blob: 9915f74e0385d0c8b53932d8107ff0b41a8c8bc7 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
|
% $Header: /cvsroot/latex-beamer/latex-beamer/doc/beamerthemeexamplebase.tex,v 1.5 2004/10/07 20:53:04 tantau Exp $
% Copyright 2004 by Till Tantau <tantau@users.sourceforge.net>.
%
% This file can be redistributed and/or modified under
% the terms of the GNU Public License, version 2.
\beamertemplatesolidbackgroundcolor{black!5}
\beamertemplatetransparentcovered
\usepackage{times}
\title{There Is No Largest Prime Number}
\subtitle{With an introduction to a new proof technique}
\author[Euklid]{Euklid of Alexandria}
\institute[Univ. Alexandria]{Department of Mathematics\\ University of Alexandria}
\date[ISPN '80]{27th International Symposium on Prime Numbers, --280}
\begin{document}
\begin{frame}
\titlepage
\tableofcontents
\end{frame}
\section{Results}
\subsection{Proof of the Main Theorem}
\begin{frame}<1>
\frametitle{There Is No Largest Prime Number}
\framesubtitle{The proof uses \textit{reductio ad absurdum}.}
\begin{theorem}
There is no largest prime number.
\end{theorem}
\begin{proof}
\begin{enumerate}
% The strange way of typesetting math is to minimize font usage
% in order to keep the file sizes of the examples small.
\item<1-| alert@1> Suppose $p$ were the largest prime number.
\item<2-> Let $q$ be the product of the first $p$ numbers.
\item<3-> Then $q$\;+\,$1$ is not divisible by any of them.
\item<1-> Thus $q$\;+\,$1$ is also prime and greater than $p$.\qedhere
\end{enumerate}
\end{proof}
\end{frame}
\end{document}
|