summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/beamer/beamerthemeexamplebase.tex
blob: 9915f74e0385d0c8b53932d8107ff0b41a8c8bc7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
% $Header: /cvsroot/latex-beamer/latex-beamer/doc/beamerthemeexamplebase.tex,v 1.5 2004/10/07 20:53:04 tantau Exp $

% Copyright 2004 by Till Tantau <tantau@users.sourceforge.net>.
%
% This file can be redistributed and/or modified under
% the terms of the GNU Public License, version 2.

\beamertemplatesolidbackgroundcolor{black!5}
\beamertemplatetransparentcovered

\usepackage{times}

\title{There Is No Largest Prime Number}
\subtitle{With an introduction to a new proof technique}

\author[Euklid]{Euklid of Alexandria}
\institute[Univ. Alexandria]{Department of Mathematics\\ University of Alexandria}
\date[ISPN '80]{27th International Symposium on Prime Numbers, --280}

\begin{document}

\begin{frame}
  \titlepage
  \tableofcontents
\end{frame}

\section{Results}
\subsection{Proof of the Main Theorem}

\begin{frame}<1>
  \frametitle{There Is No Largest Prime Number}
  \framesubtitle{The proof uses \textit{reductio ad absurdum}.}

  \begin{theorem}
    There is no largest prime number.
  \end{theorem}
  \begin{proof}
    \begin{enumerate}
      % The strange way of typesetting math is to minimize font usage
      % in order to keep the file sizes of the examples small.
    \item<1-| alert@1> Suppose $p$ were the largest prime number.
    \item<2-> Let $q$ be the product of the first $p$ numbers.
    \item<3-> Then $q$\;+\,$1$ is not divisible by any of them.
    \item<1-> Thus $q$\;+\,$1$ is also prime and greater than $p$.\qedhere
    \end{enumerate}      
  \end{proof}
\end{frame}

\end{document}