summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/circuit-macros/examples/extras/Lyap.m4
blob: e01d365fc02f528aa04d43c26fb06a3f885292f4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
.PS
# Lyap.m4
threeD_init
scale = 1/1.2

viewaz = 30
viewel = 18
setview(viewaz,viewel)

Origin: Project(0,0,0)
#                             Components of view vector W
w1 = view3D1
w2 = view3D2
w3 = view3D3
#                             Shape factor of the ellipse on the xy plane
q = Cos(40)

#                             cost function
h = 0.5
c = 1
#                             The projected ellipse is (x/q)^2 + y^2 = c.
#                             The cost is v = c+h
define(`vs',`(`$2')*q*cos(`$1'),(`$2')*sin(`$1')')
define(`vp',`vs(`$1',`$2'),0')
define(`vx',`sum3D(vp(`$1',`$2'),0,0,h+(`$2')^2)')

#                             The gradient of v is (2x/q, 2y, -1) and the line
#                             separating front and back is W^T * grad(v) = 0
#                             This line intersects the projected ellipse at
#                             x1,y1 and x2,y2
  ap = w2^2*q^2/w1^2+1
  bp = -w2*w3*q^2/w1^2
  cp = w3^2*q^2/4/w1^2-c
  m = sqrt(bp^2-4*ap*cp)
  y1 = (-bp+m)/ap/2 ; x1 = (w3-2*y1*w2)*q/2/w1
  y2 = (-bp-m)/ap/2 ; x2 = (w3-2*y2*w2)*q/2/w1
  t1 = atan2(y1,x1)
  t2 = atan2(y2,x2)
  theta1 = min(t1,t2)
  theta2 = max(t1,t2)

#                             tangent curve
  nT = 11
  for i = 0 to nT do {
    y = y1 + (y2-y1)/nT*i
    theta = atan2(y,(w3-2*y*w2)*q/2/w1)
    r = y/sin(theta)
    T[i]: Project(vx(theta,r))
    }

#                             front and back parts of the top curve
  n = 12
  for i = 0 to n do {
    theta = theta1 + (theta2-theta1)/n*i
    F[i]: Project(vx(theta,c))
    Fp[i]: Project(vp(theta,c))
    }
  for i = 0 to n do {
    theta = theta2 + (theta1+twopi_-theta2)/n*i
    B[i]: Project(vx(theta,c))
    Bp[i]: Project(vp(theta,c))
    }

#                             trajectory
rotations = 1.55
nx = 7
thetas = 75*dtor_
thetaf = thetas - rotations*twopi_
rx = c*0.9
beta = exp(log(.5)/20)

define(`defX',` rx = `$5' ; np = np-1
  ts = `$1' ; tf = `$2'
  for i = 0 to `$3' do {
    tha = ts + (tf-ts)*i/(`$3')
    for thx = tha to -twopi_ by twopi_ do {}
    `$4'[i]: Project(vx(thx,rx))
    Xp[np]: Project(vp(thx,rx))
    np = np+1
    rx = beta*rx
    }')

np = 1
defX(thetas,theta1,nx,X1,rx)
defX(theta1,theta2-twopi_,nx,X2,rx/beta)
defX(theta2-twopi_,theta1-twopi_,nx,X3,rx/beta)
defX(theta1-twopi_,thetaf,5,X4,rx/beta)

#                             First draw the inside back
#                             B is the back curve
#                             T is the outline
ifpstricks(`
\psset{gradbegin=lightgray,gradend=darkgray,gradlines=1000}
\pscustom[fillstyle=gradient,gradmidpoint=0.7]{
  fitcurve(B,n)
  for i = 0 to nT do {TT[i]: T[nT-i] }
  fitcurve(TT,nT)
\relax} ',
` fitcurve(B,n)
  for i = 0 to nT do {TT[i]: T[nT-i] }
  fitcurve(TT,nT) ')

#                             Centre axis
thinlines_
line from Origin to Project(0,0,h)
#                             F[0] is the leftmost point of the front curve
line from F[0] to Fp[0]
#                             F[n] is the rightmost point of the front curve
line from F[n] to Fp[n]
thicklines_

#                             Now draw the outside front
ifpstricks(`
\newgray{gray1}{0.9}%
\newgray{gray2}{0.4}%
\psset{gradbegin=gray1,gradend=gray2,gradlines=1000}
\pscustom[linewidth=0pt,fillstyle=gradient,gradmidpoint=0.99]{
  fitcurve(F,n)
  fitcurve(T,nT)
\relax} ',
` shade(1,fitcurve(F,n)
  fitcurve(T,nT)) ')
#                             T is the limit curve of visibility
  fitcurve(T,nT)
#                             F is the top front
  fitcurve(F,n)
#                             Front and back projections of the top on xy
  fitcurve(Fp,n)
  fitcurve(Bp,n)

#                             The trajectory in pieces, to allow dashed parts
  fitcurve(X1,nx)
  fitcurve(X2,nx,dotted 0.025)
  fitcurve(X3,nx)
  fitcurve(X4,3,dotted 0.015)
  arca(from X4[4] to X4[3],ccw,0.3,<-)

#                             Projected trajectory
  np = np-2
  fitcurve(Xp,np-1)
  arca(from Xp[np] to Xp[np-2],ccw,0.18,<-)
  "$X(t)$" at Xp[np]-(2bp__,0) ljust

#                             Axes and vertical lines
thinlines_
  line from X1[0] to Xp[0]
  line from X4[4] to Xp[np]
arrow from Origin to Project(1.5,0,0)
"$x_1$" rjust below
arrow from Origin to Project(0,1.5,0)
"$x_2$" ljust
line dashed from Project(0,0,h) to F[n/2] chop 0 chop arrowht/4
arrow from F[n/2] to Project(0,0,2)
"$v(X)$" ljust

"`${0}$'" at Origin+(0,1 pt__) below
"$\Omega$" at Project(0,0.9*c,0)+(0,3bp__) above
"`$v(X) = c$'" at (Project(vp(100*dtor_,c)))+(2bp__,0) above ljust

.PE