summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/dynkin-diagrams/EulerProducts.tex
blob: f087ce48b644b612724f8d48e5a6f780c4a33d40 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
\tikzset{/Dynkin diagram,ordering=Dynkin,label macro/.code={\alpha_{#1}}}
\newcounter{EPNo}
\setcounter{EPNo}{0}
\NewDocumentCommand\EP{smmmm}%
{%
\stepcounter{EPNo}\roman{EPNo}. &
\def\eL{.6cm}
\IfStrEqCase{#2}%
{%
{D}{\gdef\eL{1cm}}%
{E}{\gdef\eL{.75cm}}%
{F}{\gdef\eL{.35cm}}%
{G}{\gdef\eL{.35cm}}%
}%
\tikzset{/Dynkin diagram,edge length=\eL}
\IfBooleanTF{#1}%
{\dynkin[backwards,labels*={#4},labels={#5}]{#2}{#3}}
{\dynkin[labels*={#4},labels={#5}]{#2}{#3}}
\\
}%
\begin{longtable}{MM}
\caption{Dynkin diagrams from Euler products \cite{Langlands:1967}}\\
\endfirsthead
\caption{\dots continued}\\
\endhead
\multicolumn{2}{c}{continued \dots}\\
\endfoot
\endlastfoot
\EP{A}{***.**}{1,1,1,1,1}{,1,2,n-1,n}
\EP{A}{***.**}{1,1,1,1,1}{1,2,n-1,n}
\EP{A}{**.***.*}{1,1,1,1,1,1}{1,2,m-1,,m,n}
\EP{B}{**.***}{2,2,2,2,1}{1,2,n-1,n}
\EP*{B}{***.**}{2,2,2,2,1}{n,n-1,2,1,}
\EP{C}{**.***}{1,1,1,1,2}{1,2,n-1,}
\EP*{C}{***.**}{1,1,1,1,2}{n,n-1,2,1,}
\EP{D}{**.****}{1,1,1,1,1,1}{1,2,n-2,n-1,n}
\EP{D}{**.****}{1,1,1,1,1,1}{1,2,n-2,n-1,n}
\EP{E}{6}{1,1,1,1,1,1}{1,...,5}
\EP*{E}{7}{1,1,1,1,1,1,1}{6,...,1}
\EP{E}{7}{1,1,1,1,1,1,1}{1,...,6}
\EP*{E}{8}{1,1,1,1,1,1,1,1}{7,...,1}
\EP{E}{8}{1,1,1,1,1,1,1,1}{1,...,7}
\EP{G}{2}{1,3}{,1}
\EP{G}{2}{1,3}{1}
\EP{B}{**.*.**}{2,2,2,2,1}{,1,2,n-1,n}
\EP{F}{4}{1,1,2,2}{,3,2,1}
\EP{C}{3}{1,1,2}{,2,1}
\EP{C}{**.***}{1,1,1,1,2}{,1,n-2,n-1,n}
\EP*{B}{3}{2,2,1}{1,2}
\EP{F}{4}{1,1,2,2}{1,2,3}
\EP{D}{**.****}{1,1,1,1,1,1}{1,2,n-2,n-2,n,n}
\EP{E}{6}{1,1,1,1,1,1}{1,2,3,4,,5}
\EP{E}{6}{1,1,1,1,1,1}{1,2,3,5,,4}
\EP*{E}{7}{1,1,1,1,1,1,1}{,5,...,1,6}
\EP*{E}{7}{1,1,1,1,1,1,1}{,6,4,3,2,1,5}
\EP*{E}{8}{1,1,1,1,1,1,1,1}{,6,...,1,7}
\EP*{E}{8}{1,1,1,1,1,1,1,1}{,7,5,4,3,2,1,6}
\EP*{E}{7}{1,1,1,1,1,1,1}{5,...,1,,6}
\EP*{E}{7}{1,1,1,1,1,1,1}{1,...,5,,6}
\EP*{E}{8}{1,1,1,1,1,1,1,1}{6,...,1,,7}
\end{longtable}