1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
|
% arara: pdflatex: { interaction: nonstopmode }
% arara: biber
% arara: pdflatex: { interaction: nonstopmode }
% arara: pdflatex: { interaction: nonstopmode }
% --------------------------------------------------------------------------
% the CHEMMACROS package
%
% comprehensive support for typesetting chemistry documents
%
% --------------------------------------------------------------------------
% Clemens Niederberger
% --------------------------------------------------------------------------
% https://github.com/cgnieder/chemmacros/
% contact@mychemistry.eu
% --------------------------------------------------------------------------
% If you have any ideas, questions, suggestions or bugs to report, please
% feel free to contact me.
% --------------------------------------------------------------------------
% Copyright 2011--2022 Clemens Niederberger
%
% This work may be distributed and/or modified under the
% conditions of the LaTeX Project Public License, either version 1.3c
% of this license or (at your option) any later version.
% The latest version of this license is in
% http://www.latex-project.org/lppl.txt
% and version 1.3 or later is part of all distributions of LaTeX
% version 2008/05/04 or later.
%
% This work has the LPPL maintenance status `maintained'.
%
% The Current Maintainer of this work is Clemens Niederberger.
% --------------------------------------------------------------------------
\documentclass{chemmacros-manual}
\usepackage[T1]{fontenc}
\addbibresource{\jobname.bib}
\addbibresource{cnltx.bib}
\begin{filecontents*}[overwrite]{\jobname.bib}
@book{iupac:greenbook,
author = {E. Richard Cohan and Tomislav Cvita\v{s} and Jeremy G. Frey and
Bertil Holmstr\"om and Kozo Kuchitsu and Roberto Marquardt and Ian Mills and
Franco Pavese and Martin Quack and J\"urgen Stohner and Herbert L. Strauss and
Michio Takami and Anders J Thor} ,
title = {``Quantities, Symbols and Units in Physical Chemistry'', \acs{iupac}
Green Book} ,
shorttitle = {The \acs{iupac} Green Book} ,
sorttitle = {Quantities, Symbols and Units in Physical Chemistry} ,
indexsorttitle = {Quantities, Symbols and Units in Physical Chemistry} ,
edition = {3rd Edition. 2nd Printing} ,
year = {2008} ,
publisher = {\acs{iupac} \&\ RSC Publishing, Cambridge}
}
@book{iupac:redbook,
author = {Neil G. Connelly and Ture Damhus and Richard M. Hartshorn and
Alan T. Hutton} ,
title = {``Nomenclature of Inorganic Chemistry'', \acs{iupac} Red Book} ,
shorttitle = {The \acs{iupac} Red Book} ,
sorttitle = {Nomenclature of Inorganic Chemistry} ,
indexsorttitle = {Nomenclature of Inorganic Chemistry} ,
year = {2005} ,
publisher = { \acs{iupac} \&\ RSC Publishing, Cambridge} ,
isbn = {0-85404-438-8}
}
@book{iupac:bluebook,
author = {R. Panico and W. H. Powell and J-C. Richer},
title = {``Nomenclature of Organic Chemistry, Sections A, B, C, D, E, F,
and H'', \acs{iupac} Blue Book},
shorttitle = {The \acs{iupac} Blue Book} ,
sorttitle = {Nomenclature of Organic Chemistry} ,
indexsorttitle = {Nomenclature of Organic Chemistry} ,
edition = {\mkbibacro{draft}},
date = {2004-10-07},
url =
{http://old.iupac.org/reports/provisional/abstract04/BB-prs310305/CompleteDraft.pdf},
urldate = {2013-07-07}
}
@misc{eu:ghsystem_regulation,
author = {{The European Parliament and The Council of the European Union}},
sortname = {European Parliament and The Council of the European Union} ,
title = {Regulation (EC) No 1272/2008 of the European Parliament and of
the Council} ,
subtitle = {on classification, labelling and packaging of substances and
mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and
amending Regulation (EC) No 1907/2006} ,
journal = {Official Journal of the European Union} ,
date = {2008-12-16}
}
@online{unece:ghsystem_implementation,
author = {{United Nations Economic Commission for Europe}} ,
title = {GHS Implementation} ,
url =
{http://www.unece.org/trans/danger/publi/ghs/implementation_e.html} ,
urldate = {2012-03-20} ,
date = {2012-03-20}
}
@online{mychemistry:chemmacros-dev,
author = {Clemens Niederberger} ,
title = {chemmacros development} ,
url = {http://www.mychemistry.eu/2015/06/chemmacros-development/} ,
urldate = {2015-07-16} ,
date = {2015-06-14}
}
@online{mychemistry:modular-chemmacros,
author = {Clemens Niederberger} ,
title = {modular chemmacros} ,
url = {http://www.mychemistry.eu/2015/06/modular-chemmacros/} ,
urldate = {2015-07-16} ,
date = {2015-06-08}
}
@online{mychemistry:chemmacros-update-how,
author = {Clemens Niederberger} ,
title = {a new chemmacros -- but how?} ,
url = {http://www.mychemistry.eu/2015/07/a-new-chemmacros-but-how/} ,
urldate = {2015-07-16} ,
date = {2015-07-15}
}
@package{pkg:glossaries-extra,
title = {glossaries-extra},
author = {Nicola L. C. Talbot},
date = {2020-04-01},
version = {1.45},
url = {https://ctan.org/pkg/glossaries-extra/}
}
@package{pkg:xltabular,
title = {xltabular},
author = {Herbert Voß and Rolf Niepraschk},
date = {2020-11-04},
version = {0.2e},
url = {https://ctan.org/pkg/xltabular/}
}
\end{filecontents*}
\newpackagename\chemformula{chemformula}
\newpackagename\ghsystem{ghsystem}
\newpackagename\chemgreek{chemgreek}
\newname\hensel{Martin Hensel}
\newname\pedersen{Bj\o rn Pedersen}
\newname\leandriis{Sonja K.}
\renewcommand*\dictumauthorformat[1]{#1}
\renewcommand*\raggeddictumtext{}
\AtBeginDocument{\renewcommand*\reftextfaraway[1]{starting on page~\pageref{#1}}}
\usepackage{bookmark}
\begin{document}
\part{Preliminaries}
\section{License}\label{sec:licence-requ-readme}
\license
\section{Motivation and Background}\label{sec:motiv-backgr}
This package grew from a small collection of personal helper macros back
in~2010 into a rather big package supporting various different chemical
typesetting tasks. I hope I have achieved the following points with this
package:
\begin{itemize}
\item Intuitive usage as far as the syntax of the commands is concerned.
\item A comprehensive set of macros! If there are any needs you might have
with respect to typesetting of chemistry which is not supported by this
package\footnote{Not including needs already solved by other packages such
as \pkg{chemnum} or \pkg{chemfig}.} then let me know so \chemmacros\ can
be extended.
\item The commands shall not only make typesetting easier and faster but
also the document source more readable with respect to semantics
(\code{\cs{ortho}-dichlorobenzene} is easier to read and understand than
\code{\cs*{textit}\Marg{o}-dichlorobenzene}); the first variant in my
opinion also is more in the spirit of \LaTeXe.
\item As much customizability as I could think of so every user can adapt
the commands to his or her own wishes. Every now and then users have
wishes which can't be solved with the available options. Almost always
I'll add options then. If you find something please contact me, see
section~\vref{sec:sugg-bug-reports}.
\item Default settings that are compliant with the recommendations of the
\acf{iupac}.
\end{itemize}
Especially the last point in the past needed some pushing from users to get
things right in many places. If you find anything not compliant with
\ac{iupac} recommendations please contact me, see
section~\vref{sec:sugg-bug-reports}. Don't forget to add references for the
corresponding \ac{iupac} recommendation.
\section{The Structure of \chemmacros}\label{sec:structure-chemmacros}
\subsection{General Structure}
Since version~5.0 the \chemmacros\ package has a strictly modular
structure\sinceversion{5.0}. On the one hand this eases maintenance but it
will also allow for easy and quick extension in the future. In a way it is a
logical consequence from \chemmacros' history: since version~2.0, \ie, since
the fall of~2011 \chemmacros\ already had modular options.
Since version~6.0 the different modules of \chemmacros\ are divided into three
groups:
\begin{enumerate}
\item Core modules which provide underlying functionality or basic
functionality which is not of direct interest from a user perspective but
might be if you plan to write a module yourself (see
section~\ref{sec:own-modules} for details).
\item Main modules which provide all the stuff for typesetting and which are
always loaded.
\item Additional modules which are also loaded in the default setup. They
are not loaded if \chemmacros\ is loaded with the minimal setup:
\cs*{usepackage}\Oarg{minimal}\Marg{chemmacros}.
\end{enumerate}
\subsection{\chemmacros' Options}\label{sec:using-chemm-opti}
Prior to v5.0 \chemmacros\ had quite a number of package options.
\chemmacros\ v6.0 has only two:
\begin{options}
\keybool{minimal}\Default{false}
Loads \chemmacros\ with the basic preset of modules.
\keyval{modules}{comma separated list of module names}\Default
When \option{minimal} is used this option allows to load additional
modules.
\end{options}
These are load-time option that only can be used in the optional argument of
\cs*{usepackage}. \emph{All} other of \chemmacros' options are set using the
command
\begin{commands}
\command{chemsetup}[\oarg{module}\marg{option list}]
\chemmacros' setup command.
\end{commands}
When an option is described then in the left margin the module the option
belongs to is denoted. This looks something like this:
\begin{options}
\keyval{option}{value}\Module{module}\Default
Description of \option{option}. The module is printed in the left margin.
The default value to the right is the setting the option has when
\chemmacros\ is loaded. This can be an explicit setting but the option
can also be empty.
\keychoice{choice-option}{list,of,\default{choices}}\Module{module}\Default{list}
Description of \option{choice-option}. A choice option can only be used
with a predefined list of values. If one of the values is underlined it
means that the option can be used without value in which case the
underlined value is chosen. If no value is underlined then a value
\emph{has} to be given by the user.
\keybool{boolean-option}\Module{module}\Default{true}
Description of \option{boolean-option}. A boolean option is a choice
option with exactly the two values \code{true} and \code{false}. If the
option is called without value then the underlined value is chosen (which
is always \code{true} for a boolean option).
\end{options}
An option or list of options belonging to a module \chemmodule{module} can be
set in two ways:
\begin{sourcecode}
% first possibility:
\chemsetup[module]{
option1 = value ,
option2 = value
}
% second possibility:
\chemsetup{
module/option1 = value ,
module/option2 = value
}
\end{sourcecode}
The second way allows to set options belonging to different modules with one
call of \cs{chemsetup}.
\chemmacros\ has some core options which don't belong to any of the modules
described in parts~\ref{part:main-modules} and~\ref{part:additional-modules}.
Those options have no module denoted in the left margin next to their
descriptions and are also set without specifying a module:
\begin{sourcecode}
\chemsetup{
option1 = value ,
option2 = value
}
\end{sourcecode}
Some internal modules may also define core options, \eg, the \chemmodule{lang}
module, see section~\vref{sec:lang-module}.
\subsection{Support Package \chemformula}
\chemformula\ provides means of typesetting chemical formulas and reactions.
You will see its macros \cs{ch} and \cs{chcpd} every now and then in this
manual. When using \chemmacros\ you can consider the \chemformula\
package~\cite{pkg:chemformula} to be loaded as \chemmacros\ makes use of it in
various places. \chemmacros\ and \chemformula\ are tightly intertwined.
Nevertheless you should be able to use the \pkg{mhchem}~\cite{pkg:mhchem}
package with \chemmacros\ without problems. Please see
section~\vref{sec:using-mhchem} for details and \latin{caveat}s. \emph{The
recommendation is to use \chemformula.}
A historical note: \chemformula\ started as a part of \chemmacros\ in
January~2012. Since July~2013 it is a completely independent package -- from
\chemformula's point of view. It is maintained independently and has a manual
of its own.
\subsection{Upgrading from version $5.x$}
People upgrading from versions $<6.0$ will find that almost everything they
know from earlier versions is the same in versions $6.x$. But there are
important and \emph{breaking} differences:
\begin{itemize}
\item The compatibility mode and all its commands have been dropped.
\item The option \option{modules} now is a load-time option and cannot be
set through \cs{chemsetup} any more. The command \cs{usechemmodule} has
been dropped.
\item Per default \emph{all} modules are now loaded. A new option
\option{minimal} allows to load \chemmacros\ with smallest subset
necessary. Then additional modules can be added with the
\option{modules}.
\item A new module \module{reactants} has been added, thanks to \leandriis.
\end{itemize}
\part{Main Modules}\label{part:main-modules}
The modules described in this part are always loaded by \chemmacros, even in
the minimal setup.
\section{The \chemmodule*{acid-base} Module}\label{sec:acid-base-module}
Easy representation of \pH, \pKa \ldots
\begin{commands}
\command{pH} \pH
\command{pOH} \pOH
\command{Ka} \Ka, depends on language settings, see
section~\vref{sec:lang-module}. The translations can be adapted.
\command{Kb} \Kb
\command{Kw} \Kw
\command{pKa}[\oarg{num}] \cs{pKa}: \pKa, \cs{pKa}\Oarg{1}: \pKa[1], depends
on language settings, see section~\vref{sec:lang-module}. The translations
can be adapted.
\command{pKb}[\oarg{num}] \cs{pKb}: \pKb, \cs{pKb}\Oarg{1}: \pKb[1]
\command{p}[\marg{anything}] \eg\ \cs{p}\Marg{\cs{Kw}} \p{\Kw}
\end{commands}
\begin{example}[side-by-side]
\Ka\ \Kb\ \pKa\ \pKa[1] \pKb\ \pKb[1]
\end{example}
\begin{cnltxquote}[{\citetitle{iupac:greenbook} \cite[][p.\,103]{iupac:greenbook}}]
The operator \p{} \textelp{} shall be printed in Roman type.
\end{cnltxquote}
There is one option which changes the style the \p{} is typeset, other options
allow to change the subscript of the constants:
\begin{options}
\keychoice{p-style}{italics,slanted,upright}\Module{acid-base}\Default{upright}
Set the style of the \p{} operator.
\keyval{K-acid}{text}\Module{acid-base}\Default{\cs{ChemTranslate}\Marg{K-acid}}
The subscript to \cs{Ka} and \cs{pKa}.
\keyval{K-base}{text}\Module{acid-base}\Default{\cs{ChemTranslate}\Marg{K-base}}
The subscript to \cs{Kb} and \cs{pKb}.
\keyval{K-water}{text}\Module{acid-base}\Default{\cs{ChemTranslate}\Marg{K-water}}
The subscript to \cs{Kw}.
\keyval{eq-constant}{text}\Module{acid-base}\Default{K}
The\sinceversion{5.4} symbol of the constants.
\end{options}
\begin{example}
\pH, \pKa \par
\chemsetup[acid-base]{p-style=slanted} \pH, \pKa \par
\chemsetup[acid-base]{p-style=italics} \pH, \pKa
\end{example}
As you can see the default subscripts of \cs{Kw}, \cs{Ka} and \cs{Kb} are
lowercase letters. The literature is inconclusive about if this is the right
way or if uppercase letters should be preferred. In textbooks the uppercase
variant usually seems to be used while journals seem to prefer the lowercase
variant. \chemmacros' default follows the usage in
\citetitle{iupac:greenbook}~\cite{iupac:greenbook}. If you want to change
this you have two possibilities:
\begin{example}
% this works only in the preamble:
% \DeclareTranslation{English}{K-acid}{\mathrm{A}}% use your language here
% alternative:
\chemsetup{acid-base/K-acid=\mathrm{A}}% overwrites language dependent settings
\pKa
\end{example}
The\sinceversion{5.4} constants \Ka, \Kb, and \Kw\ were defined using the
following commands:
\begin{commands}
\command{NewChemEqConstant}[\marg{cs}\marg{name}\marg{subscript}]
Define the constant \meta{cs} with the name \meta{name} and the subscript
\meta{subscript}. This also defines the default translation with the key
\meta{name} using \meta{subscript} as fallback translation (see
section~\vref{sec:lang-module} for details). It also defines the option
\meta{name} for setting the subscript.
\command{RenewChemEqConstant}[\marg{cs}\marg{name}\marg{default appearance}]
The same as \cs{NewChemEqConstant} but renews an existing command.
\command{DeclareChemEqConstant}[\marg{cs}\marg{name}\marg{default appearance}]
The same as \cs{NewChemEqConstant} but overwrites existing commands.
\command{ProvideChemEqConstant}[\marg{cs}\marg{name}\marg{default appearance}]
The same as \cs{NewChemEqConstant} but doesn't throw an error if \meta{cs}
already exists.
\end{commands}
This is how \cs{Ka} is defined:
\begin{sourcecode}
\NewChemEqConstant\Ka{K-acid}{\mathrm{a}}
\end{sourcecode}
\section{The \chemmodule*{charges} Module}\label{sec:charges-module}
The \chemmodule{charges} module loads the module \chemmodule{chemformula}.
\subsection{Charge Symbols}
\begin{commands}
\command{fplus} \fplus\ formal positive charge
\command{fminus} \fminus\ formal negative charge
\command{scrp} \scrp\ scriptstyle positive charge (\eg, for usage in
\pkg{chemfig}'s~\cite{pkg:chemfig} formulas).
\command{scrm} \scrm\ scriptstyle negative charge (\eg, for usage in
\pkg{chemfig}'s formulas).
\command{fscrp} \fscrp\ scriptstyle formal positive charge (\eg, for usage
in \pkg{chemfig}'s formulas).
\command{fscrm} \fscrm\ scriptstyle formal negative charge (\eg, for usage
in \pkg{chemfig}'s formulas).
\command{fsscrp} \fsscrp\ scriptscriptstyle formal positive charge (\eg, for
usage in \pkg{chemfig}'s formulas).
\command{fsscrm} \fsscrm\ scriptscriptstyle formal negative charge (\eg, for
usage in \pkg{chemfig}'s formulas).
\end{commands}
\subsection{Ion Charges}\label{sec:ion-charges}
Simple displaying of (real) charges. It is worth noting that these commands
really are relicts from a time when \chemmacros\ tried hard to be compliant
with \pkg{mhchem} and \chemformula\ didn't exist, yet. \textbf{They are still
provided for backwards compatibility but \emph{my recommendation is to use}
\cs{ch} (see the documentation of the \chemformula\
package~\cite{pkg:chemformula}) \emph{and forget about these commands:}}
\begin{commands}
\command{pch}[\oarg{number}]
positive charge
\command{mch}[\oarg{number}]
negative charge
\command{fpch}[\oarg{number}]
formal positive charge
\command{fmch}[\oarg{number}]
formal negative charge
\end{commands}
\begin{example}[side-by-side]
A\pch\ B\mch[3] C\fpch[2] D\fmch
\end{example}
\subsection{Partial Charges and Similar Stuff}\label{sec:part-charg-simil}
The next ones probably are seldomly needed but nevertheless useful:
\begin{commands}
\command{delp} \delp\ partial positive charge
\command{delm} \delm\ partial negative charge
\command{fdelp} \fdelp\ partial formal positive charge
\command{fdelm} \fdelm\ partial formal negative charge
\end{commands}
These macros for example can be used with the \cs{ox} command (see
section~\vref{sec:redox-module}) or with the \pkg{chemfig} package:
\begin{example}
\chemsetup{
charges/circled = all,
redox/parse = false,
redox/pos = top
}
\ch{"\ox{\delp,H}" -{} "\ox{\delm,Cl}"} \hspace*{1cm}
\chemfig{\chemabove[3pt]{\charge{90=\|,180=\|,270=\|}{Br}}{\delm}-\chemabove[3pt]{H}{\delp}}
\end{example}
\subsection{Charge Options}
\begin{options}
\keychoice{circled}{formal,\default{all},none}\Module{charges}\Default{formal}
\chemmacros\ uses two different kinds of charges which indicate the usage
of real ($+/-$) and formal (\fplus/\fminus) charges. The option
\code{formal} distinguishes between them, option \code{none} displays them
all without circle, option \code{all} circles all.
\keychoice{circletype}{chem,math}\Module{charges}\Default{chem}
This option switches between two kinds of circled charge symbols:
\cs{fplus} \fplus/\cs{fminus} \fminus\ (\code{chem}) and
\verbcode+$\oplus$+ $\oplus$/\verbcode+$\ominus$+ $\ominus$ (\code{math}).
\keyval{partial-format}{\LaTeX\ code}\Module{charges}\Default{\cs*{tiny}}
Code which formats the macros defined with \cs{NewChemPartialCharge} (see
section~\ref{sec:own-charge-macros}).
\end{options}
\subsection{Own Charge Macros}\label{sec:own-charge-macros}
Just in case the existing macros don't fit you needs there are commands for
defining new ones or modifying the existing ones. These commands define
macros like those described in section~\vref{sec:ion-charges}.
\begin{commands}
\command{NewChemCharge}[\marg{cs}\marg{charge symbol}]
Defines a new macro \meta{cs}. Raises an error if \meta{cs} already
exists.
\command{RenewChemCharge}[\marg{cs}\marg{charge symbol}]
Redefines a new macro \meta{cs}. Raises an error if \meta{cs} doesn't
exist.
\command{DeclareChemCharge}[\marg{cs}\marg{charge symbol}]
Defines a macro \meta{cs}. Silently overwrites \meta{cs} if it exists.
\command{ProvideChemCharge}[\marg{cs}\marg{charge symbol}]
Defines a new macro \meta{cs}. Does nothing if \meta{cs} already exists.
\end{commands}
An example of usage is the definition of the existing ion charge macros:
\begin{sourcecode}
\NewChemCharge\fpch{\fplus}
\NewChemCharge\fmch{\fminus}
\end{sourcecode}
These commands define macros like those described in
section~\vref{sec:part-charg-simil}.
\begin{commands}
\command{NewChemPartialCharge}[\marg{cs}\marg{charge symbol}]
Defines a new macro \meta{cs}. Raises an error if \meta{cs} already
exists.
\command{RenewChemPartialCharge}[\marg{cs}\marg{charge symbol}]
Redefines a new macro \meta{cs}. Raises an error if \meta{cs} doesn't
exist.
\command{DeclareChemPartialCharge}[\marg{cs}\marg{charge symbol}]
Defines a macro \meta{cs}. Silently overwrites \meta{cs} if it exists.
\command{ProvideChemPartialCharge}[\marg{cs}\marg{charge symbol}]
Defines a new macro \meta{cs}. Does nothing if \meta{cs} already exists.
\end{commands}
An example of usage is the definition of the existing partial charge macros:
\begin{sourcecode}
\NewChemPartialCharge\fdelp{\fplus}
\NewChemPartialCharge\fdelm{\fminus}
\end{sourcecode}
\section{The \chemmodule*{nomenclature} Module}\label{sec:nomenclature-module}
The \chemmodule{nomenclature} module loads the \chemmodule{tikz} module. It
also loads the package \pkg{scrlfile} which is part of the
\KOMAScript\ bundle~\cite{bnd:koma-script}.
\subsection{The \cs*{iupac} Command}
Similar to the \pkg{bpchem} package~\cite{pkg:bpchem} \chemmacros\ provides a
command\footnote{The idea and initial implementation is shamelessly borrowed
from \pkg{bpchem} by \pedersen.} for typesetting \ac{iupac} names. Why is
that useful? \ac{iupac} names can get very long. So long indeed that they
span over more than two lines, especially in two-column documents. This means
they must be allowed to be broken more than one time. This is what the
following command does.
\begin{commands}
\command{iupac}[\marg{IUPAC name}]
Inside this command use \sym{\textbar} indicate a breaking point
\sym{\textasciicircum} as a shortcut for \cs*{textsuperscript}. \sym{-},
\sym{(} and \sym{)} allow words to be broken while still allow the rest of
word to be hyphenated, likewise \sym{[} and \sym{]}.
\end{commands}
\begin{example}
\begin{minipage}{.4\linewidth}
\iupac{%
Tetra|cyclo[2.2.2.1^{1,4}]-un|decane-2-dodecyl-%
5-(hepta|decyl|iso|dodecyl|thio|ester)%
}
\end{minipage}
\end{example}
The \cs{iupac} command is more of a semantic command. In many cases you can
achieve (nearly) the same thing by using \cs*{-} instead of \sym{\textbar},
and \cs*{textsuperscript} instead of \sym{\textasciicircum} without
\cs{iupac}. There are some important differences, though:
\begin{itemize}
\item The character \sym{-} inserts a small space before the hyphen and
removes a small space after it. Also usually words with hyphens are only
allowed to break at the hyphen. Inside \cs{iupac} the hyphen will not
prevent further hyphenation. The amount of inserted space can be
customized.
\item The character \sym{\textbar} not only prevents ligatures but also
inserts a small space. The amount of inserted space can be customized.
\item The characters \sym{(} and \sym{)} allow the word to be hyphenated and
don't prevent further hyphenation, likewise \sym{[} and \sym{]}.
\item \sinceversion{5.3}The character \sym{'} is printed as \cs{chemprime}.
\item \sinceversion{5.8c}The character \sym{=} is printed ad
\cs{nonbreakinghyphen}.
\end{itemize}
\begin{example}[side-by-side]
\huge\iupac{2,4-Di|chlor|pentan} \par
2,4-Dichlorpentan
\end{example}
\begin{commands}
\command{chemprime}
Prints\sinceversion{5.3} a prime character in superscript position. It is
defined as \verbcode+\ensuremath{{}^{\prime}}+.
\command{nonbreakinghyphen}
Prints\sinceversion{5.8c} a hyphen which doesn't allow a linebreak after
it. It is defined as \verbcode+\mbox{-}\nobreak\hspace{0pt}+.
\end{commands}
The spaces inserted by \sym{-} and \sym{\textbar} can be
customized.
\begin{options}
\keyval{hyphen-pre-space}{dim}\Module{nomenclature}\Default{.01em}
Set the space that is inserted before the hyphen set with \sym{-}.
\keyval{hyphen-post-space}{dim}\Module{nomenclature}\Default{-.03em}
Set the space that is inserted after the hyphen set with \sym{-}.
\keyval{break-space}{dim}\Module{nomenclature}\Default{.01em}
Set the space inserted by \sym{\textbar}.
\end{options}
The command \cs{iupac} serves another purpose, too, however. Regardless of
the setting of the \option{iupac} option (see below) all the commands
presented in this section are always defined \emph{inside} \cs{iupac}. Quite
a number of the naming commands have very general names: \cs{meta}, \cs{D},
\cs{E}, \cs{L}, \cs{R}, \cs{S}, \cs{trans} and so forth\footnote{Please read
section~\vref{sec:one-letter-commands} before you consider using the
one-letter commands}. This means they either are predefined already (\cs{L}
\L) or are easily defined by another package or class (the \pkg{cool} package
defines both \cs{D} and \cs{E}, for example). In order to give you control
which commands are defined in which way, there is the option \option{iupac}:
\begin{options}
\keychoice{iupac}{auto,restricted,strict}\Module{nomenclature}\Default{auto}
Take care of how \ac{iupac} naming commands are defined.
\end{options}
It has three modes:
\begin{itemize}
\item \keyis{iupac}{auto}: if the commands are \emph{not} defined by any
package or class you're using they are available generally, otherwise only
\emph{inside} \cs{iupac}.
\item \keyis{iupac}{restricted}: all naming commands are \emph{only} defined
inside \cs{iupac}. If the commands are defined by another package they of
course have that meaning outside. They're not defined outside otherwise.
\item \keyis{iupac}{strict}: \chemmacros\ overwrites any other definition and
makes the commands available throughout the document. Of course the
commands can be redefined (but only in the document body). They will still
be available inside \cs{iupac} then.
\end{itemize}
Table~\vref{tab:iupac_modes} demonstrates the different modes.
\begin{table}
\centering
\caption{Demonstration of \option*{iupac}'s modes.}\label{tab:iupac_modes}
\begin{tabular}{lccc}
\toprule
& auto & restricted & strict \\
\midrule
\cs{L} & \L & \L & \iupac{\L} \\
\cs{iupac}\Marg{\cs{L}} & \iupac{\L} & \iupac{\L} & \iupac{\L} \\
\cs{D} & \D & --- & \D \\
\cs{iupac}\Marg{\cs{D}} & \iupac{\D} & \iupac{\D} & \iupac{\D} \\
\bottomrule
\end{tabular}
\end{table}
\subsection{Macros Defined (Not Only) For Usage in \cs*{iupac}}
\subsection{One-letter Macros}\label{sec:one-letter-commands}
For some of the macros explained in this section one-letter commands are
defined -- with a \latin{caveat} in mind, though: they are not actively
recommended. One-letter commands seldomly have meaningful names and often
they've also been defined by other packages. This means they make
collaboration more difficult than it needs to be and are a source for package
conflicts. \chemmacros\ solves the latter problem by only providing them
inside the argument of \cs{iupac}. The one exception \chemmacros\ makes is
the command \cs{p} (for things like \pH) which is and will remain an official
command (see section~\vref{sec:acid-base-module}). For all other one-letter
macros alternatives with more meaningful names exist.
\subsection{Greek Letters}\label{par:greek_letters}
Greek letters in compound names are typeset upright. Here are a few examples
for the existing macros:
\begin{commands}
\command{chemalpha}[\quad\chemalpha]
Upright lowercase alpha
\command{chembeta}[\quad\chembeta]
Upright lowercase alpha
\command{chemgamma}[\quad\chemgamma]
Upright lowercase alpha
\command{chemdelta}[\quad\chemdelta]
Upright lowercase alpha
\end{commands}
There exist two commands for each of the twenty-four Greek letters: a
lowercase and an uppercase version (\cs{chemalpha} and \cs{chemAlpha}). Those
commands are actually provided by the \chemgreek\ package. For more details
read section~\vref{sec:greek-module} and also refer to \chemgreek's
documentation.
There are a number of one-letter commands that some people may find convenient
to use which use above mentioned commands to print Greek letters inside
\cs{iupac}. They're listed in table~\vref{tab:iupac-greek-shortcuts}.
\begin{table}
\centering
\caption{\acs*{iupac} shortcuts for Greek letters.}
\label{tab:iupac-greek-shortcuts}
\begin{tabular}{*9l}
\toprule
macro &
\cs{a} & \cs{b} & \cs{g} & \cs{d} &
\cs{k} & \cs{m} & \cs{n} & \cs{w} \\
\midrule
letter &
\iupac{\a} & \iupac{\b} & \iupac{\g} & \iupac{\d} &
\iupac{\k} & \iupac{\m} & \iupac{\n} & \iupac{\w} \\
\bottomrule
\end{tabular}
\end{table}
\begin{example}
\iupac{5\chemalpha-androstan-3\chembeta-ol} \par
\iupac{\chemalpha-(tri|chloro|methyl)-\chemomega
-chloro|poly(1,4-phenylene|methylene)}
\end{example}
\subsection{Hetero Atoms and added Hydrogen}
Attachments to hetero atoms and added hydrogen atoms are indicated by italic
letters~\cite{iupac:greenbook}. \chemmacros\ defines a few macros for the
most common ones.
\begin{commands}
\iupaccs[H]{hydrogen}{The italic H for hydrogen.}
\iupaccs[O]{oxygen}{The italic O for oxygen.}
\iupaccs[N]{nitrogen}{The italic N for nitrogen.}
\iupaccs[Sf]{sulfur}{The italic S for sulfur.}
\iupaccs[P]{phosphorus}{The italic P for phosphorus.}
\end{commands}
\begin{example}[side-by-side]
\iupac{\nitrogen-methyl|benz|amide}
\iupac{3\hydrogen-pyrrole}
\iupac{\oxygen-ethyl hexanethioate}
\end{example}
\subsection{Cahn-Ingold-Prelog}\label{par:cip}
\begin{commands}
\command{cip}[\marg{conf}]
Typeset Cahn-Ingol-Prelog descriptors, \eg: \cs{cip}\Marg{R,S}
\cip{R,S}. \meta{conf} may be a csv list of entries.
\iupaccs[R]{rectus}{The rectus descriptor.}
\iupaccs[S]{sinister}{The sinister descriptor.}
\end{commands}
Both these commands and the entgegen/zusammen descriptors get a small
additional amount of kerning after the closing parenthesis. This amount can
be changed through the following option:
\begin{options}
\keyval{cip-kern}{dim}\Module{nomenclature}\Default{.075em}
Set the amount of kerning after the closing parenthesis.
\end{options}
The entries typeset by and implemented with \cs{cip} can be customized
further:
\begin{options}
\keyval{cip-outer-format}{format}\Default{\cs*{upshape}}
\sinceversion{5.8}The format of parentheses and commas typeset by
\cs{cip}.
\keyval{cip-inner-format}{format}\Default{\cs*{itshape}}
\sinceversion{5.8}The format of the entries in \cs{cip}. This format
works additive to the outer format.
\keyval{cip-number-format}{format}\Default{\cs*{upshape}}
\changedversion{6.0}The format of numbers in \cs{cip}. This format works
additive to the outer format and is applied to arabic figures only.
\end{options}
\subsection{Fischer}
\begin{commands}
\iupaccs[D]{dexter}{The dexter descriptor.}
\iupaccs[L]{laevus}{The laevus descriptor.}
\end{commands}
\subsection{cis/trans, zusammen/entgegen, syn/anti \& tert}
\begin{itemize}
\item \cs{cis} \iupac{\cis} \quad \cs{trans} \iupac{\trans}
\item \cs{fac} \iupac{\fac} \quad \cs{mer} \iupac{\mer}
\item \cs{sin} \iupac{\sin} \quad \cs{ter} \iupac{\ter}
\item \cs{zusammen} \iupac{\zusammen} \quad \cs{entgegen} \iupac{\entgegen}
\item \cs{syn} \iupac{\syn} \quad \cs{anti} \iupac{\anti}
\item \cs{tert} \iupac{\tert}
\end{itemize}
An alias for \cs{entgegen} is \cs{E} and an alias for \cs{zusammen} is
\cs{Z}.
\subsection{ortho/meta/para}
\begin{center}
\cs{ortho} \iupac{\ortho} \quad
\cs{meta} \iupac{\meta} \quad
\cs{para} \iupac{\para}
\end{center}
Although these commands are provided I like to cite
\citetitle{iupac:bluebook}~\cite{iupac:bluebook}:
\begin{cnltxquote}[{\cite[][p.\,90]{iupac:bluebook}}]
The letters \iupac{\ortho}, \iupac{\meta}, and \iupac{\para} have been used
in place of \textit{ortho}, \textit{meta}, and \textit{para}, respectively,
to designate the 1,2-, 1,3-, and 1,4- isomers of disubstituted benzene.
This usage is strongly discouraged and is not used in preferred \acs{iupac}
names.
\end{cnltxquote}
\subsection{Absolute Configuration}
\begin{commands}
\command{Rconf}[\oarg{letter}]
\cs{Rconf}: \Rconf \quad \cs{Rconf}\oarg{}: \Rconf[]
\command{Sconf}[\oarg{letter}]
\cs{Sconf}: \Sconf \quad \cs{Sconf}\oarg{}: \Sconf[]
\end{commands}
\subsection{Coordination Chemistry}
\chemmacros\ provides a few commands useful in coordination chemistry:
\begin{commands}
\command{bridge}[\marg{num}\quad\bridge{3}]
Denote bridging ligand connection.
\command{hapto}[\marg{num}\quad\hapto{5}]
Denote hapticity.
\command{dento}[\marg{num}\quad\dento{2}]
Denote denticity.
\end{commands}
\begin{example}
Ferrocene = \iupac{bis(\hapto{5}cyclo|penta|dienyl)iron} \par
\iupac{tetra-\bridge{3}iodido-tetrakis[tri|methyl|platinum(IV)]}
\end{example}
Two options allow customization:
\begin{options}
\keychoice{bridge-number}{sub,super}\Module{nomenclature}\Default{sub}
Appends the number as a subscript or superscript, depending on the choice.
The \ac{iupac} recommendation is the subscript~\cite{iupac:redbook}.
\keybool{coord-use-hyphen}\Module{nomenclature}\Default{true}
Append a hyphen to \cs{hapto}, \cs{dento} and \cs{bridge} or don't.
\end{options}
The default behaviour\sinceversion{5.8} of \cs{hapto} and \cs{dento} has
changed with version~5.8 to follow \ac{iupac} recommendations.
\subsection{Examples}
\begin{example}
\iupac{\dexter-Wein|s\"aure} =
\iupac{\cip{2S,3S}-Wein|s\"aure} \par
\iupac{\dexter-($-$)-Threose} =
\iupac{\cip{2S,3R}-($-$)-2,3,4-Tri|hydroxy|butanal} \par
\iupac{\cis-2-Butene} =
\iupac{\zusammen-2-Butene}, \par
\iupac{\cip{2E,4Z}-Hexa|diene} \par
\iupac{\meta-Xylol} =
\iupac{1,3-Di|methyl|benzene}
\end{example}
\subsection{Own \cs*{iupac} Macros And Shorthands}
If you find any commands missing you can define them using
\begin{commands}
\command{NewChemIUPAC}[\marg{cs}\marg{declaration}]
Define a new \ac{iupac} command that is in any case defined inside of
\cs{iupac} regardless if \meta{cs} is defined elsewhere already.
\command{ProvideChemIUPAC}[\marg{cs}\marg{declaration}]
Define a new \ac{iupac} command that is in any case defined inside of
\cs{iupac} regardless if \meta{cs} is defined elsewhere already only if
the corresponding \ac{iupac} macro is not defined, yet.
\command{RenewChemIUPAC}[\marg{cs}\marg{declaration}]
Redefine an existing \ac{iupac} command that is in any case defined inside
of \cs{iupac} regardless if \meta{cs} is defined elsewhere already.
\command{DeclareChemIUPAC}[\marg{cs}\marg{declaration}]
Define a new \ac{iupac} command that is in any case defined inside of
\cs{iupac} regardless if \meta{cs} is defined elsewhere already. This
silently overwrites an existing \ac{iupac} macro definition.
\command{LetChemIUPAC}[\marg{cs1}\marg{cs2}]
Defines \meta{cs1} to be an alias of \meta{cs2}.
\end{commands}
A command defined in this way will obey the setting of the option
\option{iupac}. This means any existing command is only overwritten with
\keyis{iupac}{strict}. However, \cs{NewChemIUPAC} will \emph{not} change the
definition of an existing \ac{iupac} naming command but issue an error if the
\ac{iupac} naming command already exists. \cs{DeclareChemIUPAC} \emph{will}
overwrite an existing \ac{iupac} command.
\begin{example}
\NewChemIUPAC\endo{\textsc{endo}}
\RenewChemIUPAC\anti{\textsc{anti}}
\iupac{(2-\endo,7-\anti)-2-bromo-7-fluoro|bicyclo[2.2.1]heptane}
\end{example}
\cs{RenewChemIUPAC} allows you to redefine the existing \ac{iupac} naming
commands.
\begin{example}[side-by-side]
\iupac{\meta-Xylol} \par
\RenewChemIUPAC\meta{\textup{m}}
\iupac{\meta-Xylol}
\end{example}
There's also a way for defining new \ac{iupac} shorthands or changing the
existing ones:
\begin{commands}
\command{NewChemIUPACShorthand}[\meta{shorthand token}\meta{control sequence}]
Defines a new \ac{iupac} shorthand. Inside \cs{iupac} it will be equal to
using \meta{control sequence}. This throws an error if \meta{shorthand
token} is already defined.
\command{RenewChemIUPACShorthand}[\meta{shorthand token}\meta{control sequence}]
Redefines an existing \ac{iupac} shorthand. This throws an error if
\meta{shorthand token} is not defined, yet.
\command{DeclareChemIUPACShorthand}[\meta{shorthand token}\meta{control sequence}]
Defines a new \ac{iupac} shorthand or redefines an existing one.
\command{ProvideChemIUPACShorthand}[\meta{shorthand token}\meta{control sequence}]
Provides a new \ac{iupac} shorthand. Does nothing if \meta{shorthand
token} is already defined.
\command{RemoveChemIUPACShorthand}[\meta{shorthand token}]
Deletes an existing \ac{iupac} shorthand.
\end{commands}
\subsection{Latin Phrases}
\chemmacros\ provides a command for typesetting latin phrases:
\begin{commands}
\command{latin}[\oarg{options}\marg{phrase}]
Typesets \meta{phrase} according to the option \option{format} described
below.
\command{insitu}[\quad\insitu]
\command{invacuo}[\quad\invacuo]
\command{abinitio}[\quad\abinitio]
\end{commands}
If you additionally load \pkg{chemstyle}~\cite{pkg:chemstyle} said package
will \emph{not} define its own \cs{latin}.
The last three commands mentioned above are defined through
\begin{commands}
\command{NewChemLatin}[\marg{cs}\marg{phrase}]
Define a new latin phrase. Gives an error if \meta{cs} already exists.
\command{DeclareChemLatin}[\marg{cs}\marg{phrase}]
Define a new latin phrase. Silently redefined existing macros.
\command{RenewChemLatin}[\marg{cs}\marg{phrase}]
Redefine an existing latin phrase. Gives an error if \meta{cs} doesn't
exist.
\command{ProvideChemLatin}[\marg{cs}\marg{phrase}]
Define a new latin phrase only if \meta{cs} doesn't exist.
\end{commands}
\begin{example}[side-by-side]
\NewChemLatin\ltn{latin text}\ltn
\end{example}
You can change the appearance with this option:
\begin{options}
\keyval{format}{definition}\Module{nomenclature}\Default{\cs*{emph}}
\changedversion{5.7}Sets the format for the latin phrases.
\end{options}
\section{The \chemmodule*{particles} Module}\label{sec:particles-module}
The \chemmodule{particles} module loads the modules \chemmodule{charges} and
\chemmodule{chemformula}.
\subsection{Provided Particle Macros}
The \chemmodule{particles} defines a number of macros which can be used for
typesetting common particles in the running text. Most of them don't make
much sense in \pkg{chemformula}~\cite{pkg:chemformula}'s \cs{ch}, though,
which doesn't mean that they can't be used there, of course:
\begin{center}
\cs{el} \el\ \cs{prt} \prt\ \cs{ntr} \ntr\ \cs{Hyd} \Hyd\ \cs{Oxo} \Oxo\
\cs{water} \water\ \cs{El} \El\ \cs{Nuc} \Nuc\ \cs{ba} \ba
\end{center}
All of these macros are defined using \pkg{chemformula}'s \cs{chcpd}. The
details are explained in section~\vref{sec:defin-own-part}.
The macros \cs{Nuc} and \cs{ba} are special: they have an optional argument
for the following options:
\begin{options}
\keychoice{elpair}{dots,dash,false}\Module{particles}\Default{false}
Determine how the electron pair of the nucleophiles is displayed. The
electron pair is drawn using \chemformula's \cs{chlewis} macro.
\keyval{space}{dim}\Module{particles}\Default{.1em}
Sets\sinceversion{5.3} the space that is inserted between the electron
pair and the negative charge sign.
\end{options}
Both options can of course also be set with \cs{chemsetup}.
\begin{example}[side-by-side]
\ba[elpair=dots] \Nuc[elpair=dash]
\chemsetup[particles]{elpair=false}
\ba\ \Nuc
\end{example}
\subsection{Defining Own Particle Macros}\label{sec:defin-own-part}
There are two sets of macros, one for defining particles and one for defining
nucleophiles.
\begin{commands}
\command{NewChemParticle}[\marg{cs}\marg{formula}]
Defines a new macro \meta{cs}. \meta{formula} is any valid \chemformula\
input (this depends on the setting of the \option{formula} option,
see~\vref{sec:chemformula-module}). Raises an error if \meta{cs} already
exists.
\command{RenewChemParticle}[\marg{cs}\marg{formula}]
Redefines a new macro \meta{cs}. \meta{formula} is any valid \chemformula\
input (this depends on the setting of the \option{formula} option,
see~\vref{sec:chemformula-module}). Raises an error if \meta{cs} doesn't
exist.
\command{DeclareChemParticle}[\marg{cs}\marg{formula}]
Defines a macro \meta{cs}. \meta{formula} is any valid \chemformula\
input (this depends on the setting of the \option{formula} option,
see~\vref{sec:chemformula-module}). Silently overwrites \meta{cs} if it
exists.
\command{ProvideChemParticle}[\marg{cs}\marg{formula}]
Defines a new macro \meta{cs}. \meta{formula} is any valid \chemformula\
input (this depends on the setting of the \option{formula} option,
see~\vref{sec:chemformula-module}). Does nothing if \meta{cs} already
exists.
\end{commands}
An example of usage is the definition of the existing particle macros:
\begin{sourcecode}
\NewChemParticle\el {e-}
\NewChemParticle\prt{p+}
\NewChemParticle\ntr{n^0}
\end{sourcecode}
The following set defines macros like \cs{Nuc}
\begin{commands}
\command{NewChemNucleophile}[\marg{cs}\marg{formula}]
Defines a new macro \meta{cs}. \meta{formula} is any valid \chemformula\
input (this depends on the setting of the \option{formula} option,
see~\vref{sec:chemformula-module}). Note that \meta{formula} will get a
trailing negative charge! Raises an error if \meta{cs} already exists.
\command{RenewChemNucleophile}[\marg{cs}\marg{formula}]
Redefines a new macro \meta{cs}. \meta{formula} is any valid \chemformula\
(this depends on the setting of the \option{formula} option,
see~\vref{sec:chemformula-module}). Note that \meta{formula} will get a
trailing negative charge! Raises an error if \meta{cs} doesn't exist.
\command{DeclareChemNucleophile}[\marg{cs}\marg{formula}]
Defines a macro \meta{cs}. \meta{formula} is any valid \chemformula\
(this depends on the setting of the \option{formula} option,
see~\vref{sec:chemformula-module}). Note that \meta{formula} will get a
trailing negative charge! Silently overwrites \meta{cs} if it exists.
\command{ProvideChemNucleophile}[\marg{cs}\marg{formula}]
Defines a new macro \meta{cs}. \meta{formula} is any valid \chemformula\
(this depends on the setting of the \option{formula} option,
see~\vref{sec:chemformula-module}). Note that \meta{formula} will get a
trailing negative charge! Does nothing if \meta{cs} already exists.
\end{commands}
An example of usage is the definition of the existing nucleophile macros:
\begin{sourcecode}
\NewChemNucleophile\Nuc{Nu}
\NewChemNucleophile\ba {ba}
\end{sourcecode}
A macro defined this way will have an optional argument for the
\option{elpair} option.
\section{The \chemmodule*{phases} Module}\label{sec:phases-module}
The \chemmodule{phases} module loads the \chemmodule{chemformula} modul.
\subsection{Basics}
These commands are intended to indicate the phase of a compound.
\begin{center}
\cs{sld} \sld \quad \cs{lqd} \lqd \quad \cs{gas} \gas \quad \cs{aq} \aq
\end{center}
\begin{example}
\ch{C\sld{} + 2 H2O\lqd{} -> CO2\gas{} + 2 H2\gas}\par
To make it complete: NaCl\aq.
\end{example}
The \ac{iupac} recommendation to indicate the state of aggregation is to put
it in parentheses after the compound \cite{iupac:greenbook}. However, you
might want to put it as a subscript which is also very common.
\begin{cnltxquote}[{\citetitle{iupac:greenbook}~\cite[][p.\,54]{iupac:greenbook}}]
The \textelp{} symbols are used to represent the states of aggregation of
chemical species. The letters are appended to the formula in parentheses
and should be printed in Roman (upright) type without a full stop (period).
\end{cnltxquote}
There are two options to customize the output:
\begin{options}
\keychoice{pos}{side,sub}\Module{phases}\Default{side}
Switch the position of the phase indicator.
\keyval{space}{dim}\Module{phases}\Default{.1333em}
Change the default spacing between compound a phase indicator if
\keyis{pos}{side}. A \TeX\ dimension.
\end{options}
\begin{example}
\chemsetup[phases]{pos=sub}
\ch{C\sld{} + 2 H2O\lqd{} -> CO2\gas{} + 2 H2\gas}\par
To make it complete: NaCl\aq.
\end{example}
All those phase commands have an optional argument:
\begin{example}[side-by-side]
\ch{H2O "\lqd[\qty{5}{\celsius}]"}
\end{example}
There is also a generic phase command:
\begin{commands}
\command{phase}[\marg{phase}]
If you need a phase indicator just once or twice. You can use it to
denote a phase for which there is no phase command, yet.
\end{commands}
\subsection{Define Own Phases}
Depending on the subject of your document you might need to indicate other
states of aggregation. You can easily define them.
\begin{commands}
\command{NewChemPhase}[\marg{cs}\marg{symbol}]
Define a new phase command. See section~\vref{sec:lang-depend} for a way
to define language dependent settings. Gives an error if \meta{cs}
already exists.
\command{DeclareChemPhase}[\marg{cs}\marg{symbol}]
Define a new phase command. See section~\vref{sec:lang-depend} for a way to
define language dependent settings. Overwrites previous definitions of
\meta{cs}.
\command{RenewChemPhase}[\marg{cs}\marg{symbol}]
Redefine an existing phase command. See section~\vref{sec:lang-depend} for
a way to define language dependent settings. Gives an error if \meta{cs}
is not defined.
\command{ProvideChemPhase}[\marg{cs}\marg{symbol}]
Define a new phase command. See section~\vref{sec:lang-depend} for a way
to define language dependent settings. Does nothing if \meta{cs} is
already defined.
\end{commands}
\begin{example}
% preamble:
\NewChemPhase\aqi{aq,$\infty$} % aqueous solution at infinite dilution
\NewChemPhase\cd {cd} % condensed phase
\NewChemPhase\lc {lc} % liquid crystal
\ch{NaOH\aqi} \ch{H2O\cd} \ch{U\phase{cr}} \ch{A\lc}\par
\chemsetup[phases]{pos=sub}
\ch{NaOH\aqi} \ch{H2O\cd} \ch{U\phase{cr}} \ch{A\lc}
\end{example}
\subsection{Language Dependencies}\label{sec:lang-depend}
For each phase command a translation into the custom language can be defined.
If a phase is declared with \cs{NewChemPhase} no translation exists and
for every \pkg{babel} language the literal string is used that was provided
as a definition. Let's say you define the phase
\begin{sourcecode}
\NewChemPhase\liquid{l}
\end{sourcecode}
and want to add the German translation ``f\/l''. Then you could do
\begin{sourcecode}
\DeclareTranslation{German}{phase-liquid}{f\/l}
\end{sourcecode}
This way, when you use it in a German document using the appropriate
\pkg{babel} option using \cs*{liquid} would correctly translate. For this the
package \pkg{translations}~\cite{pkg:translations} is used. The \acs{id}
always is \code{phase-\meta{csname}} where \meta{csname} is the name of the
phase command you defined without leading backslash.
See section~\vref{sec:lang-module} for predefined translations and general
language options of \chemmacros.
\section{The \chemmodule*{symbols} Module}\label{sec:symbols-module}
The \chemmodule{symbols} module defines a few symbols chemists need now and
then. It loads the package \pkg{amstext}~\cite{pkg:amstext}.
\begin{commands}
\command{transitionstatesymbol}
This is self-explaining: \transitionstatesymbol
\command{standardstate}
Again self-explaining: \standardstate
\command{changestate}
The uppercase delta used in \state[superscript=]{H} for example.
\end{commands}
\section{The \chemmodule*{chemformula} Module}\label{sec:chemformula-module}
The \chemmodule{chemformula} module loads the \pkg{amstext}
package~\cite{pkg:amstext} and the \chemmodule{charges} module.
\subsection{For Users}
There are different packages which provide means for typesetting chemical
formulas:
\begin{itemize}
\item \pkg{chemformula}~\cite{pkg:chemformula}. This is probably well known
to users of \chemmacros.
\item \pkg{mhchem}~\cite{pkg:mhchem}. This is the \enquote{older brother} of
\chemformula.
\item \pkg{chemfig}~\cite{pkg:chemfig}. The easiest and most complete of the
packages for drawing skeletal formulas.
\item \XyMTeX~\cite{pkg:xymtex}. A very comprehensive alternative for
typesetting chemistry.
\end{itemize}
In order to help authors getting a consistent layout \chemmacros\ does not
make a choice which package to use for typesetting formulas. Although
\chemformula\ is well tested and preferred users can choose other packages if
they like.
this is done with the following general option:
\begin{options}
\keyval{formula}{method}\Default{chemformula}
This\sinceversion{5.1} option let's you choose how chemical formulas are
typeset. Available methods are
\begin{itemize}
\item \pkg{chemformula}
\item \pkg{mhchem}
\item \pkg{chemist}\sinceversion{5.6} (from the \XyMTeX\ bundle)
\item \pkg{chemfig}\sinceversion{5.6}
\end{itemize}
The corresponding package with the same name is loaded.
\end{options}
If you explicitly set this option the corresponding package is loaded
immediately and the method is set up. Otherwise the option will be set by
\chemmacros\ at the end of the preamble.
If\sinceversion{5.2} you load a method package in a way that a unique choice
is possible then \chemmacros\ will set the method accordingly if you haven't
set the option by yourself. If \emph{no} unique choice is possible
\chemmacros\ will raise a warning and choose \pkg{chemformula} regardless if
the package is loaded or not. In this case if you want to use another method
you'll have to choose manually. \emph{All automatic choices only happen at the
end of the preamble}.
\subsection{Using the \pkg*{chemformula} Package}
If you set \keyis{formula}{chemformula} the \chemmodule{chemformula} module
makes it possible that you can set all \chemformula\ options via the
\cs{chemsetup} command using the module \module{chemformula}, for example:
\begin{sourcecode}
\chemsetup[chemformula]{format=\sffamily}
\end{sourcecode}
Everywhere where \chemmacros\ typesets chemical formulas \chemformula's macros
\cs{chcpd} or \cs{ch} are used, for example in the reaction environments
provided by the \chemmodule{reactions} module.
\emph{This method is the recommended choice!}
\subsection{Using the \pkg*{mhchem} Package}\sinceversion{5.1}\label{sec:using-mhchem}
If you set \keyis{formula}{mhchem} the \chemmodule{chemformula} module makes
it possible that you can set all of \pkg{mhchem}'s options via the
\cs{chemsetup} command using the module \module{mhchem}, for example:
\begin{sourcecode}
\chemsetup[mhchem]{format=\sffamily}
\end{sourcecode}
Everywhere where \chemmacros\ typesets chemical formulas \pkg{mhchem}'s macro
\cs{ce} is used, for example in the reaction environments provided by the
\chemmodule{reactions} module.
There are some \latin{caveat}s if you use this method:
\begin{itemize}
\item This method has not been extensively tested, yet. There may be errors
and wrong output at unexpected places.
\item Using this method effectively disables the different values of the
\module{particles} option \option{elpair} (see
section~\ref{sec:particles-module}).
\item The different kinds of formal charges provided by the
\chemmodule{charges} module (see section~\ref{sec:ion-charges}) are
disabled. Formal charges always use the math method now.
\item There may also be other incompatibilities (\eg, \pkg{mhchem} has it's
own method of setting upright Greek letters so it may or may not disable
\chemmacros' mechanism).
\end{itemize}
\subsection{Using the \pkg*{chemfig} Package}\sinceversion{5.6}\label{sec:using-chemfig}
Everywhere where \chemmacros\ typesets chemical formulas \pkg{chemfig}'s macro
\cs{printatom} is used, for example in the reaction environments provided by
the \chemmodule{reactions} module.
There are some \latin{caveat}s if you use this method:
\begin{itemize}
\item This method has not been extensively tested, yet. There may be errors
and wrong output at unexpected places.
\item Using this method effectively disables the different values of the
\module{particles} option \option{elpair} (see
section~\ref{sec:particles-module}).
\item The different kinds of formal charges provided by the
\chemmodule{charges} module (see section~\ref{sec:ion-charges}) are
disabled. Formal charges always use the math method now.
\item The reaction environments by the \chemmodule{reactions} module may
work only to a limited respect. If you plan to use them consider using
methods \pkg{chemformula} or \pkg{mhchem} instead.
\end{itemize}
\subsection{Using the \pkg*{chemist} Package}\sinceversion{5.6}\label{sec:using-chemist}
Everywhere where \chemmacros\ typesets chemical formulas \pkg{chemist}'s macro
\cs{ChemForm} is used, for example in the reaction environments provided by
the \chemmodule{reactions} module.
There are some \latin{caveat}s if you use this method:
\begin{itemize}
\item This method has not been extensively tested, yet. There may be errors
and wrong output at unexpected places.
\item Using this method effectively disables the different values of the
\module{particles} option \option{elpair} (see
section~\ref{sec:particles-module}).
\item The different kinds of formal charges provided by the
\chemmodule{charges} module (see section~\ref{sec:ion-charges}) are
disabled. Formal charges always use the math method now.
\item The reaction environments by the \chemmodule{reactions} module may
work only to a limited respect. If you plan to use them consider using
methods \pkg{chemformula} or \pkg{mhchem} instead\footnote{On the other
hand \XyMTeX\ (and especially the \pkg{chemist} package) provides quite
a number of chemical reaction environments itself.}.
\end{itemize}
\subsection{For Module Writers}
There are two macros for module writers:
\begin{commands}
\explcommand{chemmacros_chemformula:n}[ \marg{formula}]
This is only a wrapper for \cs{chcpd} or \cs{ce}. It is recommended that
module writers use this macro (or a variant thereof) inside of
\chemmacros' macros whenever they want to display a chemical formula.
Writers who prefer traditional \LaTeXe\ programming over expl3 should use
\cs*{chemmacros@formula}.
\explcommand{chemmacros_reaction:n}[ \marg{reaction}]
This is only a wrapper for \cs{ch} or \cs{ce}. It is recommended that
module writers use this macro (or a variant thereof) inside of
\chemmacros' macros whenever they want to display a chemical reaction.
Writers who prefer traditional \LaTeXe\ programming over expl3 should use
\cs*{chemmacros@reaction}.
\end{commands}
\section{The \chemmodule*{greek} Module}\label{sec:greek-module}
The \chemmodule{greek} module loads the \pkg{chemgreek}
package~\cite{pkg:chemgreek}.
This module provides one option:
\begin{options}
\keyval{greek}{mapping}
A valid value is any valid \chemgreek\ \meta{mapping}. \chemmacros\ will
warn you if no mapping has been chosen or if you are using the
\code{default} or the \code{var-default} mapping because this means that
no upright Greek letters are available.
\end{options}
If you load a \chemgreek\ support package which allows an unambiguous choice
of a mapping \chemgreek\ will make this choice automatically. This means if
you say
\begin{sourcecode}
\usepackage{upgreek}
\usepackage{chemmacros}
\end{sourcecode}
then \chemmacros\ will use \pkg{upgreek}'s upright Greek letters. If you
have
\begin{sourcecode}
\usepackage{upgreek}
\usepackage{chemmacros}
\usepackage{textgreek}
\end{sourcecode}
then no unambiguous choice is possible and you should choose a mapping
yourself, for example:
\begin{sourcecode}
\usepackage{upgreek}
\usepackage{chemmacros}
\usepackage{textgreek}
\chemsetup{greek=textgreek}
\end{sourcecode}
For further details on mappings please refer to \chemgreek's manual.
\part{Additional Modules}\label{part:additional-modules}
The modules described in this part are not part of \chemmacros' minimal setup.
\section{The \chemmodule*{isotopes} Module}\label{sec:isotopes-module}
The \chemmodule{isotope} module loads the \pkg{elements}
package~\cite{pkg:elements}. This module defines one user command:
\begin{commands}
\command{isotope}[\sarg\marg{input}]
\meta{input} can either be the \emph{symbol} of an element or the
\emph{name} of an element. Be aware that \emph{the name is language
dependent}, refer to the manual of the \pkg{elements} package for
details. To be on the safe side use the element symbol.
\meta{input} can also be comma separated list:
\cs{isotope}\Marg{\meta{nuc},\meta{symbol}}. If you leave \meta{nuc} out
then \cs{isotope} will display the most common isotope. Otherwise
\meta{nuc} will be used. If \meta{nuc} is an isotope unknown to the
\pkg{elements} package \cs{isotope} will write a warning to the log file.
The starred variant omits the element number.
\end{commands}
\begin{example}[side-by-side]
\isotope{C}
\isotope*{C}
\isotope{14,C}
\isotope*{14,C}
\end{example}
As input for the element symbol you can choose any of the elements known to
the \pkg{elements} package.
There are options which allow you to determine how the isotope is printed:
\begin{options}
\keychoice{format}{super,side}\Module{isotopes}\Default{super}
Either print the isotope number as superscript or to the right of the
element symbol.
\keyval{side-connect}{input}\Module{isotopes}\Default{-}
Determine what is printed between the element symbol and the isotope
number if \keyis{format}{side}.
\end{options}
\begin{example}[side-by-side]
\isotope{C}
\chemsetup[isotopes]{format=side}
\isotope{C}
\chemsetup[isotopes]{side-connect=}
\isotope{C}
\end{example}
\section{The \chemmodule*{mechanisms} Module}\label{sec:mechanisms-module}
The module \chemmodule{mechanisms} loads the package
\pkg{amstext}~\cite{pkg:amstext}. It provides one macro:
\begin{commands}
\command{mech}[\oarg{type}]
Allows to specify the most common reaction mechanisms.
\end{commands}
\meta{type} can have one of the following values:
\begin{commands}
\command{mech}
(empty, no opt. argument) nucleophilic substitution \mech
\command{mech}[\Oarg{1}]
unimolecular nucleophilic substitution \mech[1]
\command{mech}[\Oarg{2}]
bimolecular nucleophilic substitution \mech[2]
\command{mech}[\Oarg{se}]
electrophilic substitution \mech[se]
\command{mech}[\Oarg{1e}]
unimolecular electrophilic substitution \mech[1e]
\command{mech}[\Oarg{2e}]
bimolecular electrophilic substitution \mech[2e]
\command{mech}[\Oarg{ar}]
electrophilic aromatic substitution \mech[ar]
\command{mech}[\Oarg{e}]
elimination \mech[e]
\command{mech}[\Oarg{e1}]
unimolecular elimination \mech[e1]
\command{mech}[\Oarg{e2}]
bimolecular elimination \mech[e2]
\command{mech}[\Oarg{cb}]
unimolecular elimination \enquote{conjugated base}, \ie, via carbanion
\mech[cb]
\end{commands}
\section{The \chemmodule*{newman} Module}\label{sec:newman-module}
The \chemmodule{newman} module provides a command for drawing Newman
projections. It loads the \chemmodule{tikz} module.
\begin{commands}
\command{newman}[\oarg{options}\darg{angle}%
\Marg{\meta{1},\meta{2},\meta{3},\meta{4},\meta{5},\meta{6}}]
Create Newman projections. This command uses \TikZ\ internally.
\meta{angle} rotates the back atoms counter clockwise with respect to the
front atoms and is an optional argument. \meta{1} to \meta{6} are the
positions, the first three are the front atoms, the last three the back
atoms.
\end{commands}
\begin{example}
\newman{} \newman(170){}
\newman{1,2,3,4,5,6} \newman{1,2,3} \newman{,,,4,5,6}
\end{example}
Several options allow customization:
\begin{options}
\keyval{angle}{angle}\Module{newman}\Default{0}
Default angle.
\keyval{scale}{factor}\Module{newman}\Default{1}
Scale the whole projection by factor \meta{factor}.
\keyval{ring}{tikz}\Module{newman}\Default
Customize the ring with \TikZ\ keys.
\keyval{atoms}{tikz}\Module{newman}\Default
Customize the nodes within which the atoms are set with \TikZ\ keys.
\keyval{back-atoms}{tikz}\Module{newman}\Default
Explicitly customize the nodes of the back atoms with \TikZ\ keys.
\end{options}
\begin{example}
\chemsetup[newman]{angle=45} \newman{}
\newman[scale=.75,ring={draw=blue,fill=blue!20}]{}
\end{example}
\begin{example}
\chemsetup[newman]{atoms={draw=red,fill=red!20,inner sep=2pt,rounded corners}}
\newman{1,2,3,4,5,6}
\end{example}
\begin{example}
\chemsetup[newman]{
atoms = {draw=red,fill=red!20,inner sep=2pt,rounded corners},
back-atoms = {draw=blue,fill=blue!20,inner sep=2pt,rounded corners}
}
\newman{1,2,3,4,5,6} \newman(170){1,2,3,4,5,6}
\end{example}
\section{The \chemmodule*{orbital} Module}\label{sec:orbital-module}
The \chemmodule{orbital} module loads the \chemmodule{tikz} module. It
provides the following command to create orbitals:
\begin{commands}
\command{orbital}[\oarg{options}\marg{type}]
Draw an orbital shape of type \meta{type}. This command uses \TikZ\
internally.
\end{commands}
There are the following types available for \meta{type}:
\begin{center}
\code{s} \quad
\code{p} \quad
\code{sp} \quad
\code{sp2} \quad
\code{sp3}
\end{center}
\begin{example}
\orbital{s} \orbital{p} \orbital{sp} \orbital{sp2} \orbital{sp3}
\end{example}
Depending on the type you have different options to modify the orbitals:
\begin{options}
\keychoice{phase}{+,-}\Module{orbital}\Default{+}
changes the phase of the orbital (all types)
\keyval{scale}{factor}\Module{orbital}\Default{1}
changes the size of the orbital (all types)
\keyval{color}{color}\Module{orbital}\Default{black}
changes the color of the orbital (all types)
\keyval{angle}{angle}\Module{orbital}\Default{0}
rotates the orbitals with a p contribution counter clockwise (all types
except \code{s})
\keybool{half}\Module{orbital}\Default{false}
displays only half an orbital (only \code{p})
\end{options}
\begin{example}
\orbital{s} \orbital[phase=-]{s}
\orbital{p} \orbital[phase=-]{p}
\orbital{sp3} \orbital[phase=-]{sp3}
\orbital[angle=0]{p} \orbital[color=red!50]{p}
\orbital[angle=135,scale=1.5]{p} \orbital[half]{p}
\end{example}
Additionally there are two options, with which the \TikZ\ behaviour can be
changed.
\begin{options}
\keybool{overlay}\Module{orbital}
The orbital \enquote{doesn't need space}; it is displayed with the \TikZ\
option \code{overlay}.
\keyval{opacity}{num}\Module{orbital}
The orbital becomes transparent; \meta{value} can have values between
\code{1} (fully opaque) to \code{0} (invisible).
\end{options}
\begin{example}
\vspace{7mm}
\chemsetup[orbital]{
overlay,
p/color = black!70
}
\setchemfig{bond offset=0pt}
\chemfig{
?\orbital{p}
-[,1.3]{\orbital[phase=-]{p}}
-[:30,1.1]\orbital{p}
-[:150,.9]{\orbital[phase=-]{p}}
-[4,1.3]\orbital{p}
-[:-150,1.1]{\orbital[phase=-]{p}}?
}
\vspace{7mm}
\end{example}
\begin{example}
\vspace{7mm}
\setchemfig{bond offset = 0pt}
\chemsetup[orbital]{
overlay ,
opacity = .75 ,
p/scale = 1.6 ,
s/color = blue!50 ,
s/scale = 1.6
}
\chemfig{
\orbital{s}
-[:-20]{\orbital[scale=2]{p}}
{\orbital[half,angle=0]{p}}
{\orbital[angle=170,half]{p}}
{\orbital[angle=-150,half]{p}}
(-[:-150]\orbital{s})-\orbital{s}
}
\vspace{1cm}
\end{example}
\section{The \chemmodule*{polymers} Module}\label{sec:polymers-module}
The\sinceversion{5.5} \chemmodule{polymers} module loads the
\chemmodule{nomenclature} and the \chemmodule{tikz} modules.
\subsection{Nomenclature}
The \chemmodule{polymers} module defines a number of \ac{iupac} macros for
usage inside \cs{iupac} which are used in polymer chemistry.
\subsection{Copolymers}
\begin{commands}
\iupaccs[co]{copolymer}{unspecified copolymer.}
\iupaccs[stat]{statistical}{statistical copolymer.}
\iupaccs[ran]{random}{random copolymer.}
\iupaccs[alt]{alternating}{alternating copolymer.}
\iupaccs[per]{periodic}{periodic copolymer.}
\iupaccs{block}{block copolymer.}
\iupaccs{graft}{graft copolymer.}
\end{commands}
\subsection{Non-linear (Co) Polymers and Polymer Assemblies}
\begin{commands}
\iupaccs{blend}{The blend qualifier.}
\iupaccs{comb}{The comb qualifier.}
\iupaccs[compl]{complex}{The complex qualifier.}
\iupaccs[cyclo]{cyclic}{The cyclic qualifier.}
\iupaccs{branch}{The branch qualifier.}
\iupaccs[net]{network}{The network qualifier.}
\iupaccs[ipn]{ipnetwork}{The interpenetrating network qualifier.}
\iupaccs[sipn]{sipnetwork}{The semi-interpenetrating network qualifier.}
\iupaccs{star}{The star qualifier.}
\end{commands}
\subsection{Polymer Denotations in \pkg*{chemfig}'s Molecules}
The \pkg{chemfig} manual proposes some code defining the macros
\cs*{setpolymerdelim} and \cs*{makebraces} which make it possible to add
delimiters to \pkg{chemfig} molecules. The \chemmodule{polymers} module
implements the following macro based on the same idea:
\begin{commands}
\command{makepolymerdelims}[\oarg{options}\marg{height}\oarg{depth}\marg{opening
node}\marg{closing node}]
The value of \meta{depth} is the same as \meta{height} unless it is
specified explicitly. \meta{opening node} and \meta{closing node} are the
names of \TikZ' nodes where the delimites are placed.
\end{commands}
\begin{options}
\keychoice{delimiters}{\Marg{\meta{left}\meta{right}}}\Module{polymers}\Default{[]}
This option demands two tokens as argument, the first being the opening
brace, the second the closing brace. A dot (\code{.}) denotes an empty
delimiter.
\keyval{subscript}{subscript}\Module{polymers}\Default{\$n\$}
Subscript to the right delimiter.
\keyval{superscript}{superscript}\Module{polymers}
Superscript to the right delimiter.
\end{options}
\begin{example}
\setchemfig{atom sep=2em}
\chemfig{-[@{op,.75}]CH_2-CH(-[6]Cl)-[@{cl,0.25}]}
\makepolymerdelims{5pt}[27pt]{op}{cl}
\chemfig{-[@{op,.75}]CH_2-CH(-[6]Cl)-[@{cl,0.25}]}
\makepolymerdelims[delimiters=()]{5pt}[27pt]{op}{cl}
\end{example}
\section{The \chemmodule*{reactions} Module}\label{sec:reactions-module}
The \chemmodule{reactions} module loads the \chemmodule{chemformula} module
and the \pkg{mathtools} package~\cite{pkg:mathtools}.
\subsection{Predefined Environments}
You can use these environments for numbered\ldots
\begin{environments}
\environment{reaction}
A single reaction where \chemformula\ code is placed directly in the
environment body. A wrapper around the \env*{equation} environment. The
environment body is parsed with \cs{ch} or \cs{ce} depending on the value
of the \option{formula} option, see
section~\vref{sec:chemformula-module}.
\environment{reactions}
Several aligned reactions. A wrapper around \pkg{amsmath}'s \env*{align}
environment. The environment body is parsed with \cs{ch} or \cs{ce}
depending on the value of the \option{formula} option, see
section~\vref{sec:chemformula-module}.
\end{environments}
\ldots and their starred versions for unnumbered reactions.
\begin{environments}
\environment{reaction*}
A wrapper around the \env*{equation*} environment. The environment body
is parsed with \cs{ch} or \cs{ce} depending on the value of the
\option{formula} option, see section~\vref{sec:chemformula-module}.
\environment{reactions*}
A wrapper around \pkg{amsmath}'s \env*{align*} environment. The
environment body is parsed with \cs{ch} or \cs{ce} depending on the value
of the \option{formula} option, see
section~\vref{sec:chemformula-module}.
\end{environments}
With those environments you can create (un)numbered reaction equations similar
to mathematical equations.
Theses environments use the \env*{equation}/\env*{equation*} environments or
the \env*{align}/\env*{align*} environments, respectively, to display the
reactions.
\begin{example}
Reaction with counter:
\begin{reaction}
A -> B
\end{reaction}
\end{example}
\begin{example}
Reaction without counter:
\begin{reaction*}
C -> D
\end{reaction*}
\end{example}
\begin{example}
Several aligned reactions with counter:
\begin{reactions}
A &-> B + C \\
D + E &-> F
\end{reactions}
\end{example}
\begin{example}
Several aligned reactions without counter:
\begin{reactions*}
G &-> H + I \\
J + K &-> L
\end{reactions*}
\end{example}
If you want to change the layout of the counter tags, you can use
\begin{commands}
\command*{renewtagform}[\marg{tagname}\oarg{format}\marg{left
delimiter}\marg{right delimiter}]
Provided by the \pkg{mathtools} package.
\end{commands}
or use the following options:
\begin{options}
\keyval{tag-open}{left delimiter}\Module{reactions}\Default{\{}
\sinceversion{5.6}The left delimiter.
\keyval{tag-close}{right delimiter}\Module{reactions}\Default{\}}
\sinceversion{5.6}The right delimiter.
\keyval{before-tag}{format}\Module{reactions}\Default
\sinceversion{5.6}Code inserted before the tags.
\end{options}
\begin{example}
\chemsetup[reactions]{
before-tag = R \textbf ,
tag-open = [ ,
tag-close = ]
}
\begin{reaction}
H2O + CO2 <<=> H2CO3
\end{reaction}
\end{example}
The use of \AmS math's \cs{intertext} is possible:
\begin{example}
\begin{reactions}
A + 2 B &-> 3 C + D "\label{rxn:test}"
\intertext{Some text in between aligned reactions}
3 E + F &<=> G + 1/2 H
\end{reactions}
See reaction~\ref{rxn:test}.
\end{example}
If\sinceversion{5.6} you are using either \pkg{cleveref} or \pkg{fancyref} the
\env{reaction} counter is supported already. For \pkg{fancyref} use the
prefix \code{rct}.
\subsection{Own Reactions}
You can create new types of reactions with the command:
\begin{commands}
\command{NewChemReaction}[\marg{name}\oarg{number of arguments}\marg{math name}]
\meta{name} will be the name of the new chem environment. \meta{math name} is
the underlying math environment. Gives an error if \meta{name} already
exists.
\command{RenewChemReaction}[\marg{name}\oarg{number of arguments}\marg{math name}]
\meta{name} is the name of the renewed chem environment. \meta{math name} is
the underlying math environment. Gives an error if \meta{name} does not exist.
\command{DeclareChemReaction}[\marg{name}\oarg{number of arguments}\marg{math name}]
\meta{name} will be the name of the chem environment. \meta{math name} is
the underlying math environment.
\command{ProvideChemReaction}[\marg{name}\oarg{number of arguments}\marg{math name}]
\meta{name} will be the name of the new chem environment. \meta{math name} is
the underlying math environment. The new environment is only defined if
it doesn't exist, yet.
\end{commands}
\begin{sourcecode}
\NewChemReaction{reaction} {equation}
\NewChemReaction{reaction*} {equation*}
\NewChemReaction{reactions} {align}
\NewChemReaction{reactions*}{align*}
\end{sourcecode}
Let's suppose, you'd like to have the alignment behaviour of the \env{alignat}
environment for \chemformula\ reactions. You could do the following:
\begin{sourcecode}
\NewChemReaction{reactionsat}[1]{alignat}
\end{sourcecode}
With this the \env{reactionsat} environment is defined.
\begin{example}
\NewChemReaction{reactionsat}[1]{alignat}
\NewChemReaction{reactionsat*}[1]{alignat*}
\begin{reactionsat}{3}
A &-> B &&-> C &&-> D \\
aaaaa &-> bbbbb &&-> ccccc &&-> ddddd
\end{reactionsat}
\begin{reactionsat*}{2}
A &-> B & C &-> D \\
aaaaa &-> bbbbb &\quad{} ccccc &-> ddddd
\end{reactionsat*}
\end{example}
\subsection{List of Reactions}
The \chemmodule{reactions} module also provides a command to display a list of
the reactions created with the \env{reaction} environment.
\begin{commands}
\command{listofreactions}
Print a list of reactions.
\end{commands}
\begin{example}
\listofreactions
\end{example}
The output of this list can be modified by two options:
\begin{options}
\keyval{list-name}{name of the
list}\Module{reactions}\Default{\cs*{ChemTranslate}\Marg{{list-of-reactions}}}
Let's you set the name of the list manually. The default name is language
dependent, see section~\vref{sec:lang-module}.
\keyval{list-entry}{prefix to each
entry}\Module{reactions}\Default{\cs*{ChemTranslate}\Marg{reaction}}
Let's you set a prefix to each list entry. The default name is language
dependent, see section~\vref{sec:lang-module}.
\keyval{list-heading-cmd}{code}\Module{reactions}\Default{\cs*{section}\sarg\Marg{\#1}}
The\sinceversion{5.2} macro that is called at the beginning of the list.
Inside of \meta{code} \code{\#1} refers to the actual heading of the list.
The default setting is not entirely true: if a macro \cs*{chapter} is
defined \code{\cs*{chapter}\sarg\Marg{\#1}} is used.
\keybool{tocbasic}\Module{reactions}\Default{false}
\sinceversion{5.6}If you use a \KOMAScript\ class \emph{or} if you load
the \pkg{tocbasic} package \emph{or} if you set this option to \code{true}
the list of reactions will be set up using the \pkg{tocbasic} package.
This \emph{disables} the \option{list-heading-cmd} option. For a
\KOMAScript\ class this means that the list of reactions obeys
\KOMAScript's \option*{listof} option.
\end{options}
Instead of using the option \option{list-name} you also could redefine
\cs{reactionlistname}.
The list lists all reactions with a number and disregards reactions without
number. All reaction environments without star have an optional argument
which let's you add a description (or caption) for the entry in the list.
\begin{example}
\begin{reaction}[Autoprotolyse]
2 H2O <<=> H3O+ + OH-
\end{reaction}
\end{example}
If you use the \env{reactions} environment this will not work, though. In
this case you can use
\begin{commands}
\command{AddRxnDesc}[\marg{description}]
Add a description to a reaction.
\end{commands}
\begin{example}
\begin{reactions}
"\chlewis{0.}{Cl}" + CH4 &
-> HCl + "\chlewis{180.}{C}" H3 \AddRxnDesc{first~step~of~chain} \\
"\chlewis{180.}{C}" H3 + Cl2 &
-> CH3Cl + "\chlewis{0.}{Cl}" \AddRxnDesc{second~step~of~chain}
\end{reactions}
\end{example}
\section{The \chemmodule*{reactants} Module}\label{sec:reactants-module}
\sinceversion{6.0}Idea for this module is by \leandriis, who also does the
main development of the module. Many thanks for all her work!
\subsection{Idea and Getting Started}
The \module{reactants} module offers a simplified input syntax for chemical
reactants in the description of reaction procedures. Reactant and solvent
names are declared in the preamble removing the need to repeat the same
\ac{iupac} names multiple times throughout the document. With the help of
module options the output style (order of name number and data) can be altered
globally (or locally) to suit your needs, while the data itself is input using
an easy to use key-value approach and processed by the \pkg{siunitx}
package. The \module{reactants} module responds to the language declared with
the \pkg{babel} package and also offers methods to integrate the acronyms of
used reactants or solvents into the list of acronyms.
The module requires and loads the packages \pkg{chemnum}~\cite{pkg:chemnum}
and \pkg{siunitx}~\cite{pkg:siunitx}. Depending on the selected options the
packages \pkg{acro}~\cite{pkg:acro},
\pkg{glossaries-extra}~\cite{pkg:glossaries-extra},
\pkg{hyperref}~\cite{pkg:hyperref}, \pkg{longtable}~\cite{pkg:longtable}
and/or \pkg{xltabular}~\cite{pkg:xltabular} might be needed for this module
and will be explicitly mentioned in the corresponding sections of this manual.
\subsection{Basic Commands}
\begin{commands}
\command{DeclareChemReactant}[\marg{ID}\marg{properties}]
This command defines the reactant \meta{ID} with the properties
\meta{properties}. \emph{Should be used in the preamble. Must be used in
the preamble when \pkg{acro} is used as acronym support package.}
\command{DeclareChemReactant}[\Marg{\meta{main ID}.\meta{sub ID}}\marg{properties}]
Analogously to \pkg{chemnum}'s \cs{cmpd} command, both the
\cs{DeclareChemReactant} and \cs{reactant} commands accept a combined
\meta{ID} consisting of a \meta{main ID} and \meta{sub ID} part. The
default separator is a \code{.} here, but this can be changed using
\pkg{chemnum}'s \keyis{main-sub-sep}{token} option.
\end{commands}
Valid \meta{properties} include the following key-value pairs:
\begin{options}
\keyval{name}{name}
Mandatory property: the name of the substance.
\keyval{short}{abbreviation}
Optional property: a short form of the name, used when the
\module{reactants} module is used in combination with the
\option{acronym-support} option, see section~\vref{sec:acronyms-in-reactants}.
\keyval{bookmark}{replacement in \ac{pdf} bookmarks}
Optional property: replaces \meta{name} in a \ac{pdf} bookmark. This
might be advisable when reactants are used in section titles and the
\pkg{hyperref} package is used as well, see
section~\vref{sec:reactants-in-headings}.
\keyval{upper-name}{upper case version of the name}
Optional property: The upper case version of a compound's name, e.g. for
the use in the beginning of a sentence.
\keyval{upper-bookmark}{upper case version of the bookmark text}
Optional property: The upper case version of the \meta{name} in a \ac{pdf} bookmark.
\end{options}
Common declarations will look like this:
\begin{sourcecode}
\DeclareChemReactant{thf}{name={tetrahydrofuran}, short={THF}}
\DeclareChemReactant{H2SO4}{name={\ch{H2SO4}}}
\DeclareChemReactant{dichloropentane}{name={\iupac{2,4-di|chloro|pentane}}}
\end{sourcecode}
\begin{commands}
\command{reactant}[\oarg{data and units}\marg{ID}]
This command is used to insert name, number, and, if present, data of a
predefined reactant with the \meta{ID} in the text. The order of the
information in the output can be controlled through the
\option{reactant-output-style} option, see
section~\vref{sec:output-styles}. The upper case version of this command
\cs{Reactant} can be used in order to start a sentence with an upper case
version of a compound's name. The corresponding text must be defined
through \cs{DeclareChemReactant}'s \option{upper-name} option. Further
variants of \cs{reactant} with different suffixes, such as \code{*},
\code{+}, \code{l}, \code{s} or \code{plain} will be described later.
\command{solvent}[\oarg{data and units}\marg{ID}]
Analogous to \cs{reactants}. Can be used to insert solvent names and
corresponding data in the text. Format and order depend on the on the
\option{solvent-output-style} option. The upper case version of this
command \cs{Solvent} can be used in order to start a sentence with an
upper case version of a solvent's name. The corresponding text must be
defined through \cs{DeclareChemReactant}'s \option{upper-name} option.
\code{s} and \code{l} suffixed variants exist and are discussed later.
\end{commands}
\meta{data and units} accepts a comma separated list of key-value pairs. Valid keys,
acceptable values as well as their defaults are listed in table~\vref{tab:reactant-data}.
Typical uses will look like this:
\begin{sourcecode}
\reactant{dichloropentane}
\reactant[volume=5]{dichloropentane}
\reactant[volume=0.5, volume-unit=\L]{dichloropentane}
\solvent{thf}
\solvent[volume=200]{thf}
\solvent[volume=1.5, volume-unit=\L]{thf}
\end{sourcecode}
\begin{commands}
\command{printreactants}
Prints a list of number and name of all reactants used throughout the
document. The resulting list is sorted by number and also includes
compounds numbered with \pkg{chemnum}'s \cs{cmpd} command. The starred
variant also includes the \meta{ID} in the list of reactants. Using
\option{printreactants-style} different styles can be selected. (See
section~\vref{sec:list-of-reactants}).
\end{commands}
\subsection{Options}
\begin{options}
\keybool{initiate}\Module{reactants}\Default{false}
The \pkg{chemnum} package that is internally used for numbering the
reactants offers two ways of initiating a new label: either when \cs{cmpd}
is first used or through \cs{initcmpd}. The \module{reactants} module
also offers these two methods with initiating a new label upon the first
use of a reactant being the default. If you prefer to initiate a
new label through the \cs{DeclareChemReactant} command set this option to
true.
Reactants are automatically numbered in the order of their first
appearance, while \option{initiate} numbers the compounds in the order in
which they were declared in the preamble or in an external document.
\keybool{switch}\Module{reactants}\Default{false}
While \cs{reactants} will output name and number of a reactant, its
starred variant \cs{reactant*}, will by default result in the name without
the corresponding number. Setting \keyis{switch}{true}, globally or
locally, reverses this behavior and outputs a reactant's number without
its name.
\end{options}
Other options are described at later places when the corresponding behavior is
described.
\subsubsection{Data and Units}
Describing synthetic procedures often requires adding a lot of data with the
corresponding units to each reactant/solvent that is used. In order to allow
for a uniform representation of numbers and units, as well as making the code
more readable, the \cs{reactant} and \cs{solvent} commands offer an optional
argument that can be used to easily input this data:
\begin{commands}
\command{reactant}[\oarg{data and units}\marg{ID}]
\command{solvent}[\oarg{data and units}\marg{ID}]
\end{commands}
\begin{table}[bp]
\newcolumntype{K}{>{\collectcell\code}l<{\endcollectcell}}
\newcolumntype{O}{>{\collectcell\option}l<{\endcollectcell}}
\centering
\caption{Overview of available keys as well as the default units and the
option to locally or globally change that default unit.}
\label{tab:reactant-data}
\begin{tabular}{KlO}
\toprule
\tablehead{Key} & \tablehead{default unit} & \tablehead{option} \\
\midrule
mass & \unit{\gram} & mass-unit \\
volume & \unit{\milli\liter} & volume-unit \\
fraction & w/w\% & fraction-unit \\
amount & \unit{\milli\mole} & amount-unit \\
equiv & eq & equiv-unit \\
purity & \% & purity-unit \\
concentration & \unit{\Molar} & concentration-unit \\
solvent & n.a. & \\
\midrule
solution-name & solution in & solution \\
\bottomrule
\end{tabular}
\end{table}
\meta{data and units} accepts a comma separated list of key-value pairs with
the available keys and their default units/values listed in
table~\vref{tab:reactant-data}. Key-value pairs can be input in any order as
they are categorized and rearranged internally according to the order in which
they are listed in table~\vref{tab:reactant-data}. Customization of this order
is thus far somewhat limited. The available customization possibilities are
described in section~\vref{sec:output-styles}. Since numbers and their
corresponding units are processed using \pkg{siunitx}, the usual \cs{sisetup}
command can be used to alter, for example, the output decimal separator
according to your needs. Be aware, though, that you must surround a number
with a set of \code{\{\}} if you use a comma as input decimal
separator. Otherwise the decimal places will be truncated without a warning.
\option{solution} here refers to the text that links concentration and
solvent. This text automatically adapts to the document language set via
\pkg{babel} or \pkg{polyglossia}. Currently, the English fallback, as well as
the German translation are included in the package. If you write in a
different language (or just don't like the predefined text), you can use the
command \cs{DeclareChemTranslation}\marg{key}\marg{language}\marg{translation}
(with \keyis{\meta{key}}{solution}) as described in
section~\vref{sec:lang-module} in order to supply your own translation.
\begin{example}
% in the preamble:
% \DeclareChemReactant{nBuLi}{name={\iupac{\textit{n}=butyllithium}}}
% \DeclareChemReactant{Br2benzene}{name={\iupac{1,4=di|bromo|benzene}}}
% \DeclareChemReactant{HBr}{name={\ch{HBr\aq}}}
\reactant[volume=5.00, amount=12.5, equiv=1.00, concentration=2.5, solvent=hexane]{nBuLi}\par
\reactant[mass=3.9, amount=15.6, equiv=1.3, purity=95]{Br2benzene}\par
\reactant[volume=2.0, amount=43.8, equiv=3.5, fraction=65]{HBr}
\end{example}
The options that change the units of the properties can be set with
\cs{chemsetup} or in the optional argument of \cs{reactant}. Accepted units
are units defined by the \pkg{siunitx} package or by the \module{units} module.
\begin{options}
\keyval{mass-unit}{unit}\Module{reactants}\Default{\cs*{gram}}
Change the unit of the \code{mass} property.
\keyval{volume-unit}{unit}\Module{reactants}\Default{\cs*{milli}\cs*{liter}}
Change the unit of the \code{volume} property.
\keyval{fraction-unit}{unit}\Module{reactants}\Default{\code{w/w \cs*{percent}}}
Change the unit of the \code{fraction} property.
\keyval{amount-unit}{unit}\Module{reactants}\Default{\cs*{milli}\cs*{mole}}
Change the unit of the \code{amount} property.
\keyval{equiv-unit}{unit}\Module{reactants}\Default{\code{eq}}
Change the unit of the \code{equiv} property.
\keyval{concentration-unit}{unit}\Module{reactants}\Default{\cs*{Molar}}
Change the unit of the \code{concentration} property.
\keyval{purity-unit}{unit}\Module{reactants}\Default{\cs*{percent}}
Change the unit of the \code{purity} property.
\end{options}
\begin{example}
\reactant[volume=5.5]{thf} \par
\reactant[volume=5, volume-unit=\cubic\centi\metre]{thf}
\end{example}
\subsubsection{Output Styles}\label{sec:output-styles}
The \module{reactants} module categorizes the data into different categories
that are later used to determine the order in which this information is
displayed. This behavior can be controlled using the following predefined
output styles:
\begin{options}
\keychoice{reactant-output-style}{name-main-other,main-name-other,main-other-name}%
\Module{reactants}\\[-\baselineskip]
\Default{name-main-other}
Select one of the three predefined styles to determine the output style of
the data and their units in the \cs{reactant} command.
\keychoice{solvent-output-style}{main-name,name-main}\Module{reactants}\Default{main-name}
Select one of the two predefined styles to determine the output style of
the data and their units in the \cs{solvent} command.
\end{options}
\code{name} here refers to the combination of name and number (or if just one
of them is available, to either name or number).
\code{main} here refers to the \code{mass} or \code{volume} of a reactant or
solvent. If needed, \code{equiv} and/or \code{amount} can also be assigned to
the main category.
\code{other} here refers to all the other data that is give to the reactant
command.
The names of the \option{reactant-output-style} and
\option{solvent-output-style} choice options refer to the order in which the
contents of the categories are typeset.
\begin{example}
\chemsetup[reactants]{reactant-output-style=name-main-other}
\reactant[volume=5, amount=4]{dichloropentane}\par
\chemsetup[reactants]{reactant-output-style=main-name-other}
\reactant[volume=5, amount=4]{dichloropentane}\par
\chemsetup[reactants]{reactant-output-style=main-other-name}
\reactant[volume=5, amount=4]{dichloropentane}
\chemsetup[reactants]{solvent-output-style=name-main}
\solvent[volume=5]{thf}\par
\chemsetup[reactants]{solvent-output-style=main-name}
\solvent[volume=5]{thf}
\end{example}
\begin{options}
\keychoice{main}{default,amount,equiv}\Module{reactants}\Default{default}
By default, only \code{mass} and \code{volume} are assigned to the
\code{main} category. Using the \option{main} option, \code{equiv} or
\code{amount} can be added to the main category.
\end{options}
\chemsetup[reactants]{reactant-output-style=main-name-other}
\begin{example}
\chemsetup[reactants]{main=amount}
\reactant[equiv=2.0, amount=5]{dichloropentane}\par
\chemsetup[reactants]{main=equiv}
\reactant[equiv=2.0, amount=5]{dichloropentane}\par
\chemsetup[reactants]{main=default}
\reactant[equiv=2.0, amount=5]{dichloropentane}
\end{example}
\begin{options}
\keybool{equivalents}\Module{reactants}\Default{true}
Can be used to prevent \code{equiv} from being output while still keeping
the corresponding information in the input code. If you used the
\keyis{main}{equiv} option, the \keyis{equivalents}{false} option will be
ignored for the corresponding entries.
\end{options}
\subsection{Use in Section Headings}\label{sec:reactants-in-headings}
Using the \cs{reactants} command inside of section headings or captions can
mess up the order in which the molecules are numbered, especially when also
using a table of contents and/or a list of figures/tables. To prevent this,
the \module{reactants} module offers the \code{+} suffixed variant of
\cs{reactants}, comparable to \pkg{chemnum}'s \cs{cmpd+} command.
\begin{commands}
\command{reactant+}[\oarg{data and units}\marg{ID}]
This command is used to insert name, number, and, if present, data of a
predefined reactant with the \meta{ID} in a section heading or caption.
\end{commands}
If you also use the \pkg{hyperref} package in combination with \ac{pdf}
bookmarks, you might want to use the optional \option{bookmark} property of
\cs{DeclareChemReactant} to supply an alternative text to \option{name} to be
displayed inside of the \ac{pdf} bookmarks. To later use such a predefined
solvent or reactant, use one of the following three commands, that are defined
analogously to \pkg{chemnum}`s \cs{cmpdplain}. All three commands also exist
in the upper case variant (\cs{Reactantplain}, \cs{Submainreactantplain} and
\cs{Solventplain}) which can be used to display the upper case version of a
reactant or solvent's name. The upper case version of the name must be declared
previously through \cs{DeclareChemReactant}'s \option{upper-name} and
\option{upper-bookmark} options.
\begin{commands}
\command{reactantplain}[\marg{ID}]
Outputs the value of \option{bookmark} inside of the \ac{pdf} bookmark,
while using the reactant's \option{name} inside of the section headings.
\command{submainreactantplain}[\marg{mainID}\marg{subID}]
Outputs the value of \option{bookmark} inside of the \ac{pdf} bookmark,
while using the reactant's \option{name} inside of the section
headings. Must be used if your \meta{ID} consists of a \meta{mainID}
and a \meta{subID} part.
\command{solventplain}[\marg{ID}]
Outputs the value of \option{bookmark} inside of the \ac{pdf} bookmark,
while using the solvent's \option{name} inside of the section headings.
\end{commands}
\subsection{Acronyms as Reactant/Solvent Names}\label{sec:acronyms-in-reactants}
In order to integrate solvent/reactant acronyms into one combined list of
acronyms, the reactants module offers two different options. While using
either of these two options, the user can also explicitly decide if the
\option{name} or the \option{short} version of the reactant/solvent should be
used in the text. Inspired by the \cs{acs} and \cs{acl} commands from the
\pkg{acro} or the \pkg{glossaries-extra} package, the \module{reactants}
module also offers the following \code{s} and \code{l} suffixed variants:
\begin{commands}
\command{reactants}[\marg{ID}]
Output the \option{short} version of the reactant's name.
\command{reactantl}[\marg{ID}]
Output the \option{name} version of the reactant's name.
\command{solvents}[\marg{ID}]
Output the \option{short} version of the solvent's name.
\command{solventl}[\marg{ID}]
Output the \option{name} version of the solvent's name.
\end{commands}
\begin{options}
\keychoice{acronym-support}{acro,glossaries,none}\Module{reactants}\Default{none}
Can be used to select, which of the two packages \pkg{acro} or
\pkg{glossaries-extra} is used in the background in order to format and
sort acronyms.
\end{options}
\begin{example}
% in the preamble:
% \DeclareChemReactant{dcm}{name={dichloromethane}, short={DCM}}
\solvent{dcm}\par
\solventl{dcm}\par
\solvents{dcm}
\end{example}
\subsection{List of Reactants}\label{sec:list-of-reactants}
As mentioned before, \cs{printreactants} can be used to print a list of all
used reactants and their numbers. The \module{reactants} module internally
uses either \pkg{longtable} or \pkg{xltabular} to typeset this list:
\begin{options}
\keychoice{printreactants-style}{xltabular,longtable,none}\Module{reactants}\Default{none}
Can be used to switch between \pkg{longtable} and \pkg{xltabular} which
are responsible for formatting the list of reactants. Be aware that with
\code{longtable}, the column widths are hard coded, thus you could
experience overfull box warnings if you use exceptionally long \meta{ID}s
in combination with the starred variant \cs{printreactants*}, which is
responsible for adding the \meta{ID} in resulting list, as well.
\end{options}
\section{The \chemmodule*{redox} Module}\label{sec:redox-module}
The \chemmodule{redox} module loads the modules \chemmodule{tikz} and
\chemmodule{xfrac}. It also loads the packages
\pkg{mathtools}~\cite{pkg:mathtools} and \pkg{relsize}~\cite{pkg:relsize}.
\subsection{Oxidation Numbers}\label{sec:oxidation-numbers}
Regarding the typesetting of oxidation numbers
\citetitle{iupac:greenbook}~\cite{iupac:greenbook} says the following:
\begin{cnltxquote}[{\cite[][p.\,50]{iupac:greenbook}}]
Oxidation numbers are denoted by positive or negative Roman numerals or by
zero \textelp{}
\textit{Examples}\quad \ox{7,Mn}, \ox[pos=side]{7,manganese}, \ox{-2,O},
\ox{0,Ni}
\end{cnltxquote}
The following command is provided to set oxidation numbers:
\begin{commands}
\command{ox}[\sarg\oarg{options}\Marg{\meta{number},\meta{atom}}]
Places \meta{number} as right superscript to \meta{atom}; \meta{number}
has to be a (rational) number! \meta{atom} is treated as a \chemformula\
formula, like it would be in \cs{chcpd} (this depends on the setting of
the \option{formula} option, see~\vref{sec:chemformula-module}).
\end{commands}
\begin{example}
\ox{+1,Na}, \ox{2,Ca}, \ox{-2,S}, \ox{-1,F}
\end{example}
There are a number of options that can be used to modify the typeset result:
\begin{options}
\keyval{format}{code}\Module{redox}
\sinceversion{5.11}Allows to apply arbitrary \meta{code} in front of the
typeset oxidation numbers. The last command may expect the oxidation
number as an argument. An example might be \cs*{textcolor}\Marg{red}.
\keybool{parse}\Module{redox}\Default{true}
When \code{false} an arbitrary entry can be used for \code{<number>}.
\keybool{roman}\Module{redox}\Default{false}
Switches from roman to arabic numbers.
\keychoice{pos}{top,super,side}\Module{redox}\Default{super}
\code{top} places \meta{number} above \meta{atom}, \code{super} to the
upper right as superscript and \code{side} to the right and inside
brackets. Both \code{super} and \code{side} follow \ac{iupac}
recommendation, \code{top} does not!
\keybool{explicit-sign}\Module{redox}\Default{false}
Shows the $+$ for positiv numbers and the $\pm$ for $0$.
\keybool{explizit-zero-sign}\Module{redox}\Default{true}
Only\sinceversion{5.4} if both \option{explicit-sign} and
\option{explicit-zero-sign} are set to \code{true} $\pm0$ will be
printed.
\keychoice{decimal-marker}{comma,point}\Module{redox}\Default{point}
Choice for the decimal marker for formal oxidation numbers like \ox{1.2,X}.
\keychoice{align}{center,right}\Module{redox}\Default{center}
Center the oxidation number relative to the atom or right-align it.
\keyval{side-connect}{code}\Module{redox}\Default{\cs*{,}}
Code that is inserted between atom and oxidation number if
\keyis{pos}{side} is used.
\keyval{text-frac}{cs}\Module{redox}\Default{\cs{chemfrac}\Oarg{text}\Marg{\#1}\Marg{\#2}}
The fraction macro that is used for fractions if \keyis{pos}{side} is
used. \meta{cs} must be a macro that takes two mandatory arguments, the
first for the numerator and the second for the denominator.
\keyval{super-frac}{cs}\Module{redox}\Default{\cs{chemfrac}\Oarg{superscript}%
\Marg{\#1}\Marg{\#2}}
The fraction macro that is used for fractions if \keyis{pos}{top} or
\keyis{pos}{super} is used. \meta{cs} must be a macro that takes two
mandatory arguments, the first for the numerator and the second for the
denominator.
\end{options}
\begin{example}[side-by-side]
\ox[roman=false]{2,Ca} \ox{2,Ca} \\
\ox[pos=top]{3,Fe}-Oxide \\
\ox[pos=side]{3,Fe}-Oxide \\
\ox[parse=false]{?,Mn} \\
\ox[pos=top,align=right]{2,Ca}
\end{example}
The \keyis{pos}{top} variant also can be set with the shortcut \cs{ox}\sarg:
\begin{example}[side-by-side]
\ox{3,Fe} \ox*{3,Fe}
\end{example}
Using the \option{explicit-sign} option will always show the sign of the
oxidation number:
\begin{example}
\chemsetup[redox]{explicit-sign = true}
\ox{+1,Na}, \ox{2,Ca}, \ox{-2,S}, \ch{"\ox{0,F}" {}2}
\end{example}
\begin{example}
\chemsetup[redox]{pos=top}
Compare \ox{-1,O2^2-} to \ch{"\ox{-1,O}" {}2^2-}
\end{example}
Sometimes one might want to use formal oxidation numbers like \num{.5} or
\chemfrac{1}{3}:
\begin{example}[side-by-side]
\chemsetup[redox]{pos=top}
\ox{.5,Br2}
\ch{"\ox{1/3,I}" {}3+}
\chemsetup[redox]{pos=side}
\ox{1/3,I3+}
\end{example}
The fraction is displayed with the help of the \pkg{xfrac}
package~\cite{bnd:l3packages}. For more details on how \chemmacros\ uses it
read section~\vref{sec:xfrac-module}.
\subsection{Redox Reactions}\label{sec:redox-reactions}
\chemmacros\ provides two commands to visualize the transfer of electrons in
redox reactions. Both commands are using \TikZ.
\begin{commands}
\command{OX}[\Marg{\meta{name},\meta{atom}}]
Label \meta{atom} with the label \meta{name}.
\command{redox}[\Darg{\meta{name1},\meta{name2}}\oarg{tikz}\oarg{num}\marg{text}]
Connect two \meta{atom}s previously labelled with \cs{OX}. Only the first
argument \Darg{\meta{name1},\meta{name2}} is required, the others are all
optional.
\end{commands}
\cs{OX} places \meta{atom} into a node, which is named with \meta{name}. If
you have set two \cs{OX}, they can be connected with a line using \cs{redox}.
To do so the names of the two nodes that are to be connected are written in
the round braces. Since \cs{redox} draws a \code{tikzpicture} with options
\code{remember picture,overlay}, the document needs to be \emph{compiled at
least two times}.
\begin{example}
\vspace{7mm}
\OX{a,Na} $\rightarrow$ \OX{b,Na}\pch\redox(a,b){oxidation}
\end{example}
This line can be customized using \TikZ\ keys in \oarg{tikz}:
\begin{example}
\vspace{7mm}
\OX{a,Na} $\rightarrow$ \OX{b,Na}\pch\redox(a,b)[->,red]{ox}
\end{example}
With the argument \oarg{num} the length of the vertical parts of the line can
be adjusted. The default length is \code{.6em}. This length is multiplied
with \meta{num}. If you use a negative value the line is placed \emph{below}
the text.
\begin{example}
\vspace{7mm}
\OX{a,Na} $\rightarrow$ \OX{b,Na}\pch
\redox(a,b)[->,red]{ox}
\redox(a,b)[<-,blue][-1]{red}
\vspace{7mm}
\end{example}
The default length of the vertical lines can be customized with the option
\begin{options}
\keyval{dist}{dim}\Module{redox}\Default{.6em}
A \TeX\ dimension.
\end{options}
\begin{example}
\vspace{7mm}
\chemsetup{redox/dist=1em}
\OX{a,Na} $\rightarrow$ \OX{b,Na}\pch\redox(a,b)[->,red]{ox}
\end{example}
\begin{options}
\keyval{sep}{dim}\Module{redox}\Default{.2em}
The option can be used to change the distance between the atom and the
beginning of the line.
\end{options}
\begin{example}
\vspace{7mm}
\chemsetup{redox/sep=.5em}
\OX{a,Na} $\rightarrow$ \OX{b,Na}\pch\redox(a,b)[->,red]{ox}
\end{example}
\subsection{Examples}
\begin{example}
\vspace{7mm}
\ch{
2 "\OX{o1,Na}" + "\OX{r1,Cl}" {}2
->
2 "\OX{o2,Na}" {}+ + 2 "\OX{r2,Cl}" {}-
}
\redox(o1,o2){\small OX: $- 2\el$}
\redox(r1,r2)[][-1]{\small RED: $+ 2\el$}
\vspace{7mm}
\end{example}
\begin{example}
\vspace{7mm}
\ch{
2 "\OX{o1,\ox*{0,Na}}" + "\OX{r1,\ox*{0,Cl}}" {}2
->
2 "\OX{o2,\ox*{+1,Na}}" {}+ + 2 "\OX{r2,\ox*{-1,Cl}}" {}-
}
\redox(o1,o2){\small OX: $- 2\el$}
\redox(r1,r2)[][-1]{\small RED: $+ 2\el$}
\vspace{7mm}
\end{example}
\begin{example}
\vspace{14mm}
\ch{
2 "\OX{o1,\ox*{0,Na}}" + "\OX{r1,\ox*{0,Cl}}" {}2
->
2 "\OX{o2,\ox*{+1,Na}}" {}+ + 2 "\OX{r2,\ox*{-1,Cl}}" {}-
}
\redox(o1,o2)[draw=red,->][3.33]{\small OX: $- 2\el$}
\redox(r1,r2)[draw=blue,->]{\small RED: $+ 2\el$}
\end{example}
\begin{example}
\vspace{7mm}
\ch{
2 "\OX{o1,\ox*{0,Na}}" + "\OX{r1,\ox*{0,Cl}}" {}2
-> 2 "\OX{o2,\ox*{+1,Na}}" {}+ + 2 "\OX{r2,\ox*{-1,Cl}}" {}-
}
\redox(o1,o2)[green,-stealth]{\small OX}
\redox(r1,r2)[purple,-stealth][-1]{\small RED}
\vspace{7mm}
\end{example}
\section{The \chemmodule*{scheme} Module}\label{sec:scheme-module}
The \chemmodule{scheme} module loads the \pkg{chemnum}
package~\cite{pkg:chemnum} and defines a floating environment
\showenv{scheme}. That is, it \emph{only} defines this float if no
environment \env{scheme} exists at the end of the preamble. The module checks
for different available float defining methods, in \emph{this} order:
\begin{itemize}
\item If the current class is a \KOMAScript\ class \cs*{DeclareNewTOC} will
be used.
\item If the current class is \cls{memoir}, \cls{memoir}'s methods are used.
\item If the package \pkg{tocbasic} has been loaded \cs*{DeclareNewTOC} will
be used.
\item If the package \pkg{newfloat} has been loaded
\cs*{DeclareFloatingEnvironment} will be used.
\item \sinceversion{5.1}If the package \pkg{floatrow} has been loaded its
method will be used.
\item If the package \pkg{float} has been loaded its method will be used.
\item If neither of the above the \enquote{manual} method is used. This
means the environment is defined the same way like \env*{figure} is
defined in the \cls*{article} class or the \cls*{book} class, depending if
\cs*{chapter} is defined or not.
\end{itemize}
The list name and the caption name both are translated to the language
specified according to the \option{lang} option and the provided translations,
see section~\vref{sec:lang-module} for details. If you want to manually change
them then redefine these macros after begin document:
\begin{commands}
\command{listschemename}
The name of the list of schemes.
\command{schemename}
The name used in captions.
\end{commands}
The list of schemes is printed as expected with
\begin{commands}
\command{listofschemes}
\end{commands}
If\sinceversion{5.6} you are using either \pkg{cleveref} or \pkg{fancyref} the
\env{scheme} environment (or rather its captions) are supported already. For
\pkg{fancyref} use the prefix \code{sch}.
\section{The \chemmodule*{spectroscopy} Module}\label{sec:spectroscopy-module}
The \chemmodule{spectroscopy} module loads the \chemmodule{chemformula} module
and the \pkg{siunitx} package~\cite{pkg:siunitx}.
\subsection{The \cs*{NMR} Command}
When you're trying to find out if a compound is the one you think it is often
NMR spectroscopy is used. The experimental data are typeset similar to this:
\begin{center}
\NMR(400)[CDCl3] = \num{1.59}
\end{center}
The \chemmodule{spectroscopy} module provides a command which simplifies the
input.
\begin{commands}
\command{NMR}[\sarg\Marg{\meta{num},\meta{element}}%
\Darg{\meta{num},\meta{unit}}\oarg{solvent}]
Typeset nuclear magnetic resonance data. \meta{num} is a valid
\pkg{siunitx} number input, \meta{unit} is a valid \pkg{siunitx} unit
input. \meta{solvent} is any valid \chemformula\ input as in \cs{chcpd}
(this depends on the setting of the \option{formula} option,
see~\vref{sec:chemformula-module}).
\end{commands}
\emph{All} Argument are optional! Without arguments we get:
\begin{example}[side-by-side]
\NMR \par
\NMR*
\end{example}
The first argument specifies the kind of NMR:
\begin{example}[side-by-side]
\NMR{13,C}
\end{example}
The second argument sets the frequency (in \unit{\mega\hertz}):
\begin{example}[side-by-side]
\NMR(400)
\end{example}
You can choose another unit:
\begin{example}[side-by-side]
\NMR(4e8,\hertz)
\end{example}
Please note that the setup of \pkg{siunitx} also affects this command:
\begin{example}[side-by-side]
\sisetup{exponent-product=\cdot}
\NMR(4e8,\hertz)
\end{example}
The third argument specifies the solvent:
\begin{example}[side-by-side]
\NMR[CDCl3]
\end{example}
\subsection{Short Cuts}
It is possible to define short cut commands for specific nuclei.
\begin{commands}
\command{NewChemNMR}[\marg{cs}\Marg{\meta{num},\meta{atom}}]
Define a new shortcut macro for typesetting a certain type of magnetic
resonence data. Gives an error if \meta{cs} already exists.
\command{DeclareChemNMR}[\marg{cs}\Marg{\meta{num},\meta{atom}}]
Define a new shortcut macro for typesetting a certain type of magnetic
resonence data. Overwrites an existing macro.
\command{RenewChemNMR}[\marg{cs}\Marg{\meta{num},\meta{atom}}]
Redefine an existing shortcut macro for typesetting a certain type of
magnetic resonence data. Gives an error if \meta{cs} doesn't exist.
\command{ProvideChemNMR}[\marg{cs}\Marg{\meta{num},\meta{atom}}]
Define a new shortcut macro for typesetting a certain type of magnetic
resonence data. \meta{cs} is only defined if it doesn't exist, yet.
\end{commands}
This defines a command with the same arguments as \cs{NMR} \emph{except} for
\Marg{\meta{num},\meta{atom}}:
\begin{example}[side-by-side]
\NewChemNMR\HNMR{1,H}%
\NewChemNMR\CNMR{13,C}%
\CNMR*(100) \par
\HNMR*(400)
\end{example}
\subsection{An Environment to Typeset Experimental Data}
The \chemmodule{spectroscopy} module provides an environment to ease the input
of experimental data.
\begin{environments}
\environment{experimental}
Environment for the output of experimental data. Inside the environment
the following commands are defined.
\end{environments}
\begin{commands}
\command{data}[\marg{type}\oarg{specification}]
Type of data, \eg\ IR, MS\ldots\ The optional argument takes further
specifications which are output in parentheses.
\command{data}[\sarg\marg{type}\oarg{specification}]
Like \cs{data} but changes the \code{=} into a \code{:}, given that
\keyis{use-equal}{true} is used.
\command{NMR}[\Marg{\meta{num},\meta{elem}\oarg{coupling
core}}\Darg{\meta{num},\meta{unit}}\oarg{solvent}]
This command gets an additional argument:
\cs{NMR}\Marg{13,C[\textasciicircum 1H]} \NMR{13,C[^1H]}
\command{J}[\Darg{\meta{bonds};\meta{nuclei}}\oarg{unit}\marg{list of nums}]
Coupling constant, values are input separated by \code{;} (NMR). The
arguments \Darg{\meta{bonds};\meta{nuclei}} and \oarg{unit} are optional
and enable further specifications of the coupling.
\command{\#}[\marg{num}]
Number of nuclei (NMR).
\command{pos}[\marg{num}]
Position of nuclues (NMR).
\command{val}[\marg{num}]
A number, an alias of \pkg{siunitx}' \cs*{num}\marg{num}.
\command{val}[\Marg{\meta{num1}--\meta{num2}}]
An alias of \pkg{siunitx}' \cs*{numrange}\marg{num1}\marg{num2}.
\end{commands}
\begin{example}
\begin{experimental}
\data{type1} Data.
\data{type2}[specifications] More data.
\data*{type3} Even more data.
\end{experimental}
\end{example}
\subsection{Customization}\label{sec:experimental-customization}
The output of the environment and of the NMR commands can be customized be a
number of options.
\begin{options}
\keyval{unit}{unit}\Module{spectroscopy}\Default{\cs*{mega}\cs*{hertz}}
The used default unit.
\keychoice{nucleus}{\Marg{\meta{num},\meta{atom}}}\Module{spectroscopy}\Default{\Marg{1,H}}
The used default nucleus.
\keyval{connector}{code}\Module{spectroscopy}\Default{-}
Places \meta{code} between the nucleus and the method.
\keyval{method}{code}\Module{spectroscopy}\Default{NMR}
The measuring method.
\keyval{format}{commands}\Module{spectroscopy}\Default
For example \cs*{bfseries}.
\keyval{nmr-base-format}{commands}\Module{spectroscopy}\Default
\sinceversion{5.8}Formatting instructions for the NMR base.
\keychoice{pos-number}{side,sub,super}\Module{spectroscopy}\Default{side}
Position of the number next to the atom.
\keyval{coupling-symbol}{code}\Module{spectroscopy}\Default{J}
The symbol used for the coupling constant.
\keyval{coupling-unit}{unit}\Module{spectroscopy}\Default{\cs*{hertz}}
A \pkg{siunitx} unit.
\keychoice{coupling-pos}{side,sub}\Module{spectroscopy}\Default{side}
Placement of the coupling nuclei next to the symbol $J$ (or rather the
symbol specified with option \option{coupling-symbol}).
\keyval{coupling-nuclei-pre}{code}\Module{spectroscopy}\Default{(}
Code inserted before the coupling nuclei when \keyis{coupling-pos}{side}.
\keyval{coupling-nuclei-post}{code}\Module{spectroscopy}\Default{)}
Code inserted after the coupling nuclei when \keyis{coupling-pos}{side}.
\keyval{coupling-bonds-pre}{code}\Module{spectroscopy}\Default
Code inserted before the coupling bonds.
\keyval{coupling-bonds-post}{code}\Module{spectroscopy}\Default{\cs*{!}}
Code inserted after the coupling bonds.
\keyval{coupling-pos-cs}{cs}\Module{spectroscopy}\Default{\cs*{@firstofone}}
Set the macro that prints the number set with the \cs{pos} macro. This
needs to be a command with one mandatory argument.
\keyval{atom-number-cs}{cs}\Module{spectroscopy}\Default{\cs*{@firstofone}}
Set the macro that prints the number set with the \cs{\#} macro. This
needs to be a command with one mandatory argument.
\keyval{atom-number-space}{dim}\Module{spectroscopy}\Default{.16667em}
Horizontal\sinceversion{5.3} space inserted between number and atom
(printed by \cs{\#}).
\keybool{parse}\Module{spectroscopy}\Default{true}
Treat the solvent as \chemformula\ formula (this depends on the setting of
the \option{formula} option, see~\vref{sec:chemformula-module}) or not.
\keyval{delta}{tokens}\Module{spectroscopy}\Default
The \meta{tokens} are added after $\delta$.
\keybool{list}\Module{spectroscopy}\Default{false}
The environment \env{experimental} is formatted as a list
\keyval{list-setup}{setup}\Module{spectroscopy}
Setup of the list. See below for the default settings.
\keybool{use-equal}\Module{spectroscopy}\Default{false}
Add equal sign after \cs{NMR} and \cs{data}.
\end{options}
The default setup of the list:
\begin{sourcecode}
\topsep\z@skip \partopsep\z@skip
\itemsep\z@ \parsep\z@ \itemindent\z@
\leftmargin\z@
\end{sourcecode}
\begin{example}
\begin{experimental}[format=\bfseries]
\data{type1} Data.
\data{type2}[specifications] More data.
\data*{type3} Even more data.
\end{experimental}
\end{example}
The command \cs{NMR} and all commands defined through \cs{NewChemNMR}
can be used like \cs{data} for the NMR data.
\begin{example}
\begin{experimental}[format=\bfseries,use-equal]
\data{type1} Data.
\data{type2}[specifications] More data.
\NMR Even more data.
\end{experimental}
\end{example}
\subsection{An Example}
The code below is shown with different specifications for \meta{options}.
Of course options can also be chosen with \cs{chemsetup}.
\begin{sourcecode}
\sisetup{separate-uncertainty,per-mode=symbol,detect-all,range-phrase=--}
\begin{experimental}[<optionen>]
\data*{yield} \qty{17}{\milli\gram} yellow needles (\qty{0.04}{\milli\mole},
\qty{13}{\percent}).
%
\data{mp.} \qty{277}{\celsius} (DSC).
%
\NMR(600)[CDCl3] \val{2.01} (s, \#{24}, \pos{5}), \val{2.31} (s, \#{12},
\pos{1}), \val{6.72--6.74} (m, \#{2}, \pos{11}), \val{6.82} (s, \#{8},
\pos{3}), \val{7.05--7.07} (m, \#{2}, \pos{12}), \val{7.39--7.41} (m, \#{4},
\pos{9}), \val{7.48--7.49} (m, \#{4}, \pos{8}).
%
\NMR{13,C}(150)[CDCl3] \val{21.2} ($+$, \#{4}, \pos{1}), \val{23.4} ($+$,
\#{8}, \pos{5}), \val{126.0} ($+$, \#{4}, \pos{9}), \val{128.2} ($+$, \#{8},
\pos{3}), \val{130.8} ($+$, \#{2}, \pos{12}), \val{133.6} ($+$, \#{2},
\pos{11}), \val{137.0} ($+$, \#{4}, \pos{8}), \val{138.6} (q, \#{4},
\pos{2}), \val{140.6} (q, \#{2}, \pos{10}), \val{140.8} (q, \#{8}, \pos{4}),
\val{141.8} (q, \#{4}, \pos{6}), \val{145.6} (q, \#{2}, \pos{7}).
%
\data{MS}[DCP, EI, \qty{60}{\electronvolt}] \val{703} (2, \ch{M+}), \val{582}
(1), \val{462} (1), \val{249} (13), \val{120} (41), \val{105} (100).
%
\data{MS}[\ch{MeOH + H2O + KI}, ESI, \qty{10}{\electronvolt}] \val{720} (100,
\ch{M+ + OH-}), \val{368} (\ch{M+ + 2 OH-}).
%
\data{IR}[KBr] \val{3443} (w), \val{3061} (w), \val{2957} (m), \val{2918}
(m), \val{2856} (w), \val{2729} (w), \val{1725} (w), \val{1606} (s),
\val{1592} (s), \val{1545} (w), \val{1446} (m), \val{1421} (m), \val{1402}
(m), \val{1357} (w), \val{1278} (w), \val{1238} (s), \val{1214} (s),
\val{1172} (s), \val{1154} (m), \val{1101} (w), \val{1030} (w), \val{979}
(m), \val{874} (m), \val{846} (s), \val{818} (w), \val{798} (m), \val{744}
(w), \val{724} (m), \val{663} (w), \val{586} (w), \val{562} (w), \val{515}
(w).
%
\data*{UV-Vis} \qty{386}{\nano\metre} ($\varepsilon = \val{65984}$),
\qty{406}{\nano\metre} ($\varepsilon = \val{65378}$).
%
\data*{quantum yield} $\Phi = \val{0.74+-0.1}$\,.
\end{experimental}
\end{sourcecode}
\subsection{Nearly Standard}
Output with these options:
\begin{sourcecode}
delta=(ppm),pos-number=sub,use-equal
\end{sourcecode}
\begin{experimental}[delta=(ppm),pos-number=sub,use-equal]
\sisetup{separate-uncertainty,per-mode=symbol,detect-all,range-phrase=--}
\data*{yield} \qty{17}{\milli\gram} yellow needles (\qty{0.04}{\milli\mole},
\qty{13}{\percent}).
%
\data{mp.} \qty{277}{\celsius} (DSC).
%
\NMR(600)[CDCl3] \val{2.01} (s, \#{24}, \pos{5}), \val{2.31} (s, \#{12},
\pos{1}), \val{6.72--6.74} (m, \#{2}, \pos{11}), \val{6.82} (s, \#{8},
\pos{3}), \val{7.05--7.07} (m, \#{2}, \pos{12}), \val{7.39--7.41} (m, \#{4},
\pos{9}), \val{7.48--7.49} (m, \#{4}, \pos{8}).
%
\NMR{13,C}(150)[CDCl3] \val{21.2} ($+$, \#{4}, \pos{1}), \val{23.4} ($+$,
\#{8}, \pos{5}), \val{126.0} ($+$, \#{4}, \pos{9}), \val{128.2} ($+$, \#{8},
\pos{3}), \val{130.8} ($+$, \#{2}, \pos{12}), \val{133.6} ($+$, \#{2},
\pos{11}), \val{137.0} ($+$, \#{4}, \pos{8}), \val{138.6} (q, \#{4},
\pos{2}), \val{140.6} (q, \#{2}, \pos{10}), \val{140.8} (q, \#{8}, \pos{4}),
\val{141.8} (q, \#{4}, \pos{6}), \val{145.6} (q, \#{2}, \pos{7}).
%
\data{MS}[DCP, EI, \qty{60}{\electronvolt}] \val{703} (2, \ch{M+}), \val{582}
(1), \val{462} (1), \val{249} (13), \val{120} (41), \val{105} (100).
%
\data{MS}[\ch{MeOH + H2O + KI}, ESI, \qty{10}{\electronvolt}] \val{720} (100,
\ch{M+ + OH-}), \val{368} (\ch{M+ + 2 OH-}).
%
\data{IR}[KBr] \val{3443} (w), \val{3061} (w), \val{2957} (m), \val{2918}
(m), \val{2856} (w), \val{2729} (w), \val{1725} (w), \val{1606} (s),
\val{1592} (s), \val{1545} (w), \val{1446} (m), \val{1421} (m), \val{1402}
(m), \val{1357} (w), \val{1278} (w), \val{1238} (s), \val{1214} (s),
\val{1172} (s), \val{1154} (m), \val{1101} (w), \val{1030} (w), \val{979}
(m), \val{874} (m), \val{846} (s), \val{818} (w), \val{798} (m), \val{744}
(w), \val{724} (m), \val{663} (w), \val{586} (w), \val{562} (w), \val{515}
(w).
%
\data*{UV-Vis} \qty{386}{\nano\metre} ($\varepsilon = \val{65984}$),
\qty{406}{\nano\metre} ($\varepsilon = \val{65378}$).
%
\data*{quantum yield} $\Phi = \val{0.74+-0.1}$\,.
\end{experimental}
\subsection{Formatted List}
Output with these options:
\begin{sourcecode}
format=\bfseries,delta=(ppm),list=true,use-equal
\end{sourcecode}
\begin{experimental}[format=\bfseries,delta=(ppm),list=true,use-equal]
\sisetup{separate-uncertainty,per-mode=symbol,detect-all,range-phrase=--}
\data*{yield} \qty{17}{\milli\gram} yellow needles (\qty{0.04}{\milli\mole},
\qty{13}{\percent}).
%
\data{mp.} \qty{277}{\celsius} (DSC).
%
\NMR(600)[CDCl3] \val{2.01} (s, \#{24}, \pos{5}), \val{2.31} (s, \#{12},
\pos{1}), \val{6.72--6.74} (m, \#{2}, \pos{11}), \val{6.82} (s, \#{8},
\pos{3}), \val{7.05--7.07} (m, \#{2}, \pos{12}), \val{7.39--7.41} (m, \#{4},
\pos{9}), \val{7.48--7.49} (m, \#{4}, \pos{8}).
%
\NMR{13,C}(150)[CDCl3] \val{21.2} ($+$, \#{4}, \pos{1}), \val{23.4} ($+$,
\#{8}, \pos{5}), \val{126.0} ($+$, \#{4}, \pos{9}), \val{128.2} ($+$, \#{8},
\pos{3}), \val{130.8} ($+$, \#{2}, \pos{12}), \val{133.6} ($+$, \#{2},
\pos{11}), \val{137.0} ($+$, \#{4}, \pos{8}), \val{138.6} (q, \#{4},
\pos{2}), \val{140.6} (q, \#{2}, \pos{10}), \val{140.8} (q, \#{8}, \pos{4}),
\val{141.8} (q, \#{4}, \pos{6}), \val{145.6} (q, \#{2}, \pos{7}).
%
\data{MS}[DCP, EI, \qty{60}{\electronvolt}] \val{703} (2, \ch{M+}), \val{582}
(1), \val{462} (1), \val{249} (13), \val{120} (41), \val{105} (100).
%
\data{MS}[\ch{MeOH + H2O + KI}, ESI, \qty{10}{\electronvolt}] \val{720} (100,
\ch{M+ + OH-}), \val{368} (\ch{M+ + 2 OH-}).
%
\data{IR}[KBr] \val{3443} (w), \val{3061} (w), \val{2957} (m), \val{2918}
(m), \val{2856} (w), \val{2729} (w), \val{1725} (w), \val{1606} (s),
\val{1592} (s), \val{1545} (w), \val{1446} (m), \val{1421} (m), \val{1402}
(m), \val{1357} (w), \val{1278} (w), \val{1238} (s), \val{1214} (s),
\val{1172} (s), \val{1154} (m), \val{1101} (w), \val{1030} (w), \val{979}
(m), \val{874} (m), \val{846} (s), \val{818} (w), \val{798} (m), \val{744}
(w), \val{724} (m), \val{663} (w), \val{586} (w), \val{562} (w), \val{515}
(w).
%
\data*{UV-Vis} \qty{386}{\nano\metre} ($\varepsilon = \val{65984}$),
\qty{406}{\nano\metre} ($\varepsilon = \val{65378}$).
%
\data*{quantum yield} $\Phi = \val{0.74+-0.1}$\,.
\end{experimental}
\subsection{Crazy}
Output for these options:
\begin{sourcecode}
format=\color{red}\itshape,
list=true,
delta=\textcolor{green}{\ch{M+ + H2O}},
pos-number=side,
coupling-unit=\mega\gram\per\square\second,
list-setup=,
use-equal
\end{sourcecode}
\begin{experimental}[
format=\color{red}\itshape,
list=true,
delta=\textcolor{green}{\ch{M+ + H2O}},
pos-number=side,
coupling-unit=\mega\gram\per\square\second,
list-setup=,use-equal]
\sisetup{separate-uncertainty,per-mode=symbol,detect-all,range-phrase=--}
\data*{yield} \qty{17}{\milli\gram} yellow needles (\qty{0.04}{\milli\mole},
\qty{13}{\percent}).
%
\data{mp.} \qty{277}{\celsius} (DSC).
%
\NMR(600)[CDCl3] \val{2.01} (s, \#{24}, \pos{5}), \val{2.31} (s, \#{12},
\pos{1}), \val{6.72--6.74} (m, \#{2}, \pos{11}), \val{6.82} (s, \#{8},
\pos{3}), \val{7.05--7.07} (m, \#{2}, \pos{12}), \val{7.39--7.41} (m, \#{4},
\pos{9}), \val{7.48--7.49} (m, \#{4}, \pos{8}).
%
\NMR{13,C}(150)[CDCl3] \val{21.2} ($+$, \#{4}, \pos{1}), \val{23.4} ($+$,
\#{8}, \pos{5}), \val{126.0} ($+$, \#{4}, \pos{9}), \val{128.2} ($+$, \#{8},
\pos{3}), \val{130.8} ($+$, \#{2}, \pos{12}), \val{133.6} ($+$, \#{2},
\pos{11}), \val{137.0} ($+$, \#{4}, \pos{8}), \val{138.6} (q, \#{4},
\pos{2}), \val{140.6} (q, \#{2}, \pos{10}), \val{140.8} (q, \#{8}, \pos{4}),
\val{141.8} (q, \#{4}, \pos{6}), \val{145.6} (q, \#{2}, \pos{7}).
%
\data{MS}[DCP, EI, \qty{60}{\electronvolt}] \val{703} (2, \ch{M+}), \val{582}
(1), \val{462} (1), \val{249} (13), \val{120} (41), \val{105} (100).
%
\data{MS}[\ch{MeOH + H2O + KI}, ESI, \qty{10}{\electronvolt}] \val{720} (100,
\ch{M+ + OH-}), \val{368} (\ch{M+ + 2 OH-}).
%
\data{IR}[KBr] \val{3443} (w), \val{3061} (w), \val{2957} (m), \val{2918}
(m), \val{2856} (w), \val{2729} (w), \val{1725} (w), \val{1606} (s),
\val{1592} (s), \val{1545} (w), \val{1446} (m), \val{1421} (m), \val{1402}
(m), \val{1357} (w), \val{1278} (w), \val{1238} (s), \val{1214} (s),
\val{1172} (s), \val{1154} (m), \val{1101} (w), \val{1030} (w), \val{979}
(m), \val{874} (m), \val{846} (s), \val{818} (w), \val{798} (m), \val{744}
(w), \val{724} (m), \val{663} (w), \val{586} (w), \val{562} (w), \val{515}
(w).
%
\data*{UV-Vis} \qty{386}{\nano\metre} ($\varepsilon = \val{65984}$),
\qty{406}{\nano\metre} ($\varepsilon = \val{65378}$).
%
\data*{quantum yield} $\Phi = \val{0.74+-0.1}$\,.
\end{experimental}
\section{The \chemmodule*{thermodynamics} Module}\label{sec:thermodynamics-module}
The \chemmodule{thermodynamics} module loads the \pkg{siunitx}
package~\cite{pkg:siunitx}.
\subsection{The \cs*{state} Macro}
\begin{commands}
\command{state}[\oarg{options}\marg{symbol}]
Typeset a state variable.
\end{commands}
This macro can be used to write the thermodynamic state variables.
\begin{example}
\state{A}, \state[subscript-left=f]{G} ,
\state[subscript-right=\ch{Na}]{E},
\state[superscript-right=\qty{1000}{\celsius}]{H}
\end{example}
These options are available:
\begin{options}
\keyval{pre}{text}\Module{thermodynamics}\Default{\cs{changestate}}
Code inserted before the variable. Inserted in text mode.
\keyval{post}{text}\Module{thermodynamics}\Default
Code inserted after the variable. Inserted in text mode.
\keyval{superscript-left}{text}\Module{thermodynamics}\Default
The left superscript. Inserted in text mode.
\keyval{superscript-right}{text}\Module{thermodynamics}\Default{\cs{standardstate}}
The right superscript. Inserted in text mode.
\keyval{superscript}{text}\Module{thermodynamics}
An alias of \option{superscript-right}.
\keyval{subscript-left}{text}\Module{thermodynamics}\Default
The left subscript. Inserted in text mode.
\keyval{subscript-right}{text}\Module{thermodynamics}\Default
The right subscript. Inserted in text mode.
\keyval{subscript}{text}\Module{thermodynamics}
An alias of \option{subscript-left}.
\end{options}
\subsection{Thermodynamic Variables}
The \chemmodule{thermodynamics} module provides a few commands for specific
thermodynamic variables:
\begin{commands}
\command{enthalpy}[\sarg\oarg{options}\darg{subscript}\marg{value}]
Typeset the amount of enthalpy.
\command{entropy}[\sarg\oarg{options}\darg{subscript}\marg{value}]
Typeset the amount of entropy.
\command{gibbs}[\sarg\oarg{options}\darg{subscript}\marg{value}]
Typeset the amount of Gibbs enthalpy.
\end{commands}
Their usage is pretty much self-explaining:
\begin{example}[side-by-side]
\enthalpy{123} \par
\entropy{123} \par
\gibbs{123}
\end{example}
The argument \darg{subscript} adds a subscript for specification, \sarg\ hides
number and unit:
\begin{example}[side-by-side]
\enthalpy(r){123} \par
\enthalpy*{123} \par
\end{example}
\begin{options}
\keyval{pre}{text}\Module{thermodynamics}\Default{\cs{changestate}}
Code inserted before the variable. Inserted in text mode.
\keyval{post}{text}\Module{thermodynamics}\Default
Code inserted after the variable. Inserted in text mode.
\keyval{superscript-left}{text}\Module{thermodynamics}\Default
The left superscript. Inserted in text mode.
\keyval{superscript-right}{text}\Module{thermodynamics}\Default{\cs{standardstate}}
The right superscript. Inserted in text mode.
\keyval{superscript}{text}\Module{thermodynamics}
An alias of \option{superscript-right}.
\keyval{subscript-left}{text}\Module{thermodynamics}\Default
The left subscript. Inserted in text mode.
\keyval{subscript-right}{text}\Module{thermodynamics}\Default
The right subscript. Inserted in text mode.
\keyval{subscript}{text}\Module{thermodynamics}
An alias of \option{subscript-left}.
\keychoice{subscript-pos}{left,right}\Module{thermodynamics}\Default{left}
Determines wether the subscript given in \darg{subscript} is placed to the
left or the right of the variable.
\keyval{symbol}{symbol}\Module{thermodynamics}\Default
The symbol of the variable. Inserted in math mode.
\keyval{unit}{unit}\Module{thermodynamics}\Default
A valid \pkg{siunitx} unit.
\end{options}
The default values depend on the command.
\begin{example}[side-by-side]
\enthalpy[unit=\kilo\joule]{-285} \par
\gibbs[pre=]{0} \par
\entropy[pre=$\Delta$,superscript=]{56.7}
\end{example}
The unit is set corresponding to the rules of \pkg{siunitx} and depends on
its settings:
\begin{example}[side-by-side]
\enthalpy{-1234.56e3} \par
\sisetup{
per-mode=symbol,
exponent-product=\cdot,
output-decimal-marker={,},
group-four-digits=true
}
\enthalpy{-1234.56e3}
\end{example}
\subsection{Create New Variables or Redefine Existing Ones}
\begin{commands}
\command{NewChemState}[\marg{cs}\marg{options}]
Define new state commands like \cs{enthalpy}. Gives an error is \meta{cs}
already exists.
\command{RenewChemState}[\marg{cs}\marg{options}]
Redefine existing state commands.
\command{DeclareChemState}[\marg{cs}\marg{options}]
Like \cs{NewChemState} but gives now error if \meta{cs} already exists.
\command{ProvideChemState}[\marg{cs}\marg{options}]
Define new state commands like \cs{enthalpy}. Defines \meta{cs} only if
it is not defined, yet.
\end{commands}
The argument \meta{options} is a comma separated list of key/value options:
\begin{options}
\keyval{pre}{text}\Module{thermodynamics}\Default{\cs{changestate}}
Code inserted before the variable. Inserted in text mode.
\keyval{post}{text}\Module{thermodynamics}\Default
Code inserted after the variable. Inserted in text mode.
\keyval{superscript-left}{text}\Module{thermodynamics}\Default
The left superscript. Inserted in text mode.
\keyval{superscript-right}{text}\Module{thermodynamics}\Default{\cs{standardstate}}
The right superscript.
\keyval{superscript}{text}\Module{thermodynamics}
An alias of \option{superscript-right}.
\keyval{subscript-left}{text}\Module{thermodynamics}\Default
The left subscript. Inserted in text mode.
\keyval{subscript-right}{text}\Module{thermodynamics}\Default
The right subscript. Inserted in text mode.
\keyval{subscript}{text}\Module{thermodynamics}
An alias of \option{subscript-left}.
\keychoice{subscript-pos}{left,right}\Module{thermodynamics}\Default{left}
Determines wether the subscript given in \darg{subscript} is placed to the
left or the right of the variable.
\keyval{symbol}{symbol}\Module{thermodynamics}\Default
The symbol of the variable.
\keyval{unit}{unit}\Module{thermodynamics}\Default
A valid \pkg{siunitx} unit.
\end{options}
\begin{example}
\NewChemState\Helmholtz{ symbol=A , unit=\kilo\joule\per\mole }
\NewChemState\ElPot{ symbol=E , subscript-pos=right , superscript= , unit=\volt }
\Helmholtz{123.4} \par
\ElPot{-1.1} \par
\ElPot[superscript=0]($\ch{Sn}|\ch{Sn^2+}||\ch{Pb^2+}|\ch{Pb}$){0.01} \par
\RenewChemState\enthalpy{ symbol=h , unit=\joule} \par
\enthalpy(f){12.5}
\end{example}
The existing commands have been defined like this:
\begin{sourcecode}
\NewChemState \enthalpy{ symbol = H, unit = \kilo\joule\per\mole }
\NewChemState \entropy { symbol = S, unit = \joule\per\kelvin\per\mole, pre = }
\NewChemState \gibbs { symbol = G, unit = \kilo\joule\per\mole }
\end{sourcecode}
So -- for following thermodynamic conventions -- one could define a molar and
an absolute variable:
\begin{example}
\RenewChemState\enthalpy{symbol=h,superscript=,unit=\kilo\joule\per\mole}% molar
\NewChemState\Enthalpy{symbol=H,superscript=,unit=\kilo\joule}% absolute
\enthalpy{-12.3} \Enthalpy{-12.3}
\end{example}
\section{The \chemmodule*{units} Module}\label{sec:units-module}
The \chemmodule{units} module loads the \pkg{siunitx}
package~\cite{pkg:siunitx}.
In chemistry some non-SI units are very common. \pkg{siunitx} provides the
command
\begin{commands}
\command*{DeclareSIUnit}[\marg{cs}\marg{unit}]
Define \meta{cs} to be a valid unit command inside \pkg{siunitx}' macros
\cs*{qty} and \cs*{unit} which represents \meta{unit}.
\end{commands}
to add arbitrary units. \chemmacros\ uses that command to provide some
units. Like all \pkg{siunitx} units they're only valid inside
\cs*{qty}\marg{num}\marg{unit} and \cs*{unit}\marg{unit}.
\begin{commands}
\command{atmosphere} \unit{\atmosphere}
\command{atm} \unit{\atm}
\command{calory} \unit{\calory}
\command{cal} \unit{\cal}
\command{cmc} \unit{\cmc} \par
The units \cs{cmc}, \cs{molar}, and \cs{Molar} are defined by the
package \pkg{chemstyle} as well. \chemmacros\ only defines them, if
\pkg{chemstyle} is not loaded.
\command{molar} \unit{\molar}
\command{moLar} \unit{\moLar}
\command{Molar} \unit{\Molar}
\command{MolMass} \unit{\MolMass}
\command{normal} \unit{\normal}
\command{torr} \unit{\torr}
\par
\sinceversion{6.0} Since some units still frequently used in chemistry were removed from version 3 of \pkg{siunitx},
\chemmacros\ also defines these in the same way, older versions of \pkg{siunitx} used to do.
These units are:
\command{angstrom} \unit{\angstrom}
\command{atomicmassunit} \unit{\atomicmassunit}
\command{bar} \unit{\bar}
\command{elementarycharge} \unit{\elementarycharge}
\command{mmHg} \unit{\mmHg}
\end{commands}
\part{Core Modules}
The modules described in this part are always loaded and mainly concern module
writers.
\section{The \chemmodule*{base} Module}\label{sec:base-module}
The \chemmodule{base} module is the core module of \chemmacros. It defines
some tools which can (and should) be used in other modules. This means this
section is only interesting for you if you plan to write a module yourself
(see section~\vref{sec:own-modules} for details).
This module requires the packages \pkg{bm}~\cite{pkg:bm},
\pkg{amstext}~\cite{pkg:amstext}, and \pkg{etoolbox}~\cite{pkg:etoolbox}.
This module also provides \cs{chemsetup} and the option \option{modules}.
It also provides a number of (expl3) macros which may be used in other
modules. In the macro descriptions below \TF\ denotes that a \code{T}, an
\code{F} and a \code{TF} variant exist. In case of an expandable conditional
(\expandablesymbol) also the predicate variant is available.
\begin{commands}
\expandable\explcommand{chemmacros_if_loaded:nn}[\TF\
\Marg{package|class} \marg{name} \marg{true} \marg{false}]
Checks if package (or class) \meta{name} has been loaded. Also works after
begin document.
\expandable\explcommand{chemmacros_if_package_loaded:n}[\TF\ \marg{name}
\marg{true} \marg{false}]
Checks if package \meta{name} has been loaded. Also works after begin
document.
\expandable\explcommand{chemmacros_if_class_loaded:n}[\TF\ \marg{name}
\marg{true} \marg{false}]
Checks if class \meta{name} has been loaded. Also works after begin
document.
\explcommand{chemmacros_nobreak:}
Inserts a penalty of \num{10000}.
\explcommand{chemmacros_allow_break:}
Inserts a penalty of \num{0}.
\explcommand{chemmacros_skip_nobreak:N}[ \meta{skip/length variable}]
Insert a horizontal skip where a linebreak is disallowed.
\expandable\explcommand{chemmacros_if_is_int:n}[\TF\ \marg{input} \marg{true}
\marg{false}]
Checks if \meta{input} is an integer or something else.
\explcommand{chemmacros_if_bold:}[\TF\ \marg{true} \marg{false}]
Checks if the current font weight is one of \chemboldchecks{or}.
\explcommand{chemmacros_bold:n}[ \marg{text}]
Checks if the current font weight is bold and if yes places \meta{text} in
\cs*{textbf} if in text mode or in \cs*{bm} if in math mode. If no
\meta{text} simply is placed in the input stream as is.
\explcommand{chemmacros_text:n}[ \marg{text}]
Ensures that \meta{text} is placed in text mode.
\explcommand{chemmacros_math:n}[ \marg{text}]
Ensures that \meta{text} is placed in math mode.
\explcommand{chemmacros_new_macroset:nnn}[ \marg{name} \marg{arg spec}
\marg{internal command call}]
\changedversion{5.3b}A command to define a set of macros
\cs*{NewChem\meta{name}}, \cs*{RenewChem\meta{name}},
\cs*{DeclareChem\meta{name}} and \cs*{ProvideChem\meta{name}} where the
first letter of \meta{name} is converted to uppercase, other letters are
kept unchanged. \meta{arg spec} is any valid argument specification for
\pkg{xparse}'s \\
\cs{DeclareDocumentCommand}~\cite{bnd:l3packages}. \meta{internal command
call} should be a macro which makes definitions \emph{without} error
checks, \ie, define new macros or redefine existing ones like \cs*{def}
does. This macro just should get the arguments passed on to. Have a look
at the example below.
\explcommand{chemmacros_new_environment_macroset:nnn}[ \marg{name} \marg{arg spec}
\marg{internal command call}]
Like \explcs{chemmacros_new_macroset:nnn} but for environments.
\command{NewChemMacroset}[\sarg\marg{name}\marg{arg spec}\marg{internal
command call}]
A non-expl3 version of \explcs{chemmacros_new_macroset:nnn} for \LaTeXe\
programmers. The starred version calls
\explcs{chemmacros_new_environment_macroset:nnn}.
\explcommand{chemmacros_add_cleveref_support:nnnnn}[ \marg{counter}
\marg{singular} \marg{plural} \marg{uppercase singular} \marg{uppercase
plural}]
A\sinceversion{5.6} command to add suiting names for a counter for the
\pkg{cleveref} package's \cs*{cref} commands. This command acts at the
end of the preamble and only if a user hasn't provided definitions with
\cs*{crefname} already.
\command{ChemCleverefSupport}[\marg{counter}\marg{singular}\oarg{uppercase
singular}\marg{plural}\oarg{uppercase plural}]
\sinceversion{5.6}\LaTeXe-version of
\explcs{chemmacros_add_cleveref_support:nnnnn}.
\explcommand{chemmacros_add_fancyref_support:nnn}[ \marg{prefix} \marg{name}
\marg{uppercase name}]
A\sinceversion{5.6} command to add suiting names for a counter for the
\pkg{fancyref} package's \cs*{fref} commands. This command acts at the
end of the preamble and doesn't override definitions made by the users.
\command{ChemFancyrefSupport}[\marg{prefix}\marg{name}\oarg{uppercase name}]
\sinceversion{5.6}\LaTeXe-version of
\explcs{chemmacros_add_fancyref_support:nnnnn}.
\end{commands}
This is how the macros \cs{NewChemParticle}, \cs{RenewChemParticle},
\cs{DeclareChemParticle} and \cs{ProvideChemParticle} were defined:
\begin{sourcecode}
\NewChemMacroset {Particle} {mm}
{ \chemmacros_define_particle:Nn #1 {#2} }
\end{sourcecode}
The following macros strictly speaking are not provided by the
\chemmodule{base} module but this place fits best for their description.
\begin{commands}
\expandable\explcommand{chemmacros_if_module_exist:n}[\TF\ \marg{module}
\marg{true} \marg{false}]
Checks if a file with the correct name for a module \meta{module} can be
found.
\expandable\explcommand{chemmacros_if_module_loaded:n}[\TF\ \marg{module}
\marg{true} \marg{false}]
Checks if the module \meta{module} has already been loaded or not.
\explcommand{chemmacros_load_module:n}[ \marg{module}]
Loads module \meta{module} if it hasn't been loaded, yet.
\explcommand{chemmacros_load_modules:n}[ \marg{csv list of modules}]
Loads every module in \meta{csv list of modules} if they haven't been
loaded, yet. This is the code level variant of \cs{usechemmodule}.
\explcommand{chemmacros_before_module:nn}[ \marg{module} \marg{code}]
Saves\sinceversion{5.1} \meta{code} and inserts it right before
\meta{module} is loaded. If \meta{module} is never loaded then
\meta{code} is never inserted. If \meta{module} already is loaded when
the command is used then \meta{code} also is never inserted.
\explcommand{chemmacros_after_module:nn}[ \marg{module} \marg{code}]
Saves\sinceversion{5.1} \meta{code} and inserts it right after
\meta{module} is loaded. If \meta{module} is never loaded then
\meta{code} is never inserted. If \meta{module} already is loaded when
the command is used then \meta{code} is inserted immediately.
\end{commands}
\section{The \chemmodule*{errorcheck} Module}\label{sec:errorcheck-module}
The\sinceversion{5.2} \chemmodule{errorcheck} module provides some rudimentary
support for giving users more meaningful messages when they use a command or
environment provided by a module that they haven't loaded.
\section{The \chemmodule*{lang} and \chemmodule*{translations} Modules}\label{sec:lang-module}
The \chemmodule{lang} module provides language support for \chemmacros. It
loads the package \pkg{translations}~\cite{pkg:translations}.
\subsection{Information For Users}\label{sec:information-users}
This module defines the following option:
\begin{options}
\keychoice{language}{auto,\meta{language}}\Default{auto}
If set to \code{auto} \chemmacros\ will detect the language used by
\pkg{babel}~\cite{pkg:babel} or \pkg{polyglossia}~\cite{pkg:polyglossia}
automatically, the fallback translation is English and will be used if no
translation for the actual language is available. Any language known to
the \pkg{translations} package is a valid value for \meta{language}.
\end{options}
The language chosen via \option{language} is used for translation of certain
strings in different places all over \chemmacros. They are mentioned in the
places when the corresponding function of \chemmacros\ is explained.
Translation is done with the help of the \pkg{translations} package, available
translation keys are listed in section~\vref{sec:avail-transl-keys}.
\subsection{Available Translation Keys}\label{sec:avail-transl-keys}
Table~\vref{tab:translation-keys} lists all predefined translations of the
available keys. \emph{Some of the translations have changed in
version~5.6\changedversion{5.6}.} All available translations are provided
by the \chemmodule{translations} module.
A translation key is a unique string\footnote{That is, a string
using the definition for strings used for expl3, i.e., converted to a series
of category code~12 characters..} of characters. Each key is used to
identify a replacement text which depends on the current language or the
language set through the \option{language} option. For each key at least the
English fallback translation is provided, for most also the German translation
is provided. For a few keys also other translations are provided. If you
find that a translation for your language is missing you can provide it in the
preamble:
\begin{commands}
% \command{DeclareTranslation}[\marg{language}\marg{key}\marg{translation}]
% Defines a translation of key \meta{key} for the language \meta{language}.
% No error will be raised if a translation of \meta{key} already exists.
% This command can only be used in the preamble and is defined by the
% \pkg{translations} package.
\command{DeclareChemTranslation}[\marg{key}\marg{language}\marg{translation}]
\sinceversion{5.6}A command which makes an abstraction from the
\pkg{translations} package. It should be used in documents for adding
missing translations that are needed. This command can only be used in
the preamble.
\command{DeclareChemTranslations}[\marg{key}\Marg{\meta{language} =
\meta{translation}}]
\sinceversion{5.6}A command rather meant for module writers but can be
used by document authors as well, of course. It gets a csv list of
key\slash value pairs of translations. This command can only be used in
the preamble.
\end{commands}
If you send me an email (see section~\vref{sec:sugg-bug-reports}) with the
translations for your language I'll gladly add them to the next release of
\chemmacros!
\emph{Please do not use \pkg{translations}' \cs{DeclareTranslation} for
declaring translations.}
\ForAllChemTranslationsDo{
\appto\chemtranslationtable{\texttt{#1} & #2 & \texttt{\detokenize{#3}} \\}
}
\begin{longtable}{lll}
\caption{Translation keys predefined by \chemmacros\ (except
\code{phase-aqi}, \code{phase-cd} and \code{phase-lc} which were defined
in this document).}
\label{tab:translation-keys} \\
\toprule
\bfseries key & \bfseries language & \bfseries translation \\
\midrule
\endfirsthead
\toprule
\bfseries key & \bfseries language & \bfseries translation \\
\midrule
\endhead
\bottomrule
\endlastfoot
\midrule
& & \hfill\emph{continues} \\
\endfoot
\chemtranslationtable
\end{longtable}
\subsection{Information For Module Writers}
In addition to the commands from section~\vref{sec:avail-transl-keys} the
following macros are available:
\begin{commands}
\expandable\explcommand{chemmacros_translate:n}[ \marg{translation key}]
Translates the given key to the language which is detected automatically
or given by the user. Should be used in \chemmacros' macros instead of
\pkg{translations}' \cs*{GetTranslation}.
\explcommand{l_chemmacros_language_tl}
A token list variable that holds the language which is used by
\explcs{chemmacros_translate:n} for translation, \emph{after begin
document}.
\command{ChemTranslate}[\marg{translation key}]
A version of \explcs{chemmacros_translate:n} for those who prefer
traditional \LaTeXe\ programming over expl3.
\explcommand{chemmacros_declare_translation:nnn}[\marg{language}\marg{key}%
\marg{translation}]
The expl3 version of \cs{DeclareChemTranslation}.
\explcommand{chemmacros_declare_translations:nn}[\marg{key}\Marg{\meta{language}
= \meta{translation}}]
The expl3 version of \cs{DeclareChemTranslations}.
\end{commands}
\section{The \chemmodule*{tikz} Module}\label{sec:tikz-module}
The \chemmodule{tikz} module loads the \pkg{tikz} package~\cite{pkg:pgf} and
the \TikZ\ library \code{calc}.
\subsection{For Users}
The \chemmodule{tikz} module defines a few arrow tips:
\begin{tikzcode}
\arrowtip{el}
An arrow tip: \verbcode+\tikz\draw[-el](0,0)--(1,0);+
\tikz\draw[-el](0,0)--(1,0);
\arrowtip{left el}
An arrow tip: \verbcode+\tikz\draw[-left el](0,0)--(1,0);+
\tikz\draw[-left el](0,0)--(1,0);
\arrowtip{right el}
An arrow tip: \verbcode+\tikz\draw[-right el](0,0)--(1,0);+
\tikz\draw[-right el](0,0)--(1,0);
\end{tikzcode}
The\sinceversion{5.3} \chemmodule{tikz} module also loads the libraries
\code{calc} and \code{decorations.pathmorphing}. It uses those libraries for
defining a new decoration \tikzdecoration{wave}.
\begin{example}[side-by-side]
\begin{tikzpicture}
\draw[decorate,decoration=wave] (0,0) -- (2,0) ;
\end{tikzpicture}
\end{example}
\subsection{For Module Writers}
The \chemmodule{tikz} module provides some macros for common \TikZ\
functions. This allows to use expl3's powerful function variants for
expansion control.
\begin{commands}
\explcommand{c_chemmacros_other_colon_tl}
A constant tokenlist which contains a colon with category code~12 (other).
This is useful since \TikZ\ sometimes expects an other colon and in an
expl3 programming environment \code{:} has category code~11 (letter).
\explcommand{chemmacros_tikz_picture:nn}[ \marg{options} \marg{code}]
Defined as \verbcode+\tikzpicture[{#1}] #2 \endtikzpicture+.
\explcommand{chemmacros_tikz:nn}[ \marg{options} \marg{code}]
Defined as \verbcode+\tikz[{#1}]{#2}+.
\explcommand{chemmacros_tikz_draw:n}[ \marg{options}]
Defined as \verbcode+\draw[{#1}]+.
\explcommand{chemmacros_tikz_node:n}[ \marg{options}]
Defined as \verbcode+\node[{#1}]+.
\explcommand{chemmacros_tikz_shade:n}[ \marg{options}]
Defined as \verbcode+\shade[{#1}]+.
\explcommand{chemmacros_tikz_shadedraw:n}[ \marg{options}]
Defined as \verbcode+\shadedraw[{#1}]+.
\explcommand{chemmacros_tikz_node_in_draw:n}[ \marg{options}]
Defined as \verbcode+node[{#1}]+.
\end{commands}
\section{The \chemmodule*{xfrac} Module}\label{sec:xfrac-module}
The \chemmodule{xfrac} module loads the package
\pkg{xfrac}~\cite{bnd:l3packages}. For the following explanations it will be
helpful if you know about said package and how it works first. This module is
a support module that defines the macro
\begin{commands}
\command{chemfrac}[\oarg{type}\marg{numerator}\marg{denominator}]
\meta{type} can either be \code{text} or \code{superscript}.
\end{commands}
This macro calls a certain instance of the \pkg{xfrac} \code{text} template,
depending on the option \meta{type} and the current font family. If used
\cs{chemfrac} looks if an instance
\begin{center}
\code{chemmacros-frac-\cs*{f@family}-\meta{type}}
\end{center}
exists. If yes this instance is used, if no the instance
\code{chemmacros-frac-default-\meta{type}} is used. The \code{default}
instances are the same as the ones for \code{cmr}.
\begin{table}
\centering
\newcommand*\showfrac[1]{%
\code{#1} &
\fontfamily{#1}\selectfont
\chemfrac[text]{2}{3} &
\fontfamily{#1}\selectfont
\chemfrac[superscript]{2}{3}%
}
\caption{Predefined \chemmodule{xfrac} \code{text} instances.}
\label{tab:xfrac}
\begin{tabular}{llcc}
\toprule
\bfseries font family & \bfseries text & \bfseries superscript \\
\midrule
\showfrac{cmr} \\
\showfrac{lmr} \\
\showfrac{LinuxLibertineT-TLF} \\
\showfrac{LinuxLibertineT-TOsF} \\
\bottomrule
\end{tabular}
\end{table}
The \chemmodule{xfrac} module defines instances some font families, they are
listed and demonstrated in table~\vref{tab:xfrac}. The \code{superscript}
type fractions \emph{look} larger than the \code{text} types. The reason is
that the \code{superscript} types are typically used with a smaller font size.
Let's take a look at an example where both instances are used:
\begin{example}[side-by-side]
\chemsetup[redox]{pos=top}
\code{superscript}:
\ch{"\ox{1/3,I}" {}3+}
\chemsetup[redox]{pos=side}
\code{text}: \ox{1/3,I3+}
\huge
\chemsetup[redox]{pos=top}
\code{superscript}:
\ch{"\ox{1/3,I}" {}3+}
\chemsetup[redox]{pos=side}
\code{text}: \ox{1/3,I3+}
\end{example}
If you define instances for other families please feel free to submit them to
me (see section~\vref{sec:submitting-module}) so they can be added to the
\chemmodule{xfrac} module.
\appendix
\part{Appendix}
\section{Own Modules}\label{sec:own-modules}
\subsection{How To}
If you have additional functionality which you think might be useful as a
\chemmacros\ module then you can easily write one yourself. The module must
be a file in a path where \TeX\ can find it following a certain naming
scheme. The file for a module \chemmodule*{foo} \emph{must be named}
\code{chemmacros.module.foo.code.tex}.
\begin{commands}
\command{ChemModule}[\sarg\marg{name}\marg{description}\oarg{minimal
compatibility version}]
Register module \meta{name}. The optional argument \meta{minimal
compatibility version} ensures that this module is only loaded if the
option \option{compatibility} has a high enough version number. If it is
omitted the module can be loaded in each version~5.0 or higher.
\end{commands}
The first line in the file then should look similar to this:
\begin{sourcecode}
\ChemModule{foo}{2015/07/14 description of foo}
\end{sourcecode}
This registers module \chemmodule*{foo} which means \chemmacros\ will accept
this file as a valid module.
Since \chemmacros\ is written using expl3 \cs{ChemModule} starts an expl3
programming environment. If you don't want that but rather want to write your
module using traditional \LaTeXe\ methods then use the starred variant:
\begin{sourcecode}
\ChemModule*{foo}{2015/07/14 description of foo}
\end{sourcecode}
In both variants \code{@} has category code~11 (letter).
Since new modules very likely might rely on code provided first in a certain
version of \chemmacros\ you might want to make sure that your module only is
loaded when the compatibility mode is high enough to provide the features you
want:
\begin{sourcecode}
\ChemModule{foo}{2015/10/14 description of foo}[5.2]
\end{sourcecode}
If you decide to write your module \chemmodule*{foo} using expl3 and add
options you want to be able to set using
\cs{chemsetup}\Oarg{foo}\marg{options} please make sure you define (and set)
them with the following macros:
\begin{commands}
\explcommand{chemmacros_define_keys:nn}[ \marg{module} \marg{key definitions}]
Define l3keys options for the module \meta{module}. This is a wrapper for
\explcs*{keys_define:nn} \Marg{chemmacros/\meta{module}} \marg{key
definitions}.
\explcommand{chemmacros_set_keys:nn}[ \marg{module} \marg{input}]
Sets l3keys options for the module \meta{module}. This is a wrapper for
\explcs*{keys_set:nn} \Marg{chemmacros/\meta{module}} \marg{input}.
\end{commands}
Also (\emph{especially if you consider submitting the module, see
section~\vref{sec:submitting-module}}) please follow the expl3 naming
conventions for variables and functions, \ie, use \code{chemmacros} as expl3
module name:
\begin{sourcecode}
\tl_new:N \l__chemmacros_my_internal_variable_tl
\tl_new:N \l_chemmacros_my_public_variable_tl
\cs_new:Npn \__chemmacros_my_internal_function:n #1 { ... }
\cs_new_protected:Npn \chemmacros_my_public_function:n #1 { ... }
\NewDocumentCommand \publicfunction {m}
{ \chemmacros_my_public_function:n {#1} }
\end{sourcecode}
You will find more details on the naming conventions in \code{interface3.pdf}
which most likely is available on your system:
\begin{lbash}
texdoc interface3
\end{lbash}
If you haven't read section~\vref{sec:base-module} about the \chemmodule{base}
module, yet, please have a look. There some macros for module writers are
described. Also other modules define macros for module writers which may be
useful.
\subsection{Submitting a Module}\label{sec:submitting-module}
If you have written a module and feel it might be useful for other users
please feel free to contact me and submit the module. I will surely take at
look at both functionality and code and if I feel that it adds value to
\chemmacros\ I will add it to the package. Requirement for this is that the
module is licensed with the \LPPL\ (v1.3 or later) and that I take over
maintenance (according to the \enquote{maintainer} status of the \lppl).
Please do \emph{not} submit your module via pull request but send me the files
directly. In the best case you also have a short piece of documentation.
\section{Support, Suggestions and Bug Reports}\label{sec:sugg-bug-reports}
\subsection{Support}
If you need support or help with anything regarding \chemmacros\ please use
the usual support forums
\begin{itemize}
\item \url{http://www.golatex.de/} or
\item \url{http://texwelt.de/wissen/} if you speak German,
\item \url{http://www.latex-community.org/forum/} or
\item \url{http://tex.stackexchange.com/} if you speak English
\end{itemize}
You can also open an issue on
\url{https://github.com/cgnieder/chemmacros/issues/} possibly adding the label
\emph{support}.
\subsection{Suggestions}
If you have any suggestions on how \chemmacros\ could be improved then please
go to \url{https://github.com/cgnieder/chemmacros/issues/} and open a new
issue possibly adding the label \emph{suggestion}.
\subsection{Bug reports}
If you find any bugs, \ie, errors (something not working as described,
conflicts with other packages, \ldots) then please go to
\url{https://github.com/cgnieder/chemmacros/issues/} and open a new issue
describing the error including a minimal working example and possibly adding
the label \emph{bug}.
\printbibliography
\end{document}
|