1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
|
\documentclass[14pt,aspectratio=169]{beamer}
\usepackage{polyglossia}
\setdefaultlanguage{english}
\usetheme{SaintPetersburg}
\usepackage{amsthm}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{mathtools}
\usepackage{listings}
\usepackage{booktabs}
\usepackage{graphicx}
\usepackage{tikz}
\graphicspath{{figures/}}
\newcommand{\Fourier}[1]{\mathcal{F}\left\{#1\right\}}
\newcommand{\InverseFourier}[1]{\mathcal{F}^{-1}\left\{#1\right\}}
\newcommand{\Var}[1]{\sigma_{#1}^2}
\AtBeginSection[]{
% \iffirstsection
% \begin{frame}{Plan}
% \tableofcontents
% \end{frame}
% \firstsectionfalse
% \fi
% \begin{frame}{Plan}
% \tableofcontents[currentsection]
% \end{frame}
\frame{\sectionpage}
}
\title{Generating standing and propagating ocean waves with three-dimensional ARMA model}
\subtitle{Technical report}
\author{Ivan Gankevich}
\date{Aug 26, 2016}
\begin{document}
\frame{\maketitle}
\section{Two methods of finding wave's ACF}
\begin{frame}
\frametitle{Analytic method}
\only<1>{%
Apply Wiener---Khinchin theorem to a wave profile $\zeta$ to get ACF $K$:
\begin{equation*}
K(t) = \Fourier{\left| \zeta(t) \right|^2}.
\label{eq:wiener-khinchin}
\end{equation*}%
}
\only<2>{%
\begin{example}
Standing wave profile:
\begin{equation*}
\zeta(t, x, y) = A \sin (k_x x + k_y y) \sin (\sigma t).
\label{eq:standing-wave}
\end{equation*}
Standing wave ACF:
\begin{equation*}
K(t,x,y) =
\gamma
\exp\left[-\alpha (|t|+|x|+|y|) \right]
\cos \beta t
\cos \left[ \beta x + \beta y \right].
\label{eq:standing-wave-acf}
\end{equation*}
\end{example}%
}
\only<3>{%
\begin{example}
Propagating wave profile:
\begin{equation*}
\zeta(t, x, y) = A \cos (\sigma t + k_x x + k_y y).
\label{eq:propagating-wave}
\end{equation*}
Propagating wave ACF:
\begin{equation*}
K(t,x,y) =
\gamma
\exp\left[-\alpha (|t|+|x|+|y|) \right]
\cos\left[\beta (t+x+y) \right].
\label{eq:propagating-wave-acf}
\end{equation*}
\end{example}%
}
\only<4>{%
Some observations:
\begin{itemize}
\item Taking Fourier transform of sine/cosine wave profile requires
multiplying it by an decaying exponent to produce useful ACF.
\item Fourier Transform of squared exponent (Gaussian) is another Gaussian.
\end{itemize}
\vfill\centering%
\alert{Why use Fourier transform at all?}%
}
\end{frame}
\begin{frame}
\frametitle{Empirical method}
The algorithm:
\begin{enumerate}
\item Multiply wave profile by an decaying exponent.
\item Adjust sine/cosine phase to move maximum value to the origin
(or substitute sine with cosine to get the same effect).
\end{enumerate}
\vfill%
In case of plain waves result is the same as for analitic method.
\end{frame}
\section{Governing equations for 3-dimensional ARMA process}
\begin{frame}
\frametitle{3-D ARMA process}
Three-dimensional autoregressive moving average process is defined by
\begin{equation*}
\zeta_{i,j,k} =
\sum\limits_{l=0}^{p_1}
\sum\limits_{m=0}^{p_2}
\sum\limits_{n=0}^{p_3}
\Phi_{l,m,n} \zeta_{i-l,j-m,k-n}
+
\sum\limits_{l=0}^{q_1}
\sum\limits_{m=0}^{q_2}
\sum\limits_{n=0}^{q_3}
\Theta_{l,m,n} \epsilon_{i-l,j-m,k-n}
,
\label{eq:arma-process}
\end{equation*}
\small{%
where $\zeta$ --- wave elevation, $\Phi$ --- AR coefficients, $\Theta$ --- MA
coefficients, \newline$\epsilon$ --- white noise with Gaussian distribution,
$(p_1,p_2,p_3)$ --- AR process order, $(q_1,q_2,q_3)$ --- MA process order, and
$\Phi_{0,0,0} \equiv 0$, $\Theta_{0,0,0} \equiv 0$.%
}
\end{frame}
\begin{frame}
\frametitle{Determining coefficients}
\framesubtitle{AR process}
\small%
Solve linear system of equations (3-D Yule---Walker equations) for $\Phi$:
\begin{equation*}
\Gamma
\left[
\begin{array}{l}
\Phi_{0,0,0}\\
\Phi_{0,0,1}\\
\vdotswithin{\Phi_{0,0,0}}\\
\Phi_{p_1,p_2,p_3}
\end{array}
\right]
=
\left[
\begin{array}{l}
K_{0,0,0}-\Var{\epsilon}\\
K_{0,0,1}\\
\vdotswithin{K_{0,0,0}}\\
K_{p_1,p_2,p_3}
\end{array}
\right],
\qquad
\Gamma=
\left[
\begin{array}{llll}
\Gamma_0 & \Gamma_1 & \cdots & \Gamma_{p_1} \\
\Gamma_1 & \Gamma_0 & \ddots & \vdotswithin{\Gamma_0} \\
\vdotswithin{\Gamma_0} & \ddots & \ddots & \Gamma_1 \\
\Gamma_{p_1} & \cdots & \Gamma_1 & \Gamma_0
\end{array}
\right],
\end{equation*}
\begin{equation*}
\Gamma_i =
\left[
\begin{array}{llll}
\Gamma^0_i & \Gamma^1_i & \cdots & \Gamma^{p_2}_i \\
\Gamma^1_i & \Gamma^0_i & \ddots & \vdotswithin{\Gamma^0_i} \\
\vdotswithin{\Gamma^0_i} & \ddots & \ddots & \Gamma^1_i \\
\Gamma^{p_2}_i & \cdots & \Gamma^1_i & \Gamma^0_i
\end{array}
\right]
\qquad
\Gamma_i^j=
\left[
\begin{array}{llll}
K_{i,j,0} & K_{i,j,1} & \cdots & K_{i,j,p_3} \\
K_{i,j,1} & K_{i,j,0} & \ddots &x \vdotswithin{K_{i,j,0}} \\
\vdotswithin{K_{i,j,0}} & \ddots & \ddots & K_{i,j,1} \\
K_{i,j,p_3} & \cdots & K_{i,j,1} & K_{i,j,0}
\end{array}
\right].
\end{equation*}
\end{frame}
\begin{frame}
\frametitle{Determining coefficients}
\framesubtitle{MA process}
\small%
Solve non-linear system of equations for $\Theta$:
\begin{equation*}
K_{i,j,k} =
\left[
\displaystyle
\sum\limits_{l=i}^{q_1}
\sum\limits_{m=j}^{q_2}
\sum\limits_{n=k}^{q_3}
\Theta_{l,m,n}\Theta_{l-i,m-j,n-k}
\right]
\Var{\epsilon}
\end{equation*}
via fixed-point iteration method:
\begin{equation*}
\theta_{i,j,k} =
-\frac{K_{0,0,0}}{\Var{\epsilon}}
+
\sum\limits_{l=i}^{q_1}
\sum\limits_{m=j}^{q_2}
\sum\limits_{n=k}^{q_3}
\Theta_{l,m,n} \Theta_{l-i,m-j,n-k}.
\end{equation*}
\end{frame}
\begin{frame}
\frametitle{Determining coefficients}
\framesubtitle{ARMA process}
To mix processes one needs to divide ACF between processes, and
recompute one of the parts to match process properties (mean,
variance etc.).
\vfill%
\begin{center}
\alert{There is no recomputation formula for 3-D proccess.}
\end{center}
\end{frame}
\begin{frame}
\frametitle{Our approach}
Use AR process for standing waves and MA process for
propagating waves.
\vfill%
Supporting experimental results:
\begin{itemize}
\item It works that way in practice.
\item It does not work the other way round
(processes diverge).
\item Wavy surface integral characteristics
match the ones of real ocean waves.
\end{itemize}
\end{frame}
\section{Evaluation and verification}
\begin{frame}
\frametitle{Experiment setup}
\begin{itemize}
\item Generate standing/propagating waves with
AR/MA processes respectively.
\item Estimate distributions of integral
characteristics.
\item Compare estimated distributions to the
known ones via QQ plots.
\end{itemize}
\vfill%
\begin{center}
\small
\begin{tabular}{ll}
\toprule
Characteristic & Weibull shape ($k$) \\
\midrule
Wave height & 2 \\
Wave length & 2.3 \\
Crest length & 2.3 \\
Wave period & 3 \\
Wave slope & 2.5 \\
Three-dimensionality & 2.5 \\
\bottomrule
\end{tabular}%
\end{center}
\end{frame}
% \begin{frame}
% \frametitle{Input ACFs (time slices)}
% Standing wave ACF:
% \vfill%
% \begin{tabular}{llll}%
% \includegraphics[scale=0.45]{standing-acf-0} &
% \includegraphics[scale=0.45]{standing-acf-1} &
% \includegraphics[scale=0.45]{standing-acf-3} &
% \includegraphics[scale=0.45]{standing-acf-4} \\
% \end{tabular}
% \vfill%
% Propagating wave ACF:
% \vfill%
% \begin{tabular}{llll}%
% \includegraphics[scale=0.45]{propagating-acf-00} &
% \includegraphics[scale=0.45]{propagating-acf-01} &
% \includegraphics[scale=0.45]{propagating-acf-03} &
% \includegraphics[scale=0.45]{propagating-acf-04} \\
% \end{tabular}
% \end{frame}
\begin{frame}
\frametitle{Verification results (QQ plots)}
\small%
\centering
\begin{columns}
\begin{column}{0.5\textwidth}
\centering%
Standing waves
\begin{tabular}{ll}
\includegraphics[scale=0.5]{standing-elevation} &
\includegraphics[scale=0.5]{standing-wave-height-x} \\
\addlinespace
\includegraphics[scale=0.5]{standing-wave-length-x} &
\includegraphics[scale=0.5]{standing-wave-period} \\
\end{tabular}
\end{column}
\begin{column}{0.5\textwidth}
\centering%
Propagating waves
\begin{tabular}{ll}
\includegraphics[scale=0.5]{propagating-elevation} &
\includegraphics[scale=0.5]{propagating-wave-height-x} \\
\addlinespace
\includegraphics[scale=0.5]{propagating-wave-length-x} &
\includegraphics[scale=0.5]{propagating-wave-period} \\
\end{tabular}
\end{column}
\end{columns}
\end{frame}
\end{document}
|