summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/animate/animate.tex
blob: 100b96347deb183af9bb72220dc9438a2ff4c709 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
% Copyright 2007--2010 Alexander Grahn
%
% This material is subject to the LaTeX Project Public License. See
%    http://www.ctan.org/tex-archive/help/Catalogue/licenses.lppl.html
% for the details of that license.
%
\documentclass[a4paper]{article}
\frenchspacing
\usepackage[UKenglish]{babel}
\usepackage{pst-3dplot}
\usepackage{animate}
\usepackage{intcalc}
\usepackage{graphicx}
\usepackage{color}
\usepackage{textcomp}
\usepackage{lmodern}
\usepackage{mflogo}
\usepackage[T1]{fontenc}
\usepackage[protrusion]{microtype}
\usepackage{ifpdf}
\usepackage{parskip}
\usepackage{tabls}
\usepackage{multirow}
\usepackage{hyperref}
\usepackage{amsmath}
\usepackage[all]{hypcap}
\clubpenalty=10000
\widowpenalty=10000
\displaywidowpenalty=10000
\renewcommand{\textfraction}{0.0}
\renewcommand{\topfraction}{1.0}
\renewcommand{\bottomfraction}{1.0}

\makeatletter
\renewcommand{\fnum@figure}[1]{\figurename~\thefigure}
\newcommand\myparagraph{\@startsection{paragraph}{3}{\z@}%
                                     {\parskip}%
                                     {0.001\parskip}%
                                     {\itshape\normalsize}}
\makeatother

\ifpdf
  \makeatletter
  \@latex@error{Please use LaTeX to compile this documentation}
  \makeatother
\fi

\def\keywords{include portable PDF animation animated PDF animating embed animated graphics LaTeX pdfLaTeX PSTricks pgf TikZ LaTeX-picture MetaPost inline graphics vector graphics animated GIF LaTeX dvips ps2pdf dvipdfmx XeLaTeX JavaScript Adobe Reader}
\hypersetup{
  bookmarksnumbered,linktocpage,breaklinks,
  pdftitle={The animate Package},
  pdfsubject={Documentation},
  pdfauthor={Alexander Grahn},
  pdfkeywords={\keywords},
  citebordercolor={0 0 1},
  filebordercolor={0 0 1},
  linkbordercolor={0 0 1},
  menubordercolor={0 0 1},
  pagebordercolor={0 0 1},
  urlbordercolor={0 0 1},
%  pdfpagelayout=SinglePage
}

\def\XeLaTeX{X\kern-.1667em\lower.5ex\hbox{\reflectbox{E}}\kern-.125em\LaTeX}
\def\pXepLaTeX{(X\kern-.1667em\lower.5ex\hbox{\reflectbox{E}})\kern-.125em\LaTeX}

\begin{document}
\title{The {\sffamily animate} Package}
\author{Alexander Grahn \animategraphics[autoplay,loop,height=1.8ex]{8}{bye_}{0}{3}\protect\footnote{Animated GIF taken from \href{http://www.phpBB.com}{phpBB} forum software and burst into a set of EPS files using \href{http://www.imagemagick.org}{ImageMagick} before embedding. Animations may run slowly if viewed in the Adobe Reader browser plugin.}\\[1ex]\includegraphics[height=2.7ex]{mailto}}
\maketitle

\begin{abstract}
\raggedright

\noindent A LaTeX package for creating portable, JavaScript driven PDF animations from sets of vector graphics or rasterized image files or from inline graphics.
\vskip 0.2\baselineskip

\emph{Keywords}: \keywords
\end{abstract}

\tableofcontents

%\newpage
\section{Introduction}
This package provides an interface to create PDFs with animated content from sets of graphics or image files, from inline graphics, such as \LaTeX-picture, PSTricks or pgf/TikZ generated pictures, or just from typeset text. Unlike standard movie/video formats, which can be embedded, for example, using the \LaTeX{} package `movie15'~\cite{movie15}, package `animate' allows for animating vector graphics. The result is roughly similar to the SWF (Flash) format, although not as space-efficient.

Package `animate' supports the usual PDF making workflows, i.\,e. pdf\LaTeX{}, \LaTeX{} $\rightarrow$ \verb+dvips+ $\rightarrow$ \verb+ps2pdf+/Distiller and \pXepLaTeX{} $\rightarrow$ \verb+(x)dvipdfmx+.

The final PDF can be viewed in current Adobe Readers on all supported platforms.

%The `animate' package relies on Optional Content Groups (OCG), also known as PDF layers, which is a feature provided by the PDF-1.5 specification. Each frame of an animation is associated with an OCG that is hidden or made visible in a dynamic fashion by means of Adobe Reader's built-in JavaScript engine.

\section{Requirements}
\begin{trivlist}
\item $\varepsilon$-\TeX
\item pdf\TeX{}, version $\ge1.20$ for direct PDF output
\item Ghostscript, version $\ge8.31$ or Adobe Distiller for PS to PDF conversion
\item dvipdfmx, version $\ge20080607$ for DVI to PDF conversion
\item Adobe Reader, version $\ge7$
\end{trivlist}

\section{Installation}
Unzip the file \href{http://tug.ctan.org/tex-archive/install/macros/latex/contrib/animate.tds.zip}{`animate.tds.zip'} into the local TDS root directory which can be found by running `\verb+kpsewhich -var-value TEXMFLOCAL+' on the command line.

After installation, update the filename database by running `\verb+texhash+' on the command line.

MiK\TeX{} users should run the package manager for installation.

\section{Using the package}
First of all, read Section~\ref{sect:bugs} on problems related to this package. Then, invoke the package by putting the line
\begin{verbatim}
\usepackage[<package options>]{animate}
\end{verbatim}
to the preamble of your document, i.\,e. somewhere between \verb+\documentclass+ and \verb+\begin{document}+.

`animate' honours the package options:
\begin{verbatim}
dvipdfmx
xetex
autoplay
autopause
autoresume
loop
palindrome
draft
final
controls
buttonsize=<size>
buttonbg=<colour>
buttonfg=<colour>
step
useocg
poster[=first | none | last]
\end{verbatim}
Except for `\verb+dvipdfmx+' and `\verb+xetex+', the options above are also available (among others) as command options and will be explained shortly. However, if used as package options they have global scope, taking effect on all animations in the document. In turn, command options locally override global settings. Options without an argument are boolean options and can be negated, with the exception of package-only options `\verb+dvipdfmx+' and `\verb+xetex+', by appending `\verb+=false+'.

If PDF is generated via DVI and Postscript by the command sequence \verb+latex+ $\rightarrow$ \verb+dvips+ $\rightarrow$ \verb+ps2pdf+, the `graphicx' package is required. \begin{animateinline}[autoplay,loop]{1.5}\strut\emph{Important:}\newframe\newframe[5]\end{animateinline} The \verb+dvips+ option `\verb+-Ppdf+' should \emph{not} be set when converting the intermediate DVI into Postscript. If you cannot do without, put `\verb+-D 1200+' \emph{after} `\verb+-Ppdf+' on the command line. Users of \LaTeX-aware text editors with menu-driven toolchain invocation, such as \TeX{}nicCenter, should check the configuration of the \verb+dvips+ call.

Sometimes, if the same animation sequence made from graphics files is to be embedded multiple times into the document, more compact PDF output may be obtained by passing option `\verb+-dMaxInlineImageSize=0+' to \verb+ps2pdf+.

\XeLaTeX{} and \verb+dvipdfmx+ require the `graphicx' package to be loaded. While \XeLaTeX{} will be auto-detected (package option `\verb+xetex+' is optional), `animate' and `graphicx' need the package option `\verb+dvipdfmx+' in the case of \verb+dvipdfmx+.

Occasionally, a second \LaTeX{} run may be necessary to resolve internally created object references. An appropriate warning will be issued in such a case.

\section{The user interface}
Package `animate' provides the command
\begin{verbatim}
\animategraphics[<options>]{<frame rate>}{<file basename>}{<first>}{<last>}
\end{verbatim}
and the environment
\begin{verbatim}
\begin{animateinline}[<options>]{<frame rate>}
    ... typeset material ...
\newframe[<frame rate>]
    ... typeset material ...
\newframe*[<frame rate>]
    ... typeset material ...
\newframe
\multiframe{<number of frames>}{[<variables>]}{
  ... repeated (parameterized) material ...
}
\end{animateinline}
\end{verbatim}

While \verb+\animategraphics+ can be used to assemble animations from sets of existing graphics files or from multipage PDF, the environment `\verb+animateinline+' is meant to create the animation from the typeset material it encloses. This material can be pictures drawn within the \LaTeX{} `\verb+picture+' environment or using the advanced capabilities of PSTricks or pgf/TikZ. Even ordinary textual material may be animated in this way. The parameter \verb+<frame rate>+ specifies the number of frames per second of the animation.

The \verb+\newframe+ command terminates a frame and starts the next one. It can be used only inside the `\verb+animateinline+' environment. There is a starred variant, \verb+\newframe*+. If placed after a particular frame, it causes the animation to pause at that frame. The animation continues as normal after clicking it again. Both \verb+\newframe+ variants take an optional argument that allows the frame rate to be changed in the middle of an animation.

The \verb+\multiframe+ command allows the construction of loops around pictures. The first argument \verb+<number of frames>+ does what one would expect it to do, the second argument \verb+<variables>+ is a comma-separated list of variable declarations. The list may be of arbitrary, even zero, length. Variables may be used to parameterize pictures which are defined in the loop body (third argument of \verb+\multiframe+). A single variable declaration has the form
\begin{verbatim}
  <variable name>=<initial value>+<increment>
\end{verbatim}
\verb+<variable name>+ is a sequence of one or more letters \emph{without} a leading backslash\footnote{This is different from {\tt\string\multido} (package `multido') where variable names have a leading `{\tt\textbackslash}' in the declaration.}. The first (and possibly only) letter of the variable name determines the type of the variable. There are three different types: integers (`\verb+i+', `\verb+I+'), reals (`\verb+n+', `\verb+N+', `\verb+r+', `\verb+R+') and dimensions or \LaTeX{} lengths (`\verb+d+', `\verb+D+'). Upon first execution of the loop body, the variable takes the value \verb+<initial value>+. Each further iteration increments the variable by \verb+<increment>+. Negative increments must be preceded by `\verb+-+'. Here are some examples: `\verb:i=1+2:', `\verb:Rx=10.0+-2.25:', `\verb:dim=20pt+1ex:'. Within the loop body, variables are expanded to their current value by prepending a backslash to the variable name, that is \verb+\i+, \verb+\Rx+ and \verb+\dim+ according to the previous examples. \verb+\multiframe+ must be surrounded by \verb+\begin{animateinline}+ and \verb+\end{animateinline}+ or by any of the \verb+\newframe+ variants. Two consecutive \verb+\multiframe+ commands must be separated by one of the \verb+\newframe+ variants.

By default, the animation is built frame by frame in the order of inclusion of the embedded material. However, extended control of the order of appearance, superposition and repetition of the material is available through the `\verb+timeline+' option (see Section~\ref{sect:timeline}).

\myparagraph*{Sets of graphics files}
All files of the sequence should exist and be consecutively numbered. (Exception to this rule is allowed in connection with the `\verb+every+' option, see below.) {\tt <file base\-name>} is the leftmost part of the file name that is common to all members of the sequence. \verb+<first>+ is the number of the first and \verb+<last>+ the number of the last file in the set. If \verb+<first>+ is greater than \verb+<last>+, files are embedded in reverse order. File names may be simply numbered, such as $0\dots99$. If there are leading zeros, make sure that all file numbers have the same number of digits, such as $0000\dots0099$, and that the \verb+<first>+ and \verb+<last>+ arguments are filled in accordingly.

No file name extension may be specified as a parameter. The possible file formats depend on the output driver being used. In the case of \LaTeX{}+\verb+dvips+, files with the `eps' extension are at first searched for, followed by `mps' (\MP-generated Postscript) and `ps'. With pdf\LaTeX{} the searching order is: (1)~`pdf', (2)~`mps', (3)~`png', (4)~`jpg', (5)~`jpeg', (6)~`jbig2', (7)~`jb2', (8)~`jp2'\footnotemark[1], (9)~`j2k'\footnotemark[1], (10)~`jpx'\footnotemark[1]\footnotetext[1]{JPEG2000 is not yet supported by pdf\TeX.} and with \XeLaTeX{} or \LaTeX{}+\verb+dvipdfmx+: (1)~`pdf', (2)~`mps', (3)~`eps', (4)~`ps', (5)~`png', (6)~`jpg', (7)~`jpeg', (8)~`bmp'. That is, files capable of storing vector graphics are found first. Make sure that all file names have \emph{lower case} extensions.

For example, given the sequence `frame\_5.png' through `frame\_50.png' from a possibly larger set that shall be used to build an animation running at 12 frames per second, the correct inclusion command would read
\begin{verbatim}
  \animategraphics{12}{frame_}{5}{50}
\end{verbatim}

\myparagraph*{Multipage PDF {\rm(pdf\LaTeX, \XeLaTeX)} and JBIG2 {\rm(pdf\LaTeX)} inclusion}
If the file `\verb+<file basename>+.(pdf|jbig2|jb2)' exists (again, no file name extension may be specified), it is taken as a multipage document where each page represents one frame of the animation. In this case, the last two arguments, \verb+<first>+ \& \verb+<last>+, are interpreted differently from above; they specify a zero-based range of pages to be included in the animation. Either or both of them may be omitted, `\verb+{}+', in which case they default to $0$ and $n-1$, where $n$ is the total number of available pages. Arguments that fall outside this range are automatically corrected to the actual limits. If \verb+<first>+ is greater than \verb+<last>+, pages are embedded in reverse order.

For example, the line
\begin{verbatim}
  \animategraphics{12}{frames}{}{}
\end{verbatim}
would create an animation from all pages of the file `frames.pdf', running at 12 fps.

\section{Command options}
The following options to \verb+\animategraphics+ and `\verb+animateinline+' have been provided:
\subsection{Basic options}
\begin{verbatim}
poster[=first | none | last]
\end{verbatim}
Specifies which frame (first, last or none) to display and print if the animation is not activated. The first frame is shown by default. Thus `\verb+poster+' or `\verb+poster=first+' need not be explicitly set.
\begin{verbatim}
every=<num>
\end{verbatim}
Build animation from every \verb+<num>+\emph{th} frame only. Skipped frames are discarded and not embedded into the document. In the case of \verb+\animategraphics+, skipped input files may be missing.
\begin{verbatim}
autopause
\end{verbatim}
Pause animation when the page is closed, instead of stopping and rewinding it to the default frame.
\begin{verbatim}
autoplay
\end{verbatim}
Start animation after the page has opened. Also resumes playback of a previously paused animation.
\begin{verbatim}
autoresume
\end{verbatim}
Resume previously paused animation when the page is opened again.
\begin{verbatim}
loop
\end{verbatim}
The animation restarts immediately after reaching the end.
\begin{verbatim}
palindrome
\end{verbatim}
The animation continuously plays forwards and backwards.
\begin{verbatim}
step
\end{verbatim}
Step through the animation one frame at a time per mouse-click. The \verb+<frame rate>+ argument will be ignored.
\begin{verbatim}
width=<width>
height=<height>
depth=<depth>
\end{verbatim}
Resize the animation widget. Option `\verb+depth+' specifies how far the animation widget should extend below the bottom line of the running text. If only one or two of these options are given, the remaining, unspecified dimensions are scaled to maintain the aspect ratio. Any valid \TeX{} dimension is accepted as a parameter. In addition, the length commands \verb+\width+, \verb+\height+, \verb+\depth+ and \verb+\totalheight+ can be used to refer to the original dimensions of the animation widget which correspond to the size of the first frame of the animated sequence.
\begin{verbatim}
scale=<factor>
\end{verbatim}
Scales the animation widget by \verb+<factor>+.
\begin{verbatim}
bb=<llx> <lly> <urx> <ury>
\end{verbatim}
(\verb+\animategraphics+ only, requires package `graphicx'.) The four, space separated arguments set the bounding box of the graphics files. Units can be omitted, in which case `bp' (Postscript points) is assumed.
\begin{verbatim}
viewport=<llx> <lly> <urx> <ury>
\end{verbatim}
(\verb+\animategraphics+ only, requires package `graphicx'.) This option takes four arguments, just like `\verb+bb+'. However, in this case the values are taken relative to the origin specified by the bounding box in the graphics files.
\begin{verbatim}
trim=<left> <bottom> <right> <top>
\end{verbatim}
(\verb+\animategraphics+ only, requires package `graphicx'.) Crops graphics at the edges. The four lengths specify the amount to be removed from or, if negative values have been provided, to be added to each side of the graphics.
\begin{verbatim}
controls
\end{verbatim}
Inserts control buttons below the animation widget. The meaning of the buttons is as follows, from left to right: stop \& first frame, step backward, play backward, play forward, step forward, stop \& last frame, decrease speed, default speed, increase speed. Both `play' buttons are replaced by a large `pause' button while the animation is playing.
\begin{verbatim}
buttonsize=<size>
\end{verbatim}
Changes the control button height to \verb+<size>+, which must be a valid \TeX{} dimension. The default button height is \verb+1.44em+ and thus scales with the current font size.
\begin{verbatim}
buttonbg=<colour>
buttonfg=<colour>
\end{verbatim}
By default, control button widgets are drawn with black strokes on transparent background. The background can be turned into a solid colour by the first option, while the second option specifies the stroke colour. The parameter \verb+<colour>+ is an array of colon-(\verb+:+)-separated numbers in the range from 0.0 to 1.0. The number of array elements determines the colour model in which the colour is defined: (1) gray value, (3) RGB, (4) CMYK. For example, `\verb+1+', `\verb+1:0.5:0.2+' and `\verb+0.5:0.3:0.7:0.1+' are valid colour specifications.
\begin{verbatim}
draft
final
\end{verbatim}
With `\verb+draft+' the animation is not embedded. Instead, a box with the exact dimensions of the animation is inserted. Option `\verb+final+' does the opposite as it forces the animation to be built and embedded. Both options can be used to reduce compilation time during authoring of a document. To get the most out of them it is recommended to set `\verb+draft+' globally as a package or class option and to set `\verb+final+' locally as a command option of the animation that is currently worked on. After the document has been finished, the global `\verb+draft+' option can be removed to embed all animations.
\begin{verbatim}
useocg
\end{verbatim}
Use an alternative animation method based on Optional Content Groups (OCGs, also known as PDF Layers). May result in slower animations.
\begin{verbatim}
measure
\end{verbatim}
Measures the frame rate during one cycle of the animation. (For testing purposes.)
\begin{verbatim}
begin={<begin text>}
end={<end text>}
\end{verbatim}
(`\verb+animateinline+' only.) \verb+<begin text>+ and \verb+<end text>+ are inserted into the code at start and end of each frame. Mainly used for setting up some drawing environment, such as
\begin{verbatim}
  begin={\begin{pspicture}(... , ...)(... , ...)},
  end={\end{pspicture}}
\end{verbatim}
A short note on the `\verb+tikzpicture+' environment: Unlike `\verb+pspicture+', the `{\tt tikz\-pic\-ture}' environment is able to determine its size from the graphical objects it encloses. However, this may result in differently sized frames of a sequence, depending on the size and position of the graphical objects. Thus, in order to ensure that all frames of the sequence be displayed at the same scale in the animation widget, a common bounding box should be shared by the frames. A bounding box can be provided by means of an invisible `\verb+rectangle+' object:
\begin{verbatim}
  begin={
    \begin{tikzpicture}
    \useasboundingbox (... , ...) rectangle (... , ...);
  },
  end={\end{tikzpicture}}
\end{verbatim}

\subsection{The `{\tt timeline}' option}\label{sect:timeline}
\begin{verbatim}
timeline=<timeline file>
\end{verbatim}
\verb+<timeline file>+ is a plain text file whose contents determines the order of appearance of the embedded material during the animation. It allows the user to freely rearrange, repeat and overlay the material at any point of the animation. This may greatly reduce the file size of the resulting PDF, as objects that do not change between several or all frames, such as coordinate axes or labels, can be embedded once and re-used in other frames of the animation. (Technically, this is done by the XObject referencing mechanism of PDF.)

If a timeline is associated with the animation, the graphics files or inline graphics embedded by \verb+\animategraphics+ and `\verb+animateinline+' no longer represent the actual frames of the animation. Rather, they are a collection of \emph{transparencies} that can be played with at will. However, it is now up to the author's responsibility to construct a timeline that makes use of \emph{each} of those transparencies and to put them into a sensible order. In order to identify the transparencies within the timeline file, they are numbered in the order of their inclusion, starting at zero.

An animation can be thought of as a \emph{living stack} of translucent transparencies. Each animation frame is a snapshot of the stack viewed \emph{from above}. Transparencies are usually put on top of that stack and stay there for a given number of frames before expiring (becoming invisible). The lifetime of each transparency within the stack can be set individually. Once expired, a transparency can be put on the stack again, if desired. The stack may also be divided into an arbitrary number of \emph{sub-stacks} to facilitate the creation of layers, such as background, foreground and intermediate layers. Sub-stacks allow the insertion of transparencies at depth positions of the global stack other than just the top. It is important to keep the stack-like nature of animations in mind because graphical objects on transparencies at higher stack positions overlay the content of transparencies at lower stack positions.

\myparagraph*{General structure of the timeline file}
Each line of the timeline file that is not blank and which does not begin with a comment (`\verb+%+') corresponds to \emph{one} frame of the animation. There may be more transparencies than animation frames and vice-versa. A frame specification consists of three, colon-(\verb+:+)-separated fields:
\begin{verbatim}
  [*]:[<frame rate>]:[<transparencies>]
\end{verbatim}
While any field may be left blank, the colons are mandatory.

An asterisk (`\verb+*+') in the leftmost field causes the animation to pause at that frame, very much as a \verb+\newframe*+ would do; a number in the second field changes the frame rate of the animation section that follows. In connection with the `\verb+timeline+' option, the asterisk extension and the optional \verb+<frame rate>+ argument of \verb+\newframe+ cease to make sense and will be tacitly ignored if present.

The third field \verb+<transparencies>+ is a comma-separated \emph{list} of \emph{transparency specifications} that determines the transparencies to be put on the stack. Semicolons (\verb+;+) are used to separate sub-stacks (= layers) from each other. A \emph{single} transparency specification obeys the syntax
\begin{verbatim}
  <transparency ID>[x<number of frames>]
\end{verbatim}
where \verb+<transparency ID>+ is an integer number that identifies the transparency to be drawn into the current animation frame. As pointed out above, the transparencies are consecutively numbered in the order of their inclusion, starting at zero. The optional postfix `\verb+x<number of frames>+' specifies the number of consecutive frames within which the transparency is to appear. If omitted, a postfix of `\verb+x1+' is assumed, which causes the transparency to be shown in the current frame only. Obviously, \verb+<number of frames>+ must be a non-negative integer number. The meaning of postfix `\verb+x0+' is special; it causes the transparency to be shown in all frames, starting with the current one, until the end of the animation or until the animation sub-stack to which it belongs is explicitly cleared.

The letter `\verb+c+', if put into \verb+<transparencies>+, clears an animation sub-stack, that is, it causes all transparencies added so far to be removed from the sub-stack, overriding any \verb+<number of frames>+ value. The effect of `\verb+c+' is restricted to the sub-stack in which it appears. Thus, a `\verb+c+' must be applied to every sub-stack if the complete animation stack is to be cleared. Moreover, if applied, `\verb+c+' should go into the first position of the transparency list of a sub-stack because \emph{everything} in the sub-stack up to `\verb+c+' will be cleared.

%If a frame is composed of more than one transparency, transparency specifications on the left of the input line are closer to the background and will be overprinted by those on the right of the input line or which appear on subsequent lines of the timeline file. That is, the depth \emph{de}creases from left to right within \verb+<transparencies>+ as well as in top-down direction within the timeline file.
%Also, if there are transparency specifications which span several frames (using postfix `\verb+x<number of frames>+'), they will be overprinted by transparency specifications that appear on subsequent lines in the timeline file. That is, the depth decreases in top-down direction within the timeline file.

\myparagraph*{Timeline example with a single animation stack}
Table~\ref{tab:single} is an example of a single-stack animation. It lists the contents of a timeline file together with the resulting stack of transparencies. Note how the stack is strictly built from the bottom up as transparency specifications are read from left to right and line by line from the timeline file. In frame No. 4, the stack is first cleared before new transparencies are deposited on it. Also note that the stack is viewed from above and transparencies in higher stack position overprint the lower ones.

\begin{table}[ht]\centering
\caption{Timeline example of a single-stack animation}\label{tab:single}
\begin{tabular}[t]{c|l|c}\hline
frame No. & timeline file & transparency stack\\\hline\hline
\multirow{2}{*}{0} & \multirow{2}{*}{\tt::0x0,1x2} & ---------1---------\\&&---------0---------\\\cline{1-1}\cline{3-3}
\multirow{3}{*}{1} & \multirow{3}{*}{\tt::2} & ---------2---------\\&&---------1---------\\&&---------0---------\\\cline{1-1}\cline{3-3}
\multirow{2}{*}{2} & \multirow{2}{*}{\tt::3} & ---------3---------\\&&---------0---------\\\cline{1-1}\cline{3-3}
\multirow{2}{*}{3} & \multirow{2}{*}{\tt::4} & ---------4---------\\&&---------0---------\\\cline{1-1}\cline{3-3}
\multirow{2}{*}{4} & \multirow{2}{*}{\tt::c,5x0,6} & ---------6---------\\&&---------5---------\\\cline{1-1}\cline{3-3}
\multirow{2}{*}{5} & \multirow{2}{*}{\tt::7} & ---------7---------\\&&---------5---------\\\cline{1-1}\cline{3-3}
\multirow{2}{*}{6} & \multirow{2}{*}{\tt::8} & ---------8---------\\&&---------5---------\\\cline{1-1}\cline{3-3}
\multirow{2}{*}{7} & \multirow{2}{*}{\tt::9} & ---------9---------\\&&---------5---------\\\hline
\end{tabular}
\end{table}

Figures~\ref{fig:taylor} and \ref{fig:lorenz} in Section~\ref{sect:examples} are animation examples with a single transparency stack.

\myparagraph*{Grouping objects into layers (= sub-stacks) using `{\tt;}'}
Due to the stack-like nature of the animation, the position of a transparency specification in the timeline file determines its \emph{depth} level in relation to other transparencies. The timeline file is processed line by line and from left to right. In a single-stack animation, the stack is strictly built from the bottom up, such that earlier transparencies are overprinted by more recent ones. This may turn out to be inconvenient in certain situations. For example, it might be desirable to change the background image in the middle of an animation without affecting objects that are located in the foreground. For this purpose, transparency specifications can be grouped into layers or sub-stacks using the semicolon (\verb+;+) as a separator. New transparencies can now be put on top of the individual sub-stacks. After a line of the timeline file has been processed, the global stack is built by placing the sub-stacks on top of the other. Again, the left-to-right rule applies when determining the height of the sub-stacks in relation to each other within the global stack.

The layer concept is best illustrated by an example. In the timeline of Table~\ref{tab:multi}, transparencies are grouped into two sub-stacks only. One is reserved for the background images, transparencies No. 0 \& 1, to be exchanged in frame No. 3, as well as for two other transparencies, No. 7 \& 8, to be interspersed in frame No. 1. A second sub-stack takes the foreground objects that are successively added to the scene. The dotted lines in the third column of the table just mark the border between the two sub-stacks. In frame No. 3, `\verb+c+' first clears the bottom sub-stack before the new background image is inserted. (Instead, `\verb+x3+' could have been used with transparency No. 0 in frame No. 0.) As can be seen in the specifications of frames No. 2 \& 4, sub-stacks need not be explicitly populated; the leading semicolons just ensure the proper assignment of transparencies to animation sub-stacks.

\begin{table}[ht]\centering
\caption{Timeline example with two sub-stacks}\label{tab:multi}
\begin{tabular}[t]{c|l|c}\hline
frame No. & timeline file & transparency stack\\\hline\hline
\multirow{3}{*}{0} & \multirow{3}{*}{\tt::\ \ 0x0 ; 2x0} & ---------2---------\\&&{\tiny\dotfill}\\&&---------0---------\\\cline{1-1}\cline{3-3}
\multirow{6}{*}{1} & \multirow{6}{*}{\tt::7,8x2 ; 3x0} & ---------3---------\\&&---------2---------\\&&\tiny\dotfill\\&&---------8---------\\&&---------7---------\\&&---------0---------\\\cline{1-1}\cline{3-3}
\multirow{6}{*}{2} & \multirow{6}{*}{\tt::\ \ \ \ \ \ ; 4x0} & ---------4---------\\&&---------3---------\\&&---------2---------\\&&\tiny\dotfill\\&&---------8---------\\&&---------0---------\\\cline{1-1}\cline{3-3}
\multirow{6}{*}{3} & \multirow{6}{*}{\tt::c,1x0 ; 5x0} & ---------5---------\\&&---------4---------\\&&---------3---------\\&&---------2---------\\&&\tiny\dotfill\\&&---------1---------\\\cline{1-1}\cline{3-3}
\multirow{7}{*}{4} & \multirow{7}{*}{\tt::\ \ \ \ \ \ ; 6x0} & ---------6---------\\&&---------5---------\\&&---------4---------\\&&---------3---------\\&&---------2---------\\&&\tiny\dotfill\\&&---------1---------\\\hline
\end{tabular}
\end{table}

%\small
%\begin{verbatim}
%  % <--layer 1--> <--layer 2-->
%  %
%  ::    0x49     ;   2x0,3x0    % transparency `0' used as background
%  ::             ;   4x0,5x0    % image during the first 49 frames
%  ::             ;   6x0,7x0
%  etc...
%  ::             ;  98x0,99x0
%  ::    1x0      ; 100x0,101x0  % transparency `1' used as new background
%  ::             ; 102x0,103x0  % image until end of animation
%  ::             ; 104x0,105x0
%  etc...
%\end{verbatim}
%\normalsize
%
%Note that \emph{without} setting up two layers, that is, by replacing the semicolons with commas, the foreground objects (transparencies 2 through 99) which have been added during the first 49 frames would be overprinted by the new background image, transparency 1, from frame 50 onward.

See the second animation, Fig.~\ref{fig:scarab}, in Section~\ref{sect:examples} for a working example that makes use of the timeline and the layer concept.

\myparagraph*{Other things to note}
When designing the timeline, care should be taken not to include a transparency more than once into the \emph{same} animation frame. Besides the useless redundancy, this may slow down the animation speed in the Reader because the graphical objects of a multiply included transparency have to be rendered unnecessarily often at the same time. `animate' is smart enough to detect multiple inclusion and issues a warning message along with the transparency ID and the frame number if it occurs. Here is an example of a poorly designed timeline:
\small
\begin{verbatim}
  ::0
  ::1x0
  ::2
  ::3
  ::4,2
  ::5,1 % bad: transparency `1' included twice
  ::6
\end{verbatim}
\normalsize
Also, `animate' finds and warns about transparencies that have never been used in an animation timeline. This may help to avoid dead code in the final PDF.

\section{Examples}
\subsection[Animations from sets of files, using `animategraphics' command]{Animations from sets of files, using {\tt \string\animategraphics} command}\label{sect:examples}
Animations in this section are made from graphics files that were prepared with \MP. Run `\verb+mpost --tex=latex+' on the files ending in `.mp' in the `files' directory to generate the graphics files. Both examples make use of the `\verb+timeline+' option to reduce the resulting PDF file size.

The first example, Fig.~\ref{fig:taylor}, originally written by Jan Hole\v{c}ek~\cite{hol}, shows the exponential function $y=e^x$ and its approximation by Taylor polynomials of different degree.

\small
\begin{verbatim}
\documentclass{article}
\usepackage{animate}
\usepackage{graphicx}

\begin{document}

\begin{center}
  \animategraphics[
    controls, loop,
    timeline=timeline.txt
  ]{4}{exp_}{0}{8}
\end{center}

\end{document}
\end{verbatim}
\normalsize
Contents of file `timeline.txt':
\small
\begin{verbatim}
  ::0x0 % coordinate system & y=e^x, repeated until last frame
  ::1   % one blue curve per frame
  ::2
  ::3
  ::4
  ::5
  ::6
  ::7
  ::8
\end{verbatim}
\normalsize

\begin{figure}\capstart
\centering
\animategraphics[controls,loop,timeline=timeline.txt]{4}{exp_}{0}{8}
\caption{}\label{fig:taylor}
\end{figure}

The second, somewhat more complex example, Fig.~\ref{fig:scarab}, animates the geometric construction of a scarabaeus. In addition to the use of a timeline, it introduces the layer concept. This example is adapted from Maxime Chupin's original \MP{} source file \cite{chupin}. The present version separates stationary from moving parts of the drawing and saves them into different files. A total of 254 files, scarab\_0.mps through scarab\_253.mps, is written out by running `\verb+mpost --tex=latex+' on the source file `scarab.mp'. Files 0 through 100 contain the red line segments that make up the growing scarabaeus. Files 101 through 201 contain the moving construction lines and files 202 through 252 contain the gray lines which represent intermediate stages of the construction. The last file, No. 253, contains the coordinate axes, two stationary construction lines and the labels which do not move. A timeline file `scarab.tln' is written out on-the-fly during the \LaTeX{} run. It arranges the animation into three layers, forcing the gray lines into the background, the coordinate axes into the intermediate layer and the scarabaeus along with the moving construction lines into the foreground. The final animation consists of 101 individual frames.
\begin{figure}[t]
\centering
\newcounter{scarab}
\setcounter{scarab}{0}
\newcounter{blueline}
\setcounter{blueline}{101}
\newcounter{grayline}
\setcounter{grayline}{202}
%
\newwrite\TimeLineFile
\immediate\openout\TimeLineFile=scarab.tln
\whiledo{\thescarab<101}{
  \ifthenelse{\intcalcMod{\thescarab}{2}=0}{
    \immediate\write\TimeLineFile{::\thegrayline x0;253;\thescarab x0,\theblueline}
    \stepcounter{grayline}
  }{
    \immediate\write\TimeLineFile{::;253;\thescarab x0,\theblueline}
  }
  \stepcounter{scarab}
  \stepcounter{blueline}
}
\immediate\closeout\TimeLineFile
%
\animategraphics[
  width=0.8\linewidth,
  controls,
  loop,
  timeline=scarab.tln
]{12}{scarab_}{0}{253}
%
\caption{}\label{fig:scarab}
\end{figure}

\small
\begin{verbatim}
\documentclass{article}
\usepackage{intcalc} %defines \intcalcMod for Modulo computation
\usepackage{animate}
\usepackage{graphicx}

\newcounter{scarab}
\setcounter{scarab}{0}
\newcounter{blueline}
\setcounter{blueline}{101}
\newcounter{grayline}
\setcounter{grayline}{202}

%write timeline file
\newwrite\TimeLineFile
\immediate\openout\TimeLineFile=scarab.tln
\whiledo{\thescarab<101}{
  \ifthenelse{\intcalcMod{\thescarab}{2}=0}{
    %a gray line is added to every 2nd frame
    \immediate\write\TimeLineFile{%
      ::\thegrayline x0;253;\thescarab x0,\theblueline}
    \stepcounter{grayline}
  }{
    \immediate\write\TimeLineFile{%
      ::;253;\thescarab x0,\theblueline}
  }
  \stepcounter{scarab}
  \stepcounter{blueline}
}
\immediate\closeout\TimeLineFile

\begin{document}

\begin{center}
  \animategraphics[
    width=0.8\linewidth,
    controls, loop,
    timeline=scarab.tln
  ]{12}{scarab_}{0}{253}
\end{center}

\end{document}
\end{verbatim}
\normalsize
\subsection[Animating PSTricks graphics, using `animateinline' environment]{Animating PSTricks graphics, using `{\tt animateinline}' environment}
Fig.~\ref{fig:torus} is an inline graphics example adapted from \cite{gilg05}.
\small
\begin{verbatim}
\documentclass{article}
\usepackage{pst-3dplot}
\usepackage{animate}

%draws a torus sector
\newcommand{\torus}[2]{% #1: angle of the torus sector,
  %                      #2: linewidth of leading circle
  \psset{Beta=20,Alpha=50,linewidth=0.1pt,origin={0,0,0},unit=0.35}%
  \begin{pspicture}(-12.3,-6.3)(12.3,7)%
    \parametricplotThreeD[xPlotpoints=100](80,#1)(0,360){%
      t cos 2 mul 4 u sin 2 mul add mul
      t sin 2 mul 4 u sin 2 mul add mul
      u cos 4 mul
    }%
    \parametricplotThreeD[yPlotpoints=75](0,360)(80,#1){%
      u cos 2 mul 4 t sin 2 mul add mul
      u sin 2 mul 4 t sin 2 mul add mul
      t cos 4 mul
    }%
    \parametricplotThreeD[yPlotpoints=1,linewidth=#2](0,360)(#1,#1){%
      u cos 2 mul 4 t sin 2 mul add mul
      u sin 2 mul 4 t sin 2 mul add mul
      t cos 4 mul
    }%
  \end{pspicture}%
}

\begin{document}

\begin{center}
\begin{animateinline}[poster=last, controls, palindrome]{12}%
  \multiframe{29}{iAngle=80+10, dLineWidth=2.9pt+-0.1pt}{%
    %iAngle = 80, 90, ..., 360 degrees
    %dLineWidth = 2.9pt, 2.8pt, ..., 0.1pt
    \torus{\iAngle}{\dLineWidth}%
  }%
\end{animateinline}%
\end{center}

\end{document}
\end{verbatim}
\normalsize

\begin{figure}
\centering
\newcommand{\torus}[2]{%
  \psset{Beta=20,Alpha=50,linewidth=0.1pt,origin={0,0,0},unit=0.35}%
  \begin{pspicture}(-12.3,-6.3)(12.3,7)%
    \parametricplotThreeD[xPlotpoints=100](80,#1)(0,360){%
      t cos 2 mul 4 u sin 2 mul add mul
      t sin 2 mul 4 u sin 2 mul add mul
      u cos 4 mul
    }%
    \parametricplotThreeD[yPlotpoints=75](0,360)(80,#1){%
      u cos 2 mul 4 t sin 2 mul add mul
      u sin 2 mul 4 t sin 2 mul add mul
      t cos 4 mul
    }%
    \parametricplotThreeD[yPlotpoints=1,linewidth=#2](0,360)(#1,#1){%
      u cos 2 mul 4 t sin 2 mul add mul
      u sin 2 mul 4 t sin 2 mul add mul
      t cos 4 mul
    }%
  \end{pspicture}%
}

\begin{animateinline}[poster=last,controls,palindrome]{12}%
  \multiframe{29}{iAngle=80+10, dLineWidth=2.9pt+-0.1pt}{%
    \torus{\iAngle}{\dLineWidth}%
  }%
\end{animateinline}%
\caption{}\label{fig:torus}
\end{figure}

Another inline example, Fig.~\ref{fig:lorenz}, is an animation of the Lorenz Attractor. The Lorenz Attractor is a three-dimensional parametric curve whose coordinates are obtained by integrating the set of three ordinary differential equations
\begin{align*}
  \frac{\mathrm{d}x}{\mathrm{d}t}& = \alpha (y-x)\\
  \frac{\mathrm{d}y}{\mathrm{d}t}& = x(\beta-z)\\
  \frac{\mathrm{d}z}{\mathrm{d}t}& = x y - \gamma z
\end{align*}
with respect to the independent parameter $t$. The shape of the attractor strongly depends on the values chosen for the coefficients $\alpha$, $\beta$ and $\gamma$ as well as on the initial conditions, that is, the coordinates $x_0$, $y_0$ and $z_0$ of the starting point of the curve. Here we use the values $\alpha=10$, $\beta=28$, $\gamma=8/3$ and the starting point $\mathbf{x}_0=(3,15,1)$.

The right hand sides of the equations above are implemented in the Postscript procedure `\verb+lorenz+' which is passed to the macro \verb+\odesolve+. The latter implements the Runge-Kutta method for integrating sets of ordinary differential equations. Its core is also written in Postscript. Hence, the computation of the curve is performed by the Postscript interpreter while converting the PS document into PDF. The solution vectors $\mathbf{x}(t)$ are written to a text file subsequently read by the macro \verb+\parametricplotThreeD+ from the PSTricks package `pst-3dplot' in order to plot the curve. Note that the creation of intermediate files requires the Postscript interpreter to be run in unsafe mode. In the case of Ghostscript, option `\verb+-dNOSAFER+' must be passed to \verb+ps2pdf+. Feel free to copy the code of \verb+\odesolve+ verbatim in order to solve your own initial value problems.

A timeline file, written on-the-fly, is used to assemble the curve segments frame by frame to the growing attractor which, in turn, is put on top of the $x$-$y$-$z$ coordinate system. After the attractor has been completed, the transparency stack is cleared. Then, transparencies containing the complete curve and the coordinate system seen from different viewpoints are put in a row to produce the animated fly-around.

\begin{figure}[t]
\centering
\makeatletter%
\def\odesolve{\@ifstar{\@odesolve[append]}{\@odesolve}}%
\newcommand{\@odesolve}[8][]{%
  \def\append{false}%
  \def\filemode{w}%
  \ifthenelse{\equal{#1}{append}}{%
    \def\append{true}%
    \def\filemode{a}}{}%
  \def\initcond{}%
  \ifthenelse{\equal{#7}{}}{}{%
    \def\initcond{/laststate [#7] def}%
  }%
  \pstVerb{%
    /statefile (#2) (\filemode) file def
    /outvect [#3] def
    /t #4 def
    /tEnd #5 def
    /dt tEnd t sub #6\space 1 sub div def % step size
    /dt2 dt 2 div def % half step size
    \initcond %set initial state vector
    /xlength laststate length def % number of equations
    /xlength1 xlength 1 add def % number of equations plus 1
    /ODESET { cvx exec #8 xlength array astore } def %system of ODEs
    /addvect { % [1 2 3] [4 5 6] addvect => [5 7 9]
      cvx exec xlength1 -1 roll {xlength1 -1 roll add} forall
      xlength array astore
    } def
    /mulvect { % [1 2 3] 4 mulvect => [4 8 12]
      /mul cvx 2 array astore cvx forall xlength array astore
    } def
    /divvect { % [4 8 12] 2 divvect => [2 4 6]
      /div cvx 2 array astore cvx forall xlength array astore
    } def
    /RK { % performs one Runge-Kutta integration step
          % [ state vector x(t) ] RK => [ state vector x(t + dt) ]
      dup ODESET /k0 exch def
      t dt2 add /t exch def
      dup k0 dt2 mulvect addvect ODESET /k1 exch def
      dup k1 dt2 mulvect addvect ODESET /k2 exch def
      t dt2 add /t exch def
      dup k2 dt mulvect addvect ODESET /k3 exch def
      k0 k1 2 mulvect addvect k2 2 mulvect addvect k3 addvect
      6 divvect dt mulvect addvect
    } def
    /output { %output routine
      outvect {
           dup (t) eq {
             pop t 20 string cvs statefile exch writestring
           }{
             laststate exch get 20 string cvs statefile exch writestring
           } ifelse
           statefile (\space) writestring
      } forall
      statefile (\string\n) writestring
    } def
    \append\space not {output} if
    #6\space 1 sub {laststate RK /laststate exch def output} repeat
    statefile closefile
  }%
}%
\makeatother%
%
%Lorenz' set of differential equations
\pstVerb{
  /lorenz {
    %get elements of current state vector
    /varz exch def /vary exch def /varx exch def
    %
    10 vary varx sub mul                    %dx/dt
    varx 28 varz sub mul                    %dy/dt
    varx vary mul 8 3 div varz mul sub      %dz/dt
  } def
}%
%
%write timeline file
\newwrite\OutFile%
\immediate\openout\OutFile=lorenz.tln%
\multido{\iLorenz=0+1}{101}{%
  \immediate\write\OutFile{::\iLorenz x0}%
}%
\immediate\write\OutFile{::c,101}%
\multido{\iLorenz=102+1}{89}{%
  \immediate\write\OutFile{::\iLorenz}%
}%
\immediate\closeout\OutFile%
%
\psset{unit=0.155,linewidth=0.5pt}%
\begin{animateinline}[
  timeline=lorenz.tln,
  controls,poster=last,
  begin={\begin{pspicture}(-39,-13)(39,60)},
  end={\end{pspicture}}
]{10}%
  \psset{Alpha=120,Beta=20}%
  \pstThreeDCoor[xMax=33,yMax=33,zMax=55,linecolor=black]%
  \newframe%
  \pstVerb{/laststate [3 15 1] def}% initial condition
  \multiframe{100}{rtZero=0+0.25,rtOne=0.25+0.25}{% t0, t1
    \odesolve{lorenz.dat}{0 1 2}{\rtZero}{\rtOne}{26}{}{lorenz}%
    \pstVerb{/infile (lorenz.dat) (r) file def}%
    \parametricplotThreeD[plotstyle=line,xPlotpoints=26](0,0){infile 80 string readline pop cvx exec}%
  }%
  \newframe% required between two \multiframe
  \odesolve{lorenz.dat}{0 1 2}{0}{25}{2501}{3 15 1}{lorenz}%
  \multiframe{90}{rAlpha=116+-4}{%
    \psset{Alpha=\rAlpha,Beta=20}%
    \pstThreeDCoor[xMax=33,yMax=33,zMax=55,linecolor=black]%
    \pstVerb{/infile (lorenz.dat) (r) file def}%
    \parametricplotThreeD[plotstyle=line,xPlotpoints=2501](0,0){infile 80 string readline pop cvx exec}%
  }%
\end{animateinline}
\caption{}\label{fig:lorenz}
\end{figure}

\small
\begin{verbatim}
\documentclass{article}
\usepackage{multido}
\usepackage{pst-3dplot}
\usepackage{pstricks-add}
\usepackage{animate}

\makeatletter
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% odesolve
%
% LaTeX command for integrating systems of first order ODEs using the Runge-
% Kutta method; values of the integration parameter `t' as well as the solution
% (= state) vectors are written to a text file
%
% Usage:
%
% \odesolve{filename}{output vector}{ta}{tb}{nodes}{initial cond.}{function}
% \odesolve*{filename}{output vector}{ta}{tb}{nodes}{initial cond.}{function}
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% #1: output filename for solution data
% #2: output vector format, e. g. `(t) 0 1'; specifies which data to be written
%     to #1; (t) (parentheses required) writes integration parameter to the data
%     file, 0, 1, 2, etc. specify the elements of the state vector to be written
% #3: start value of integration parameter (ta)
% #4: end value of integration parameter (tb)
% #5: number of output points (nodes), including ta and tb
% #6: initial condition vector; if empty, use state vector from last \odesolve
%     invocation
% #7: right hand side of ODE system; the function provided should pop the
%     elements of the current state vector from the operand stack and push the
%     first derivatives (right hand side of ODE system) back to it, the
%     integration parameter can be accessed using `t'
%
% \odesolve* --> computed data are appended to existing data file (arg. #1)
%                rather than overwriting it
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\def\odesolve{\@ifstar{\@odesolve[append]}{\@odesolve}}
\newcommand{\@odesolve}[8][]{%
  \def\append{false}%
  \def\filemode{w}%
  \ifthenelse{\equal{#1}{append}}{%
    \def\append{true}%
    \def\filemode{a}}{}%
  \def\initcond{}%
  \ifthenelse{\equal{#7}{}}{}{%
    \def\initcond{/laststate [#7] def}%
  }%
  \pstVerb{%
    /statefile (#2) (\filemode) file def
    /outvect [#3] def
    /t #4 def
    /tEnd #5 def
    /dt tEnd t sub #6\space 1 sub div def % step size
    /dt2 dt 2 div def % half step size
    \initcond %set initial state vector
    /xlength laststate length def % number of equations
    /xlength1 xlength 1 add def % number of equations plus 1
    /ODESET { cvx exec #8 xlength array astore } def %system of ODEs
    /addvect { % [1 2 3] [4 5 6] addvect => [5 7 9]
      cvx exec xlength1 -1 roll {xlength1 -1 roll add} forall
      xlength array astore
    } def
    /mulvect { % [1 2 3] 4 mulvect => [4 8 12]
      /mul cvx 2 array astore cvx forall xlength array astore
    } def
    /divvect { % [4 8 12] 2 divvect => [2 4 6]
      /div cvx 2 array astore cvx forall xlength array astore
    } def
    /RK { % performs one Runge-Kutta integration step
          % [ state vector x(t) ] RK => [ state vector x(t + dt) ]
      dup ODESET /k0 exch def
      t dt2 add /t exch def
      dup k0 dt2 mulvect addvect ODESET /k1 exch def
      dup k1 dt2 mulvect addvect ODESET /k2 exch def
      t dt2 add /t exch def
      dup k2 dt mulvect addvect ODESET /k3 exch def
      k0 k1 2 mulvect addvect k2 2 mulvect addvect k3 addvect
      6 divvect dt mulvect addvect
    } def
    /output { %output routine
      outvect {
           dup (t) eq {
             pop t 20 string cvs statefile exch writestring
           }{
             laststate exch get 20 string cvs statefile exch writestring
           } ifelse
           statefile (\space) writestring
      } forall
      statefile (\string\n) writestring
    } def
    \append\space not {output} if
    #6\space 1 sub {laststate RK /laststate exch def output} repeat
    statefile closefile
  }%
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\makeatother

\begin{document}
%
% Lorenz' set of differential equations
\pstVerb{
  /lorenz {
    %get elements of current state vector
    /varz exch def /vary exch def /varx exch def
    %
    10 vary varx sub mul                  %dx/dt
    varx 28 varz sub mul                  %dy/dt
    varx vary mul 8 3 div varz mul sub    %dz/dt
  } def
}%
%
%write timeline file
\newwrite\OutFile%
\immediate\openout\OutFile=lorenz.tln%
\multido{\iLorenz=0+1}{101}{%
  \immediate\write\OutFile{::\iLorenz x0}%
}%
\immediate\write\OutFile{::c,101}%
\multido{\iLorenz=102+1}{89}{%
  \immediate\write\OutFile{::\iLorenz}%
}%
\immediate\closeout\OutFile%
%
\begin{center}
\psset{unit=0.155,linewidth=0.5pt}%
\begin{animateinline}[
  timeline=lorenz.tln,
  controls,poster=last,
  begin={\begin{pspicture}(-39,-13)(39,60)},
  end={\end{pspicture}}
]{10}%
  \psset{Alpha=120,Beta=20}%
  \pstThreeDCoor[xMax=33,yMax=33,zMax=55,linecolor=black]%
\newframe%
  \pstVerb{/laststate [3 15 1] def}%
  \multiframe{100}{rtZero=0+0.25,rtOne=0.25+0.25}{% t0, t1
    \odesolve{lorenz.dat}{0 1 2}{\rtZero}{\rtOne}{26}{}{lorenz}%
    \pstVerb{/infile (lorenz.dat) (r) file def}%
    \parametricplotThreeD[%
      plotstyle=line,xPlotpoints=26](0,0){infile 80 string readline pop cvx exec}%
  }%
\newframe%
  \odesolve{lorenz.dat}{0 1 2}{0}{25}{2501}{3 15 1}{lorenz}%
  \multiframe{90}{rAlpha=116+-4}{%
    \psset{Alpha=\rAlpha,Beta=20}%
    \pstThreeDCoor[xMax=33,yMax=33,zMax=55,linecolor=black]%
    \pstVerb{/infile (lorenz.dat) (r) file def}%
    \parametricplotThreeD[%
      plotstyle=line,xPlotpoints=2501](0,0){infile 80 string readline pop cvx exec}%
  }%
\end{animateinline}
\end{center}

\end{document}
\end{verbatim}
\normalsize

\section{Bugs}\label{sect:bugs}
\begin{itemize}
  \item The maximum frame rate that can actually be achieved largely depends on the complexity of the graphics and on the available hardware. Starting with version 8, Adobe Reader appears to be somewhat slower. However, you might want to experiment with the graphical hardware acceleration feature that was introduced in Reader 8. Go to menu `Edit' $\rightarrow$ `Preferences' $\rightarrow$ `Page Display' $\rightarrow$ `Rendering' to see whether hardware acceleration is available. A 2D GPU acceleration check box will be visible if a supported video card has been detected.

  \item Animations may run very slowly if viewed in the Adobe Reader web-browser plugin. Instead, open the PDF locally in the Reader application for best results.

  \item The Adobe Reader setting `Use page cache' (menu `Edit' $\rightarrow$ `Preferences' $\rightarrow$ `Startup') should be \emph{dis}abled for version 7, while remaining \emph{en}abled beginning with version 8 (menu `Edit' $\rightarrow$ `Preferences' $\rightarrow$ `Page Display' $\rightarrow$ `Rendering').

  \item The \verb+dvips+ option `\verb+-Ppdf+' should be avoided entirely or followed by something like `\verb+-D 1200+' on the command line in order to set a sensible DVI resolution. This does \emph{not} degrade the output quality! The configuration file `config.pdf' loaded by option `\verb+-Ppdf+' specifies an excessively high DVI resolution that will be passed on to the final PDF. Eventually, Adobe Reader gets confused and will not display the frames within the animation widget.

  \item Animations do not work if the PDF has been produced with Ghostscript versions older than 8.31. This applies to all versions of ESP Ghostscript that comes with many Linux distributions.

  \item If the \LaTeX{} $\rightarrow$ \verb+dvips+ $\rightarrow$ \verb+ps2pdf+/Distiller route is being taken, make sure that the original graphics size (i.\,e. not scaled by any of the `{\tt scale}', `{\tt width}', `{\tt height}' or `{\tt depth}' options) does not exceed the page size of the final document. During PS to PDF conversion every graphic of the animation is temporarily moved to the lower left page corner. Those parts of the graphics that do not fit onto the document page will be clipped in the resulting PDF. Fortunately, graphics files for building animations may be resized easily to fit into a given bounding box by means of the `{\tt epsffit}' command line tool:

\quad{\tt epsffit -c <llx> <lly> <urx> <ury> infile.eps outfile.eps}

{\tt <llx> <lly> <urx> <ury>} are the bounding box coordinates of the target document. They can be determined using Ghostscript. For a document named `document.ps' the command line is

\quad{\tt gs -dNOPAUSE -q -dBATCH -sDEVICE=bbox document.ps}

Note that the name of the Ghostscript executable may vary between operating systems (e.\,g. `{\tt gswin32c.exe}' on Win/DOS).

  \item Animations with complex graphics and/or many frames may cause \LaTeX{} to fail with a `\verb+TeX capacity exceeded+' error. The following steps should fix most of the memory related problems.

  MiK\TeX:
  \begin{enumerate}
    \item Open a DOS command prompt window (execute `cmd.exe' via `Start' $\rightarrow$ `Run').
    \item\label{item:firststep} At the DOS prompt, enter\\
    {\tt initexmf -{}-edit-config-file=latex}
    \item Type\\
    {\tt main\_memory=10000000}\\
    into the editor window that opens, save the file and quit the editor.
    \item\label{item:laststep} To rebuild the format, enter\\
    {\tt initexmf -{}-dump=latex}
    \item Repeat steps \ref{item:firststep}--\ref{item:laststep} with config files `{\tt pdflatex}' and `{\tt xelatex}'
  \end{enumerate}

  \TeX\ Live:
  \begin{enumerate}
    \item Find the configuration file `texmf.cnf' by means of\\
    {\tt kpsewhich texmf.cnf}\\
    at the shell prompt in a terminal.
    \item As Root, open the file in your favourite text editor, scroll to the `{\tt main\_memory}' entry and change it to the value given above; save and quit.
    \item Rebuild the formats by\\
    {\tt fmtutil-sys -{}-byfmt latex}\\
    {\tt fmtutil-sys -{}-byfmt pdflatex}\\
    {\tt fmtutil-sys -{}-byfmt xelatex}
  \end{enumerate}

  \item If you are postprocessing the created PDF file with tools such as pdftk to split the document into different parts, then the animation may fail. To work around this, don't use the OCG (PDF layers) option.  In addition, the control buttons also use OCG's to change their appearance to provide feedback about the running state, independent of the `{\tt useocg}' option. The workaround for this is not to use the `{\tt controls}' option.

  \item Animations should not be placed on \emph{multilayered} slides created with presentation making classes such as Beamer or Powerdot. Although possible (on the last overlay of a slide, at best), the result might be disappointing. Put animations on flat slides only. (Of course, slides without animations may still have overlays.)
\end{itemize}

\section{Acknowledgements}
I would like to thank Fran\c{c}ois Lafont who discovered quite a few bugs and made many suggestions that helped to improve the functionality of the package. Many thanks to Jin-Hwan Cho, the developer of `\verb+dvipdfmx+', for contributing the `\verb+dvipdfmx+' specific code, and to Walter Scott for proof-reading the documentation.

\begin{thebibliography}{8}
  \bibitem{chupin} Chupin, M.: \href{http://melusine.eu.org/syracuse/metapost/animations/chupin/?idsec=scara}{\tt http://melusine.eu.org/syracuse/metapost/animations/} \href{http://melusine.eu.org/syracuse/metapost/animations/chupin/?idsec=scara}{\tt chupin/?idsec=scara}
  \bibitem{gilg05} Gilg, J.: PDF-Animationen. In: \emph{Die \TeX nische Kom\"odie}, Issue 4, 2005, pp.~30--37
  \bibitem{hol} Hole\v{c}ek, J.: \emph{Animations in a pdf\TeX-generated PDF}. URL: \href{http://www.fi.muni.cz/~xholecek/tex/pdfanim.xhtml}{\tt http://www.} \href{http://www.fi.muni.cz/~xholecek/tex/pdfanim.xhtml}{\tt fi.muni.cz/\textasciitilde xholecek/tex/pdfanim.xhtml}
  \bibitem{movie15} \emph{The Movie15 Package}. URL: \href{http://www.ctan.org/tex-archive/macros/latex/contrib/movie15/}{\tt http://www.ctan.org/tex-archive/macros/} \href{http://www.ctan.org/tex-archive/macros/latex/contrib/movie15/}{\tt latex/contrib/movie15}
\end{thebibliography}

\end{document}