup
\section{Typesetting mathematical names of Dynkin diagrams}
The \verb!\dynkinName! command, with the same syntax as \verb!\dynkin!, typesets a default name of your diagram in \LaTeX.
It is perhaps only useful when automatically generating a large collection of Dynkin diagrams in a computer program.
\begin{tcblisting}{title={Name of a diagram}}
\dynkinName[label,extended]B7
\dynkinName A[2]{even}
\dynkinName[Coxeter]B7
\dynkinName[label,extended]B*
\dynkinName D[3]4
\end{tcblisting}
\section{Connecting Dynkin diagrams}\label{section:name}
We can make some sophisticated folded diagrams by drawing multiple diagrams, each with a name:
\begin{tcblisting}{title={Name a diagram}}
\dynkin[name=Bob]D6
\end{tcblisting}
We can then connect the two with folding edges:
\begin{tcblisting}{title={Connect diagrams}}
\begin{dynkinDiagram}[name=upper]A3
\node (current) at ($(upper root 1)+(0,-.3cm)$) {};
\dynkin[at=(current),name=lower]A3
\begin{pgfonlayer}{Dynkin behind}
\foreach \i in {1,...,3}%
{%
\draw[/Dynkin diagram/fold style]
($(upper root \i)$)
-- ($(lower root \i)$);%
}%
\end{pgfonlayer}
\end{dynkinDiagram}
\end{tcblisting}
The following diagrams arise in the Satake diagrams of the pseudo-Riemannian symmetric spaces \cite{Baba:2009}.
\begin{tcblisting}{}
\pgfkeys{/Dynkin diagram,edge length=.5cm,fold radius=.5cm}
\begin{tikzpicture}
\dynkin[name=1]A{IIIb}
\node (a) at (-.3,-.4){};
\dynkin[name=2,at=(a)]A{IIIb}
\begin{pgfonlayer}{Dynkin behind}
\foreach \i in {1,...,7}%
{%
\draw[/Dynkin diagram/fold style]
($(1 root \i)$)
--
($(2 root \i)$);%
}%
\end{pgfonlayer}
\end{tikzpicture}
\end{tcblisting}
\begin{tcblisting}{}
\pgfkeys{/Dynkin diagram,
edge length=.75cm,
edge/.style={draw=example-color,double=black,very thick}}
\begin{tikzpicture}
\foreach \d in {1,...,4}
{
\node (current) at ($(\d*.05,\d*.3)$){};
\dynkin[name=\d,at=(current)]D{oo.oooo}
}
\begin{pgfonlayer}{Dynkin behind}
\foreach \i in {1,...,6}%
{%
\draw[/Dynkin diagram/fold style] ($(1 root \i)$) -- ($(2 root \i)$);%
\draw[/Dynkin diagram/fold style] ($(2 root \i)$) -- ($(3 root \i)$);%
\draw[/Dynkin diagram/fold style] ($(3 root \i)$) -- ($(4 root \i)$);%
}%
\end{pgfonlayer}
\end{tikzpicture}
\end{tcblisting}
\section{Other examples}
\begin{filecontents*}{d44.tex}
\tikzset{/Dynkin diagram,
edge length=1cm,
fold radius=1cm,
label,
label*=true,
label macro/.code={\alpha_{#1}},
label macro*/.code={\beta_{#1}}}
\({}^1 D_4\) 4-ply tied straight:
\begin{dynkinDiagram}[ply=4]D[1]%
{****.*****.*****}
\dynkinFold 01
\dynkinFold 1{13}
\dynkinFold{13}{14}
\end{dynkinDiagram}
\({}^1 D_4\) 4-ply tied bending:
\begin{dynkinDiagram}[ply=4,label]D[1]%
{****.*****.*****}
\dynkinFold1{13}
\dynkinFold[bend right=65]0{14}
\end{dynkinDiagram}
\end{filecontents*}
\begingroup\input{d44}\endgroup
\VerbatimInput{d44.tex}
Below we draw the Vogan diagrams of some affine Lie superalgebras \cite{Ransingh:2013,Ransingh:unpub}.
\begingroup
\tikzset{/Dynkin diagram,
edge length=.35cm,
fold radius=.3cm,
label macro/.code=\labls{#1},
label,
label*=false,
root radius=.06cm}
\tcbset{text width=10cm}
\NewDocumentCommand\labls{m}%
{%
\ifcase#1%
{1}\or%
{1}\or%
{2}\or%
{2}\or%
{2}\or%
{2}\or%
{2}\or%
{1}\or%
{1}\or%
{1}\or%
{1}\or%
{1}\or%
{1}\or%
\else\typeout{What? `#1'}%
\fi%
}%
\NewDocumentCommand\lablIt{m}%
{%
\ifnum#1=0\relax%
1%
\else
2%
\fi%
}%
\renewcommand{\wdtA}{2cm}
\NewDocumentEnvironment{Category}{m}%
{%
\begin{tcolorbox}[title={\(#1\)},breakable]{}
}%
{%
\end{tcolorbox}
}%
\begin{Category}{\mathfrak{sl}\left(2m|2n\right)^{(2)}}
\begin{tcblisting}{}
\begin{dynkinDiagram}[ply=2,label]{B}[1]{oo.oto.oo}
\dynkinLabelRoot*71
\end{dynkinDiagram}
\end{tcblisting}
\begin{tcblisting}{}
\dynkin[label]B[1]{oo.oto.oo}
\end{tcblisting}
\begin{tcblisting}{}
\dynkin[ply=2,label]B[1]{oo.Oto.Oo}
\end{tcblisting}
\begin{tcblisting}{}
\dynkin[label]B[1]{oo.Oto.Oo}
\end{tcblisting}
\begin{tcblisting}{}
\dynkin[label]D[1]{oo.oto.ooo}
\end{tcblisting}
\begin{tcblisting}{}
\dynkin[label]D[1]{oO.otO.ooo}
\end{tcblisting}
\begin{tcblisting}{}
\dynkin[label,fold]D[1]{oo.oto.ooo}
\end{tcblisting}
\end{Category}
\begin{Category}{\mathfrak{sl}\left(2m+1|2n\right)^2}
\begin{tcblisting}{}
\dynkin[label]B[1]{oo.oto.oo}
\end{tcblisting}
\begin{tcblisting}{}
\dynkin[label]B[1]{oO.oto.oO}
\end{tcblisting}
\begin{tcblisting}{}
\dynkin[label,fold]B[1]{oo.oto.oo}
\end{tcblisting}
\end{Category}
\begin{Category}{\mathfrak{sl}\left(2m+1|2n+1\right)^2}
\begin{tcblisting}{}
\dynkin[label]D[2]{o.oto.oo}
\end{tcblisting}
\begin{tcblisting}{}
\dynkin[label]D[2]{o.OtO.oo}
\end{tcblisting}
\end{Category}
\begin{Category}{\mathfrak{sl}\left(2|2n+1\right)^{(2)}}
\begin{tcblisting}{}
\dynkin[ply=2,label,double edges]B[1]{oo.Oto.Oo}
\end{tcblisting}
\begin{tcblisting}{}
\dynkin[ply=2,label,double fold]B[1]{oo.Oto.Oo}
\end{tcblisting}
\begin{tcblisting}{}
\dynkin[ply=2,label,double edges]B[1]{oo.OtO.oo}
\end{tcblisting}
\begin{tcblisting}{}
\dynkin[ply=2,label,double fold]B[1]{oo.OtO.oo}
\end{tcblisting}
\end{Category}
\begin{Category}{\mathfrak{sl}\left(2|2n\right)^{(2)}}
\begin{tcblisting}{}
\dynkin[ply=2,label,double edges]D[1]{oo.oto.ooo}
\end{tcblisting}
\begin{tcblisting}{}
\dynkin[ply=2,label,double fold left]D[1]{oo.oto.ooo}
\end{tcblisting}
\end{Category}
\begin{Category}{\mathfrak{osp}\left(2m|2n\right)^{(2)}}
\begin{tcblisting}{}
\dynkin[label,label macro/.code={1}]D[2]{o.oto.oo}
\end{tcblisting}
\begin{tcblisting}{}
\dynkin[label,label macro/.code={1}]D[2]{o.Oto.Oo}
\end{tcblisting}
\end{Category}
\begin{Category}{\mathfrak{osp}\left(2|2n\right)^{(2)}}
\begin{tcblisting}{}
\dynkin[label,label macro/.code=\lablIt{#1},
affine mark=*]
D[2]{o.o.o.o*}
\end{tcblisting}
\begin{tcblisting}{}
\dynkin[label,label macro/.code=\lablIt{#1},
affine mark=*]
D[2]{o.O.o.o*}
\end{tcblisting}
\end{Category}
\begin{Category}{\mathfrak{sl}\left(1|2n+1\right)^{4}}
\begin{tcblisting}{}
\dynkin[label,label macro/.code={1}]D[2]{o.o.o.o*}
\end{tcblisting}
\begin{tcblisting}{}
\dynkin[label,label macro/.code={1}]D[2]{o.o.O.o*}
\end{tcblisting}
\end{Category}
\begin{Category}{A^1}
\begin{tcblisting}{}
\begin{tikzpicture}
\dynkin[name=upper]A{oo.t.oo}
\node (Dynkin current) at (upper root 1){};
\dynkinSouth
\dynkin[at=(Dynkin current),name=lower]A{oo.t.oo}
\begin{pgfonlayer}{Dynkin behind}
\foreach \i in {1,...,5}{
\draw[/Dynkin diagram/fold style]
($(upper root \i)$) -- ($(lower root \i)$);
}
\end{pgfonlayer}
\end{tikzpicture}
\end{tcblisting}
\begin{tcblisting}{}
\dynkin[fold]A[1]{oo.t.ooooo.t.oo}
\end{tcblisting}
\begin{tcblisting}{}
\dynkin[fold,affine mark=t]A[1]{oo.o.ootoo.o.oo}
\end{tcblisting}
\begin{tcblisting}{}
\dynkin[affine mark=t]A[1]{o*.t.*o}
\end{tcblisting}
\end{Category}
\begin{Category}{B^1}
\begin{tcblisting}{}
\dynkin[affine mark=*]A[2]{o.oto.o*}
\end{tcblisting}
\begin{tcblisting}{}
\dynkin[affine mark=*]A[2]{o.oto.o*}
\end{tcblisting}
\begin{tcblisting}{}
\dynkin[affine mark=*]A[2]{o.ooo.oo}
\end{tcblisting}
\begin{tcblisting}{}
\dynkin[odd]A[2]{oo.*to.*o}
\end{tcblisting}
\begin{tcblisting}{}
\dynkin[odd,fold]A[2]{oo.oto.oo}
\end{tcblisting}
\begin{tcblisting}{}
\dynkin[odd,fold]A[2]{o*.oto.o*}
\end{tcblisting}
\end{Category}
\begin{Category}{D^1}
\begin{tcblisting}{}
\dynkin D{otoo}
\end{tcblisting}
\begin{tcblisting}{}
\dynkin D{ot*o}
\end{tcblisting}
\begin{tcblisting}{}
\dynkin[fold]D{otoo}
\end{tcblisting}
\end{Category}
\begin{Category}{C^1}
\begin{tcblisting}{}
\dynkin[double edges,fold,affine mark=t,odd]A[2]{to.o*}
\end{tcblisting}
\begin{tcblisting}{}
\dynkin[double edges,fold,affine mark=t,odd]A[2]{t*.oo}
\end{tcblisting}
\end{Category}
\begin{Category}{F^1}
\begin{tcblisting}{}
\begin{dynkinDiagram}A{oto*}%
\dynkinQuadrupleEdge 12%
\dynkinTripleEdge 43%
\end{dynkinDiagram}%
\end{tcblisting}
\begin{tcblisting}{}
\begin{dynkinDiagram}A{*too}%
\dynkinQuadrupleEdge 12%
\dynkinTripleEdge 43%
\end{dynkinDiagram}%
\end{tcblisting}
\end{Category}
\begin{Category}{G^1}
\begin{tcblisting}{}
\begin{dynkinDiagram}A{ot*oo}%
\dynkinQuadrupleEdge 12%
\dynkinDefiniteDoubleEdge 43%
\end{dynkinDiagram}%
\end{tcblisting}
\begin{tcblisting}{}
\begin{dynkinDiagram}A{oto*o}%
\dynkinQuadrupleEdge 12%
\dynkinDefiniteDoubleEdge 43%
\end{dynkinDiagram}%
\end{tcblisting}
\begin{tcblisting}{}
\begin{dynkinDiagram}A{*too*}%
\dynkinQuadrupleEdge 12%
\dynkinDefiniteDoubleEdge 43%
\end{dynkinDiagram}%
\end{tcblisting}
\begin{tcblisting}{}
\begin{dynkinDiagram}A{*tooo}%
\dynkinQuadrupleEdge 12%
\dynkinDefiniteDoubleEdge 43%
\end{dynkinDiagram}%
\end{tcblisting}
\end{Category}
\endgroup
\tikzset{/Dynkin diagram,label macro/.code={},label=false}
\section{Example: the complex simple Lie algebras}
\begin{filecontents*}{simple-lie-algebras.tex}
\NewDocumentEnvironment{bunch}{}%
{
\renewcommand*{\arraystretch}{1}
\begin{array}{@{}ll@{}}
\\ \midrule
}{
\\ \midrule\end{array}
}
\small
\NewDocumentCommand\nct{mm}
{
\newcolumntype{#1}{>{\columncolor[gray]{.9}}>{$}m{#2cm}<{$}}
}
\nct{G}{.3}
\nct{D}{2.1}
\nct{W}{3}
\nct{R}{3.7}
\nct{S}{3}
\NewDocumentCommand\LieG{}{\mathfrak{g}}
\NewDocumentCommand\W{om}
{
\ensuremath{
\mathbb{Z}^{#2}
\IfValueT{#1}{/\left<#1\right>}
}
}
\renewcommand*{\arraystretch}{1.5}
\NewDocumentCommand\quo{}{\text{quotient of } E_8}
\begin{longtable}{@{}GDWRS@{}}
\LieG&
\text{Diagram}&
\text{Weights}&
\text{Roots}&
\text{Simple roots}\\
\midrule\endfirsthead
\LieG&
\text{Diagram}&
\text{Weights}&
\text{Roots}&
\text{Simple roots}\\
\midrule\endhead
A_n&
\dynkin A{}&
\frac1{n+1}\W[\sum e_j]{n+1}&
e_i-e_j&
e_i-e_{i+1}\\
B_n&
\dynkin B{}&
\frac12\W n&
\pm e_i, \pm e_i \pm e_j, i\ne j&
e_i-e_{i+1}, e_n\\
C_n&
\dynkin C{}&
\W n&
\pm 2 e_i, \pm e_i \pm e_j, i\ne j&
e_i-e_{i+1}, 2e_n\\
D_n&
\dynkin D{}&
\frac12\W n&
\pm e_i \pm e_j, i\ne j &
\begin{bunch}
e_i-e_{i+1},&i\le n-1\\
e_{n-1}+e_n
\end{bunch}\\
E_8&
\dynkin E8&
\frac12\W 8&
\begin{bunch}
\pm2e_i\pm2e_j,&i\ne j,\\
\sum_i(-1)^{m_i}e_i,&\sum m_i \text{ even}
\end{bunch}&
\begin{bunch}
2e_1-2e_2,\\
2e_2-2e_3,\\
2e_3-2e_4,\\
2e_4-2e_5,\\
2e_5-2e_6,\\
2e_6+2e_7,\\
-\sum e_j,\\2e_6-2e_7
\end{bunch}\\
E_7&
\dynkin E7&
\frac12\W[e_1-e_2]8&
\quo&
\quo\\
E_6&
\dynkin E6&
\frac13\W[e_1-e_2,e_2-e_3]8&
\quo&
\quo\\
F_4&
\dynkin F4&
\W4&
\begin{bunch}
\pm 2e_i,\\
\pm 2e_i \pm 2e_j, \quad i \ne j,\\
\pm e_1 \pm e_2 \pm e_3 \pm e_4
\end{bunch}&
\begin{bunch}
2e_2-2e_3,\\
2e_3-2e_4,\\
2e_4,\\
e_1-e_2-e_3-e_4
\end{bunch}\\
G_2&
\dynkin G2&
\W[\sum e_j]3&
\begin{bunch}
\pm(1,-1,0),\\
\pm(-1,0,1),\\
\pm(0,-1,1),\\
\pm(2,-1,-1),\\
\pm(1,-2,1),\\
\pm(-1,-1,2)
\end{bunch}
&
\begin{bunch}
(-1,0,1),\\
(2,-1,-1)
\end{bunch}
\end{longtable}
\end{filecontents*}
\begingroup
\input{simple-lie-algebras.tex}
\endgroup
\VerbatimInput{simple-lie-algebras.tex}
\section{An example of Mikhail Borovoi}
\begin{filecontents*}{borovoi.tex}
\tikzset{
big arrow/.style={
-Stealth,
line cap=round,
line width=1mm,
shorten <=1mm,
shorten >=1mm}
}
\newcommand\catholic[2]{
\draw[big arrow,green!25!white] (root #1) to (root #2);
}
\newcommand\protestant[2]{
\begin{scope}[transparency group, opacity=.25]
\draw[big arrow,orange] (root #1) to (root #2);
\end{scope}
}
\begin{dynkinDiagram}[%
edge length=1.2cm,
indefinite edge/.style={
thick,
loosely dotted
},
labels*={0,1,2,3,\ell-3,\ell-2,\ell-1,\ell}]
D[1]{}
\catholic 06\catholic 17
\protestant 70\protestant 61
\end{dynkinDiagram}
\end{filecontents*}
\begingroup
\begin{center}
\input{borovoi.tex}
\end{center}
\endgroup
\VerbatimInput{borovoi.tex}
\section{Syntax}
The syntax is \verb!\dynkin[<options>]{<letter>}[<twisted rank>]{<rank>}! where \verb!<letter>! is \verb!A!, \verb!B!, \verb!C!, \verb!D!, \verb!E!, \verb!F! or \verb!G!, the family of root system for the Dynkin diagram, \verb!<twisted rank>! is \verb!0!, \verb!1!, \verb!2!, \verb!3! (default is \verb!0!) representing:
\[
\renewcommand*{\arraystretch}{1}
\begin{array}{rp{8cm}}
0 & finite root system \\ \hline
1 & affine extended root system, i.e. of type \({}^{(1)}\) \\
2 & affine twisted root system of type \({}^{(2)}\) \\
3 & affine twisted root system of type \({}^{(3)}\) \\
\end{array}
\]
and \verb!<rank>! is
\begin{enumerate}
\item
an integer representing the rank or
\item
blank to represent an indefinite rank or
\item
the name of a Satake diagram as in section~\ref{section:Satake}.
\end{enumerate}
The environment syntax is \verb!\begin{dynkinDiagram}! followed by the same parameters as \verb!\dynkin!, then various Dynkin diagram and \TikZ{} commands, and then \verb!\end{dynkinDiagram}!.
\section{Options}
\newcommand*{\typ}[1]{\(\left<\texttt{#1}\right>\)}
\newcommand*{\optionLabel}[3]{%%
\multicolumn{2}{l}{\(\texttt{#1}=\texttt{#2}\),} \\
\multicolumn{2}{l}{\(\textrm{default}: \texttt{#3}\)} \\
}%%
\renewcommand*{\arraystretch}{1}
\par\noindent%
\begin{longtable}{p{1cm}p{10cm}}
\endfirsthead
\caption{\dots continued}\\
\endhead
\multicolumn{2}{c}{continued \dots}\\
\endfoot
\endlastfoot
\optionLabel{*/.style}{\typ{TikZ style data}}{solid,draw=black,fill=black}
& style for roots like \dynkin{A}{*} \\
\optionLabel{o/.style}{\typ{TikZ style data}}{solid,draw=black,fill=white}
& style for roots like \dynkin{A}{o} \\
\optionLabel{O/.style}{\typ{TikZ style data}}{solid,draw=black,fill=white}
& style for roots like \dynkin{A}{O} \\
\optionLabel{t/.style}{\typ{TikZ style data}}{solid,draw=black,fill=black}
& style for roots like \dynkin{A}{t} \\
\optionLabel{x/.style}{\typ{TikZ style data}}{solid,draw=black,line cap=round}
& style for roots like \dynkin{A}{x} \\
\optionLabel{X/.style}{\typ{TikZ style data}}{solid,draw=black,thick,line cap=round}
& style for roots like \dynkin{A}{X} \\
\optionLabel{affine mark}{o,O,t,x,X,*}{*}
& default root mark for root zero in an affine Dynkin diagram \\
\optionLabel{arrow shape/.style}{TikZ style data}{-\{Computer Modern Rightarrow[black]\}}
& shape of arrow heads for most Dynkin diagrams that have arrows\\
\optionLabel{arrow style}{TikZ style data}{black}
& set to override the default style for the arrows in nonsimply laced Dynkin diagrams, including length, width, line width and color \\
\optionLabel{arrows}{\typ{true or false}}{true}
& whether to draw the arrows that arise along the edges \\
\optionLabel{backwards}{\typ{true or false}}{false}
& whether to reverse right to left \\
\optionLabel{ceref}{\typ{true or false}}{false}
& whether to draw roots in a ``ceref'' style \\
\optionLabel{Coxeter}{\typ{true or false}}{false}
& whether to draw a Coxeter diagram, rather than a Dynkin diagram \\
\optionLabel{double edges}{\typ{}}{not set}
& set to override the \texttt{fold} style when folding roots together in a Dynkin diagram, so that the foldings
are indicated with double edges (like those of an \(F_4\) Dynkin diagram without arrows) \\
\optionLabel{double fold}{\typ{}}{not set}
& set to override the \texttt{fold} style when folding roots together in a Dynkin diagram, so that the foldings
are indicated with double edges (like those of an \(F_4\) Dynkin diagram without arrows), but filled in solidly \\
\optionLabel{double left}{\typ{}}{not set}
& set to override the \texttt{fold} style when folding roots together at the left side of a Dynkin diagram, so that the foldings are indicated with double edges (like those of an \(F_4\) Dynkin diagram without arrows) \\
\optionLabel{double fold left}{\typ{}}{not set}
& set to override the \texttt{fold} style when folding roots together at the left side of a Dynkin diagram, so that the foldings are indicated with double edges (like those of an \(F_4\) Dynkin diagram without arrows), but filled in solidly \\
\optionLabel{double right}{\typ{}}{not set}
& set to override the \texttt{fold} style when folding roots together at the right side of a Dynkin diagram, so that the foldings are indicated with double edges (like those of an \(F_4\) Dynkin diagram without arrows) \\
\optionLabel{double fold right}{\typ{}}{not set}
& set to override the \texttt{fold} style when folding roots together at the right side of a Dynkin diagram, so that the foldings are indicated with double edges (like those of an \(F_4\) Dynkin diagram without arrows), but filled in solidly\\
\optionLabel{edge label/.style}{TikZ style data}{text height=0,text depth=0,label distance=-2pt}
& style of edge labels in the Dynkin diagram, as found, for example, on some Coxeter diagrams \\
\optionLabel{edge length}{\typ{number}cm}{.35cm}
& distance between nodes in the Dynkin diagram \\
\optionLabel{edge/.style}{TikZ style data}{solid,draw=black,fill=white,thin}
& style of edges in the Dynkin diagram \\
\optionLabel{fold}{\typ{true or false}}{true}
& whether, when drawing Dynkin diagrams, to draw them 2-ply\\
\optionLabel{fold left}{\typ{true or false}}{true}
& whether to fold the roots on the left side of a Dynkin diagram\\
\optionLabel{fold radius}{\typ{length}}{.3cm}
& the radius of circular arcs used in curved edges of folded Dynkin diagrams\\
\optionLabel{fold right}{\typ{true or false}}{true}
& whether to fold the roots on the right side of a Dynkin diagram\\
\optionLabel{fold left style/.style}{\typ{TikZ style data}}{}
& style to override the \texttt{fold} style when folding roots together on the left half of a Dynkin diagram \\
\optionLabel{fold right style/.style}{\typ{TikZ style data}}{}
& style to override the \texttt{fold} style when folding roots together on the right half of a Dynkin diagram \\
\optionLabel{fold style/.style}{\typ{TikZ style data}}{solid,draw=black!40,fill=none,line width=radius}
& when drawing folded diagrams, style for the fold indicators\\
\optionLabel{indefinite edge ratio}{\typ{float}}{1.6}
& ratio of indefinite edge lengths to other edge lengths\\
\optionLabel{indefinite edge/.style}{\typ{TikZ style data}}{solid,draw=black,fill=white,thin,densely dotted}
& style of the dotted or dashed middle third of each indefinite edge\\
\optionLabel{involutions}{\typ{semicolon separated list of pairs}}
{} & involution double arrows to draw\\
\optionLabel{Kac}{\typ{true or false}}{false}
& whether to draw in the style of \cite{Kac:1990} \\
\optionLabel{label}{true or false}{false}
& whether to label the roots according to the current labelling scheme\\
\optionLabel{label*}{\typ{true or false}}{false}
& whether to label the roots at alterative label locations according to the current labelling scheme\\
\optionLabel{label macro}{\typ{1-parameter \TeX{} macro}}{\texttt{\#1}}
& the current labelling scheme for roots\\
\optionLabel{label macro*}{\typ{1-parameter \TeX{} macro}}{\texttt{\#1}}
& the current labelling scheme for alternate roots\\
\optionLabel{label height}{\typ{1-parameter \TeX{} macro}}{b}
& the current maximal height of text labels for the roots, set by giving mathematics text of that height\\
\optionLabel{label depth}{\typ{1-parameter \TeX{} macro}}{g}
& the current maximal depth of text labels for the roots, set by giving mathematics text of that depth\\
\optionLabel{make indefinite edge}{\typ{edge pair \(i\)-\(j\) or list of such}}{\{\}}
& edge pair or list of edge pairs to treat as having indefinitely many roots on them\\
\optionLabel{mark}{\typ{o,O,t,x,X,*}}{*}
& default root mark \\
\optionLabel{name}{\typ{string}}{anonymous}
& A name for the Dynkin diagram, with \texttt{anonymous} treated as a blank; see section~\ref{section:name}\\
\optionLabel{ordering}{\typ{Adams, Bourbaki, Carter, Dynkin, Kac}}{Bourbaki}
& which ordering of the roots to use in exceptional root systems as in section~\ref{section:order}\\
\optionLabel{parabolic}{\typ{integer}}{0}
& A parabolic subgroup with specified integer, where the integer
is computed as \(n=\sum 2^{i-1} a_i\), \(a_i=0\) or \(1\), to say that root \(i\) is crossed, i.e. a noncompact root\\
\optionLabel{ply}{\typ{0,1,2,3,4}}{0}
& how many roots get folded together, at most\\
\optionLabel{reverse arrows}{\typ{true or false}}{true}
& whether to reverse the direction of the arrows that arise along the edges\\
\optionLabel{root radius}{\typ{number}cm}{.05cm}
& size of the dots and of the crosses in the Dynkin diagram \\
\optionLabel{text style}{\typ{TikZ style data}}{scale=.7}
& Style for any labels on the roots\\
\optionLabel{upside down}{\typ{true or false}}{false}
& whether to reverse up to down\\
\end{longtable}
\par\noindent{}All other options are passed to TikZ.
\nocite{*}
\bibliographystyle{amsplain}
\bibliography{dynkin-diagrams}
\end{document}
|