1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
|
\section{Projection of images}
This command displays an eps image on a plane defined by an origin and a normal, this plan can be the face
of a predefined object: a cube for example. The eps image must be prepared according to the method
described in the documentation for
`\textsf{pst-anamorphosis'}\footnote{\url{http://melusine.eu.org/syracuse/G/pst-anamorphosis/doc/}}.
The macro includes various options:
\begin{verbatim}
\psImage[file=<filename with extension>,
divisions=10,
normale=nx ny nz,
origine=xO yO zO,
phi=angle,
unitPicture=28.45](x,y)
\end{verbatim}
It focuses the image on the plane at the point defined by the origin, it may be moved to another point
by setting the \emph{optional} values \verb+(x,y)+. You can omit these values
if we do not translate the image into another point than the origin of the plan.
\psframebox[linestyle=none,fillcolor=yellow,fillstyle=solid]{\texttt{divisions=20}}
selects the number of sub-segments for \texttt{lineto} in the image file to display. The higher the number,
the higher the projected image will be faithful to the original. However, the projection takes place on a
plane, the deformation will be small in all cases except one approaches very close to the plane, therefore
a small number of sub-divisions will generally give a correct result and will perform calculations quickly .
\psframebox[linestyle=none,fillcolor=yellow,fillstyle=solid]{\texttt{phi}} can rotate the image of a fixed
value in degrees.
\psframebox[linestyle=none,fillcolor=yellow,fillstyle=solid]{\texttt{unitImage=28.45}}
allows to resize the size of the eps image that is generally points per cm, a larger value will give a smaller image.
If you want to place the image on the front of an object, it will follow the following procedure:
\begin{itemize}
\item determine the number of faces of the object, see the documentation of `\textsf{pst-solides3d} ';
\item give to the normal of the face in question and origin at the center of that face. We can always
shift the image with \verb+(x, y)+.
\end{itemize}
\begin{verbatim}
\begin{pspicture}(-5,-5)(5,5)
\psset{solidmemory}
\psSolid[object=cube,a=8,action=draw,name=OBJECT,linecolor=red]%
\psImage[file=tiger.eps,normal=OBJECT 0 solidnormaleface,
origine=OBJECT 0 solidcentreface,unitPicture=75]
\psImage[file=tiger.eps,normal=OBJECT 1 solidnormaleface,
origine=OBJECT 1 solidcentreface,unitPicture=75]
\psImage[file=tiger.eps,normal=OBJECT 4 solidnormaleface,
origine=OBJECT 4 solidcentreface,unitPicture=75]
\psImage[file=tiger.eps,normal=OBJECT 3 solidnormaleface,
origine=OBJECT 3 solidcentreface,unitPicture=75]
\psImage[file=tiger.eps,normal=OBJECT 2 solidnormaleface,
origine=OBJECT 2 solidcentreface,unitPicture=75]
\end{pspicture}
\end{verbatim}
If the selected plan is not visible to the set position, it may, if desired, force the display of the
image with the \verb+visibility+.
\begin{pspicture}(-10,-4)(6,13)
\psframe(-10,-4)(6,13)
\psset{viewpoint=12 60 20 rtp2xyz,Decran=10,lightsrc=viewpoint}
\psImage[file=images/tiger.eps,normal=1 0 0,origine=0 2 2](0,3)
\psSolid[object=plan,
definition=normalpoint,
args={0.01 2 2 [1 0 0 90]},
action=draw,linecolor=red,
planmarks,
showBase,
base=-2 2 -2 4]
\psImage[file=images/tiger.eps,normal=0 1 0,origine=2 0 2]%(0,0)
\psSolid[object=plan,
definition=normalpoint,
args={2 0.01 2 [0 1 0 180]},
action=draw,linecolor=red,
planmarks,
showBase,
base=-2 2 -2 2]
\psImage[file=images/tiger.eps,normal=0 0 1,origine=2 2 0](2,0)
\psSolid[object=plan,
definition=normalpoint,
args={2 2 0.01 [0 0 1 90]},
action=draw,linecolor=red,
planmarks,
showBase,
base=-2 3 -2 2]%
\psImage[file=images/parrot.eps,normal=1 1 1,origine=5 5 5,unitPicture=75,phi=90]%(0,0)
\psSolid[object=plan,
definition=normalpoint,
args={5 5 5 [1 1 1 180]},
action=draw,linecolor=red,
planmarks,
showBase,
base=-2 2 -2 2]
\axesIIID(0,0,0)(4,5,6)
\end{pspicture}
\psset{unit=1cm}
\psset{viewpoint=20 -120 30 rtp2xyz,Decran=20,unitPicture=15,lightsrc=viewpoint}
\begin{pspicture}[solidmemory](-5,-7.5)(7,6)
\psSolid[object=cube,a=8,name=OBJECT,linecolor=red,fillcolor=white%,numfaces=all,fontsize=100
]
\psset[pst-solides3d]{normal=OBJECT 0 solidnormaleface}
\psImage[file=images/tiger.eps,origine=OBJECT 0 solidcentreface,phi=-90](0,0)
%\psset[pst-solides3d]{normal=OBJECT 1 solidnormaleface}
%\psImage[file=images/tiger.eps,
% origine=OBJECT 1 solidcentreface]
%\psset[pst-solides3d]{normal=OBJECT 4 solidnormaleface}
%\psImage[file=images/tiger.eps,origine=OBJECT 4 solidcentreface]
\psset[pst-solides3d]{normal=OBJECT 3 solidnormaleface}
\psImage[file=images/tiger.eps,origine=OBJECT 3 solidcentreface]
\psset[pst-solides3d]{normal=OBJECT 2 solidnormaleface}
\psImage[file=images/tiger.eps,origine=OBJECT 2 solidcentreface]
\end{pspicture}
\section{A bit of theory}
\begin{minipage}{.45\textwidth}
The image is projected into a plane defined by a normal $\vec{K}$ and origin $O'(x_O,y_O,z_O)$.
The coordinates of points in each image are given in reference to a benchmark plan
$(O,\vec {I},\vec{J})$ whose vectors are determined from $\vec{K}$ as follows:
This vector $\vec{K}$ is defined by $\theta$ and $\varphi$, we calculate these values from the coordinates.
With $(O,\vec{i},\vec{j},\vec{k})$
\begin{align*}
\vec{K}=\left(
\begin{aligned}
\cos\varphi & \cos\theta\\
\cos\varphi & \sin\theta\\
\sin\varphi
\end{aligned}%
\right)
\end{align*}
You must then choose the other two basis vectors
$(\vec{I},\vec{J},\vec{K})$.
I choose to keep $\vec{I}$ at the plane $Oxy$
\end{minipage}
%
\hfill
%
\begin{minipage}{0.45\textwidth}
\begin{pspicture}(-3,-5)(4,5)
\psset{unit=5}
\psset{viewpoint=50 15 20 rtp2xyz ,Decran=35}
\psset{solidmemory}
\pstVerb{/Theta 45 def /Phi 45 def
/cosPhi {Phi cos} bind def
/sinPhi {Phi sin} bind def
/cosTheta {Theta cos} bind def
/sinTheta {Theta sin} bind def
/Kx {cosPhi cosTheta mul} bind def
/Ky {cosPhi sinTheta mul} bind def
/Kz sinPhi def}%
\psSolid[object=plan,definition=normalpoint,args={0 0 0 [Kx Ky Kz 145]},action=draw,linecolor=blue,base=-1 1 -1 0]
\psSolid[object=plan,definition=normalpoint,args={0 0 0 [0 0 1]},action=draw**,linecolor=red,base=-1 1 -1 1]
\axesIIID(0,0,0)(1.25,1.25,1.25)
\psSolid[object=plan,definition=normalpoint,args={0 0 0 [0 0 1]},action=none,linecolor=red,name=Oxy,base=-1 1 -1 1]
\psset{plan=Oxy}%
\psProjection[object=cercle,resolution=360,args=0 0 1,linecolor=gray,linestyle=dashed,range=0 360]
\psProjection[object=texte,text=q,fontsize=5,PSfont=Symbol,isolatin=false,phi=90](.25,0.125)%
\psSolid[object=plan,
definition=normalpoint,
args={0 0 0 [1 -1 0]},
action=none,linecolor=red,
name=Oxz,
base=-1 1 -1 1
]%
\psset{plan=Oxz}%
\psProjection[object=cercle,resolution=360,
args=0 0 1,linecolor=gray,
linestyle=dashed,
range=0 90]%
\psSolid[object=vecteur,
definition={[.02 .1]},
linecolor={[cmyk]{1,0,1,0.5}},
args=Kx Ky Kz](0,0,0)
\psSolid[object=plan,
definition=normalpoint,
args={0 0 0 [Kx Ky Kz 145]},
action=draw,linecolor=blue,
base=-1 1 0 1,name=projection]%
\psProjection[object=texte,plan=projection,text=plan de projection,fontsize=4](0,0.85)%
\psSolid[object=vecteur,
definition={[.02 .1]},
linecolor=red,
args=sinTheta neg cosTheta 0 ](0,0,0)%
\psSolid[object=plan,
definition=normalpoint,
args={0 0 0 [sinTheta cosTheta neg 0]},
action=none,linecolor=blue,
base=-1 1 -1 1,name=verticale]%
\psProjection[object=texte,text=f,plan=verticale,PSfont=Symbol,isolatin=false,fontsize=4](0.5,0.2)%
\psSolid[object=vecteur,
definition={[.02 .1]},
linecolor=blue,
args=cosTheta neg sinPhi mul sinTheta neg sinTheta mul cosPhi ](0,0,0)%
\psPoint(Kx, Ky,Kz){K}
\psPoint(Kx, Ky,0){XY}
\psPoint(Kx,0,0){X}
\psPoint(0, Ky,0){Y}
\psPoint(0,0,0){O}
\psPoint(cosTheta neg sinPhi mul, sinTheta neg sinTheta mul, cosPhi){J}
\psPoint(sinTheta neg, cosTheta, 0){I}
\psline(O)(XY)
\psline[linestyle=dashed](XY)(K)
\psline(X)(XY)(Y)
\pstVerb{/xTube {t Cos 0.4 mul} def /yTube {t Sin 0.4 mul} def /zTube {0} def}%
\defFunction{F}(t){xTube}{yTube}{zTube}%
% choix de deux points très voisins sur le tube
\pstVerb{/t1 0.22 pi mul def /t2 0.25 pi mul def }%
\psPoint(/t t1 def xTube ,yTube,zTube){A}
\psPoint(/t t2 def xTube ,yTube,zTube){B}
\psSolid[object=courbe,
r=0,
function=F,
range=0 0.25 pi mul,
fillcolor=red]
\psline[linecolor=red,arrowsize=0.03]{->}(A)(B)
%
\pstVerb{/xT {t Cos 0.4 mul cosPhi mul} def /yT {t Cos 0.4 mul cosPhi mul} def /zT {t Sin 0.4 mul} def}%
\defFunction{F}(t){xT}{yT}{zT}%
% choix de deux points très voisins sur le tube
\pstVerb{/t1 0.22 pi mul def /t2 0.25 pi mul def }%
\psPoint(/t t1 def xT ,yT,zT){A}
\psPoint(/t t2 def xT ,yT,zT){B}
\psSolid[object=courbe,
r=0,
function=F,
range=0 0.25 pi mul,
fillcolor={[rgb]{0.3,0.18,0.18}}]
\psline[linecolor={[rgb]{0.3,0.18,0.18}},arrowsize=0.03]{->}(A)(B)
\uput[u](J){\blue$\overrightarrow{J}$}
\uput[ur](K){\color[cmyk]{1,0,1,0.5}{$\overrightarrow{K}$}}
\uput[r](I){\red$\overrightarrow{I}$} %$
\end{pspicture}
\end{minipage}
\endinput
Seen from above, in the plane $Oxy$:
\begin{minipage}{.4\textwidth}
\[
\overrightarrow{I}=\left(%
\begin{aligned}
-\sin\theta\\
\hphantom{-}\cos\theta\\
0
\end{aligned}
\right)
\]
\end{minipage}
\hfill
\begin{minipage}{0.5\textwidth}
\begin{pspicture}(-3,-4)(4,2)
\psline{->}(4,0)\uput[0](4,0){$y$}
\psline[linestyle=dashed](0,2)
\psline{->}(0,-3.5)\uput[270](0,-3.5){$x$}
\uput[135](0,0){O}
{\psset{linewidth=2\pslinewidth}
\psline{->}(0,-2)\uput[0](0,-2){$\overrightarrow{i}$}
\psline{->}(2,0)\uput[90](2,0){$\overrightarrow{j}$}
\psline[linestyle=dotted](3;-30)\uput[0](3;-30){$x'$}
\psline[linecolor=red,doubleline=true]{->}(2;60)\uput[0](2;60){$\red \overrightarrow{I}$}
}
\psarc{->}(0,0){1.5}{-90}{-30}\uput[0](1.6;-60){$\theta$}
\end{pspicture}
\end{minipage}
Il reste à trouver $\overrightarrow{J}$ pour que la base
($\overrightarrow{I},\overrightarrow{J},\overrightarrow{K}$) soit directe :
$\overrightarrow{J}=\overrightarrow{K}\times\overrightarrow{I}$
\[
\overrightarrow{J}=\left(\begin{aligned}
\cos\varphi\cos\theta\\
\cos\varphi\sin\theta\\
\sin\varphi
\end{aligned}
\right)
\times
\left(
\begin{aligned}{c}
-\sin\theta\\
\hphantom{-}\cos\theta\\
0
\end{aligned}
\right)
=
\left(\begin{aligned}
-\sin\varphi\cos\theta\\
-\sin\varphi\sin\theta\\
\cos\varphi
\end{aligned}
\right)
\]
The transformation matrice:
\[
A=\left(%
\begin{array}{ccc}
-\sin\theta&-\sin\varphi\cos\theta&\cos\varphi\cos\theta\\
\hphantom{-}\cos\theta&-\sin\varphi\sin\theta&\cos\varphi\sin\theta\\
0&\cos\varphi&\sin\varphi
\end{array}
\right)
\]
to determine the coordinates ($ x, y, z $) of a point $M$ if one knows its
coordinates $(X, Y, Z)$ in the reference
$(O,\overrightarrow{I},\overrightarrow{J},\overrightarrow{K})$.
\[
\left(\begin{aligned}{c}
x\\
y\\
z
\end{aligned}
\right)
=\left(%
\begin{array}{ccc}
-\sin\theta&-\sin\varphi\cos\theta&\cos\varphi\cos\theta\\
\hphantom{-}\cos\theta&-\sin\varphi\sin\theta&\cos\varphi\sin\theta\\
0&\cos\varphi&\sin\varphi
\end{array}
\right)
\left(\begin{aligned}
X\\
Y\\
Z
\end{aligned}
\right)
\]
\[
\left\lbrace\begin{array}{cccclcl}
x&=&-X\sin\theta&-&Y\sin\varphi\cos\theta&+&Z\cos\varphi\cos\theta\\
y&=&\hphantom{-}X\cos\theta&-&Y\sin\varphi\sin\theta&+&Z\cos\varphi\sin\theta\\
z&=&0&+&Y\cos\varphi&+&Z\sin\varphi
\end{array}
\right.
\]
If we consider a point on the plane in the plane $XOY$
\[
\left\lbrace\begin{array}{ccccl}
x&=&-X\sin\theta&-&Y\sin\varphi\cos\theta\\
y&=&\hphantom{-}X\cos\theta&-&Y\sin\varphi\sin\theta\\
z&=&0&+&Y\cos\varphi
\end{array}
\right.
\]
Et si maintenant, ce repère $OXYZ$ est translaté en un point
$O'(x_{O'},y_{O'},z_{O'})$
\[
\left\lbrace\begin{array}{cccclcl}
x&=&-X\sin\theta&-&Y\sin\varphi\cos\theta&+&x_{O'}\\
y&=&\hphantom{-}X\cos\theta&-&Y\sin\varphi\sin\theta&+&y_{O'}\\
z&=&0&+&Y\cos\varphi&+&z_{O'}
\end{array}
\right.
\]
Remarks:
\begin{itemize}
\item $\overrightarrow{K}$ since we can obviously choose another associated base $ (\overrightarrow {I},
\overrightarrow {J}) $ by turning the previously calculated around $ \overrightarrow {K} $ of the selected angle.
For this first draft order I preferred to rotate the image, which probably has the disadvantage lengthen calculations \ldots\
\item Jean-Paul Vigneault made a different choice for the base $(\overrightarrow{I}, \overrightarrow{J} $,
he calculated $ \overrightarrow {J}$ from $\overrightarrow {K} $ by relation:
\[
\overrightarrow{J}=\overrightarrow{K}\wedge \left(%
\begin{array}{c}
1\\
0\\
0
\end{array}
\right)
\]
$\overrightarrow{I}=\overrightarrow{J}\wedge\overrightarrow{K}$.
We can bring the system defined in `\textsf{pst-solides3d}' to the one I chose by setting the \textsf{phi}
of `\textsf{pst-solides3d}' (which allows you to turn the mark ) the proper value \ldots\ to calculate.
\end{itemize}
|