1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
|
\def\grille{% quadrillage du plan Oxy
\psPoint(-5,-5,0){S1}
\psPoint(-5,5,0){S2}
\psPoint(5,5,0){S3}
\psPoint(5,-5,0){S4}
\pspolygon*[linecolor=gray!20](S1)(S2)(S3)(S4)
\multido{\ix=-5+1}{11}{%
\psPoint(\ix\space,-5,0){A}
\psPoint(\ix\space,5,0){B}
\psline(A)(B)}
\multido{\iy=-5+1}{11}{%
\psPoint(-5,\iy\space,0){A}
\psPoint(5,\iy\space,0){B}
\psline(A)(B)}
\psPoint(0,0,0){O}
\psPoint(5,0,0){X}
\psPoint(0,5,0){Y}
\psPoint(0,0,8){Z}
\psline[arrowsize=0.3,arrowinset=0.2,linecolor=blue]{->}(O)(X)
\psline[arrowsize=0.3,arrowinset=0.2,linecolor=blue]{->}(O)(Y)
\psline[arrowsize=0.3,arrowinset=0.2,linecolor=blue]{->}(O)(Z)
\uput[r](X){\textcolor{blue}{$x$}}\uput[u](Y){\textcolor{blue}{$y$}}%
\uput[r](Z){\textcolor{blue}{$z$}}\uput[u](O){\textcolor{blue}{$O$}}}
\section{Fusing with \textit{jps code}}
We can also \Index{fuse solids} by passing the code directly using
\textit{jps code}. The calculation of the hidden parts is carried
out by the PostScript routines of the \texttt{solides.pro} file,
but the lines of code are ``encapsulated'' within a
\texttt{pspicture} environment thanks to the command
\verb+\codejps{ps code}+.
\subsection{Using \textit{jps code}}
\subsubsection{The choice of object}
\begin{itemize}
\item \texttt{[section] n newanneau}: choice of a cylindrical ring defined by
the coordinates of the vertices of its intersection with the plane $Oyz$.
\item \texttt{2 1.5 6 [4 16] newcylindre}: choice of a vertical cylinder
with the following parameters:
\begin{itemize}
\item \texttt{z0=2}: the position of the base centre on the axis $Oz$;
\item \texttt{radius=1.5}: radius of the cylinder;
\item \texttt{z1=6}: the position of the top centre on the
axis $Oz$;
\item \texttt{[4 16]}: the cylinder is sliced horizontally into 4 pieces and
vertically into 16 sectors.
\end{itemize}
\end{itemize}
\subsubsection{The transformations}
\begin{itemize}
\item \texttt{\{-1 2 5 translatepoint3d\} solidtransform}: the object
previously chosen is translated to the point with the
coordinates $(x=-1,y=2,z=5)$.
\item \texttt{\{90 0 45 rotateOpoint3d\} solidtransform}: the object
previously chosen is rotated around the axes $(Ox,Oy,Oz)$, in
this order: rotation of 90$^\mathsf{o}$ about $(Ox)$ followed
by a rotation of 45$^\mathsf{o}$ about $(Oz)$.
\end{itemize}
\subsubsection{The choice of object colour}
\begin{itemize}
\item dup (yellow) outputcolors: a yellow object illuminated in
white light.
\end{itemize}
\subsubsection{Fusing objects}
\begin{itemize}
\item The \Index{fusion} is finally made with the instruction \texttt{solidfuz}.
\end{itemize}
\subsubsection{Designing objects}
\begin{itemize}
\item There are three drawing options:
\begin{itemize}
\item \texttt{drawsolid}: only draw edges; hidden edges are drawn dashed;
\item \texttt{drawsolid*}: draw and fill solids in their coded order (not
a very interesting option at first glance); hidden edges are drawn dashed;
\item \texttt{drawsolid**}: draw and fill solids with the
painting algorithm; only those parts seen by the observer are
drawn.
\end{itemize}
\end{itemize}
\begin{center}
\psset{lightsrc=50 -50 50,viewpoint=40 16 32 rtp2xyz,Decran=40}
\psset{unit=0.4}
\begin{minipage}{0.3\linewidth}
\begin{pspicture}(-6,-5)(6,7)
\psframe*[linecolor=gray!40](-6,-5)(6,7)
\codejps{
% solide 1
/tour {
-6 1.5 6 [4 16] newcylindre
dup (jaune) outputcolors
} def
% solide 2
/anneau {
[4 -1 4 1 3 1 3 -1] 24 newanneau
{0 0 -1 translatepoint3d} solidtransform
dup (orange) outputcolors
} def
% fusion
tour anneau solidfuz
drawsolid}
\end{pspicture}
\end{minipage}
\hfill
\begin{minipage}{0.3\linewidth}
\begin{pspicture}(-6,-5)(6,7)
\psframe*[linecolor=gray!40](-6,-5)(6,7)
\codejps{
% solide 1
/tour {
-6 1.5 6 [4 16] newcylindre
dup (jaune) outputcolors
} def
% solide 2
/anneau {
[4 -1 4 1 3 1 3 -1] 24 newanneau
{0 0 -1 translatepoint3d} solidtransform
dup (orange) outputcolors
} def
% fusion
tour anneau solidfuz
drawsolid*}
\end{pspicture}
\end{minipage}
\hfill
\begin{minipage}{0.3\linewidth}
\begin{pspicture}(-6,-5)(6,7)
\psframe*[linecolor=gray!40](-6,-5)(6,7)
\codejps{
% solide 1
/tour {
-6 1.5 6 [4 16] newcylindre
dup (jaune) outputcolors
} def
% solide 2
/anneau {
[4 -1 4 1 3 1 3 -1] 24 newanneau
{0 0 -1 translatepoint3d} solidtransform
dup (orange) outputcolors
} def
% fusion
tour anneau solidfuz
drawsolid**}
\psPoint(0,0,8){Z}
\psPoint(0,0,6){Z'}
\psline[arrowsize=0.3,arrowinset=0.2]{->}(Z')(Z)
\uput[u](Z){$z$}
\end{pspicture}
\end{minipage}
\end{center}
\begin{verbatim}
\psset{lightsrc=50 -50 50,viewpoint=50 20 50 rtp2xyz,Decran=50}
\begin{pspicture}(-6,-2)(6,8)
\psframe(-6,-2)(6,8)
\codejps{
% solide 1
/tour{
-6 1.5 6 [4 16] newcylindre
dup (jaune) outputcolors
} def
% solide 2
/anneau{
[4 -1 4 1 3 1 3 -1] 24 newanneau
{0 0 -1 translatepoint3d} solidtransform
dup (orange) outputcolors
} def
% fusion
tour anneau solidfuz
drawsolid**}
\end{pspicture}
\end{verbatim}
\newpage
\subsection{A \Index{chloride ion}}
\begin{LTXexample}[width=6cm]
\begin{pspicture}(-3,-4)(3,4)
\psset{lightsrc=100 -50 -10,lightintensity=3,viewpoint=200 20 10 rtp2xyz,Decran=20}
{\psset{linewidth=0.5\pslinewidth}
\codejps{/Cl {9.02 [18 16] newsphere
{-90 0 0 rotateOpoint3d} solidtransform
dup (Green) outputcolors} def
/Cl1 { Cl {10.25 10.25 10.25 translatepoint3d} solidtransform } def
/Cl2 { Cl {10.25 -10.25 10.25 translatepoint3d} solidtransform } def
/Cl3 { Cl {-10.25 -10.25 10.25 translatepoint3d} solidtransform } def
/Cl4 { Cl {-10.25 10.25 10.25 translatepoint3d} solidtransform } def
/Cl5 { Cl {10.25 10.25 -10.25 translatepoint3d} solidtransform } def
/Cl6 { Cl {10.25 -10.25 -10.25 translatepoint3d} solidtransform } def
/Cl7 { Cl {-10.25 -10.25 -10.25 translatepoint3d} solidtransform } def
/Cl8 { Cl {-10.25 10.25 -10.25 translatepoint3d} solidtransform } def
/Cs {8.38 [18 16] newsphere
dup (White) outputcolors} def
/Cl12{ Cl1 Cl2 solidfuz} def
/Cl123{ Cl12 Cl3 solidfuz} def
/Cl1234{ Cl123 Cl4 solidfuz} def
/Cl12345{ Cl1234 Cl5 solidfuz} def
/Cl123456{ Cl12345 Cl6 solidfuz} def
/Cl1234567{ Cl123456 Cl7 solidfuz} def
/Cl12345678{ Cl1234567 Cl8 solidfuz} def
/C_Cs { Cl12345678 Cs solidfuz} def
C_Cs drawsolid**}}%
\psPoint(0,0,0){P}
\psPoint(10.25,10.25,10.25){Cl1}
\psPoint(10.25,-10.25,10.25){Cl2}
\psPoint(-10.25,-10.25,10.25){Cl3}
\psPoint(-10.25,10.25,10.25){Cl4}
\psPoint(10.25,10.25,-10.25){Cl5}
\psPoint(10.25,-10.25,-10.25){Cl6}
\psPoint(-10.25,-10.25,-10.25){Cl7}
\psPoint(-10.25,10.25,-10.25){Cl8}
\pspolygon[linestyle=dashed](Cl1)(Cl2)(Cl3)(Cl4)
\pspolygon[linestyle=dashed](Cl5)(Cl6)(Cl7)(Cl8)
\psline[linestyle=dashed](Cl2)(Cl6)
\psline[linestyle=dashed](Cl3)(Cl7)
\psline[linestyle=dashed](Cl1)(Cl5)
\psline[linestyle=dashed](Cl4)(Cl8)
\pcline[offset=0.5]{<->}(Cl2)(Cl1)
\aput{:U}{a}
\pcline[offset=0.5]{<->}(Cl6)(Cl2)
\aput{:U}{a}
\end{pspicture}
\end{LTXexample}
We define the chloride ion $\mathrm{Cl^-}$:
\begin{verbatim}
/Cl {9.02 [12 8] newsphere
{-90 0 0 rotateOpoint3d} solidtransform
dup (Green) outputcolors} def
\end{verbatim}
which we shift to each vertex of a cube:
\begin{verbatim}
/Cl1 { Cl {10.25 10.25 10.25 translatepoint3d} solidtransform } def
/Cl2 { Cl {10.25 -10.25 10.25 translatepoint3d} solidtransform } def
/Cl3 { Cl {-10.25 -10.25 10.25 translatepoint3d} solidtransform } def
/Cl4 { Cl {-10.25 10.25 10.25 translatepoint3d} solidtransform } def
/Cl5 { Cl {10.25 10.25 -10.25 translatepoint3d} solidtransform } def
/Cl6 { Cl {10.25 -10.25 -10.25 translatepoint3d} solidtransform } def
/Cl7 { Cl {-10.25 -10.25 -10.25 translatepoint3d} solidtransform } def
/Cl8 { Cl {-10.25 10.25 -10.25 translatepoint3d} solidtransform } def
\end{verbatim}
Then a caesium ion $\mathrm{Cs^+}$ is placed in the center:
\begin{verbatim}
/Cs {8.38 [12 8] newsphere
dup (White) outputcolors} def
\end{verbatim}
Finally we fuse the separate spheres in pairs.
\vfill
\subsection{A prototype of a \Index{vehicle}}
\begin{center}
\psset{lightsrc=100 0 100,viewpoint=25 10 10,Decran=30}
\begin{pspicture}(-6,-4)(6,8)
\pstVerb{/Pneu {
/m {90 4 div} bind def
/Scos {m cos 2 m mul cos add 3 m mul cos add} bind def
/Z0 {h 4 div} bind def
/c {Z0 Scos div} bind def
/Z1 {Z0 c m cos mul add} bind def
/Z2 {Z1 c m 2 mul cos mul add} bind def
/R1 {R c m sin mul sub} bind def
/R2 {R1 c m 2 mul sin mul sub} bind def
/R3 {R2 c m 3 mul sin mul sub} bind def
R h 4 div neg % 1
R h 4 div % 2
R1 Z1 % 3
R2 Z2 % 4
R3 h 2 div % 5
r h 2 div % 6
r h 2 div neg % 7
R3 h 2 div neg % 8
R2 Z2 neg % 9
R1 Z1 neg % 10
} def}%
\grille
\codejps{
/roue12 {
% solide 1
/R 2 def /r 1 def /h 1 def
[Pneu] 36 newanneau
{90 0 90 rotateOpoint3d} solidtransform
{3 4 2 translatepoint3d} solidtransform
dup (White) outputcolors
% solide 2
[Pneu] 36 newanneau
{90 0 90 rotateOpoint3d} solidtransform
{-3 4 2 translatepoint3d} solidtransform
dup (White) outputcolors
% fusion
solidfuz } def
/axe12{
0 0.1 6 [4 16] newcylindre
{90 0 90 rotateOpoint3d} solidtransform
{-3 4 2 translatepoint3d} solidtransform
dup (White) outputcolors
} def
/roue12axes {
roue12 axe12 solidfuz } def
/roue34 {
% solide 3
/R 1.5 def /r 1 def /h 1 def
[Pneu] 36 newanneau
{90 0 110 rotateOpoint3d} solidtransform
{3 -4 1.5 translatepoint3d} solidtransform
dup (White) outputcolors
% solide 4
[Pneu] 36 newanneau
{90 0 110 rotateOpoint3d} solidtransform
{-3 -4 1.5 translatepoint3d} solidtransform
dup (White) outputcolors
% fusion
solidfuz } def
/axe34{
0 0.1 6 [16 16] newcylindre
{90 0 90 rotateOpoint3d} solidtransform
{-3 -4 1.5 translatepoint3d} solidtransform
dup (White) outputcolors
} def
/roue34axes34 {
roue34 axe34 solidfuz } def
/roues {roue34axes34 roue12axes solidfuz} def
/chassis {
0 1 8 [4 16] newcylindre
{100 0 0 rotateOpoint3d} solidtransform
{0 4 2.5 translatepoint3d} solidtransform
dup (White) outputcolors
} def
roues chassis solidfuz
drawsolid**}
\psPoint(0,0,2.7){Z'}
\psline[arrowsize=0.3,arrowinset=0.2,linecolor=blue]{->}(Z')(Z)
\end{pspicture}
\end{center}
We have to operate in several steps to fuse the solids in pairs:
\begin{itemize}
\item We first fuse the two front wheels \texttt{roue12}:
\begin{verbatim}
/roue12 {
% solide 1
/R 2 def /r 1 def /h 1 def
[Pneu] 36 newanneau
{90 0 90 rotateOpoint3d} solidtransform
{3 4 2 translatepoint3d} solidtransform
dup (White) outputcolors
% solide 2
[Pneu] 36 newanneau
{90 0 90 rotateOpoint3d} solidtransform
{-3 4 2 translatepoint3d} solidtransform
dup (White) outputcolors
% fusion
solidfuz } def
\end{verbatim}
\item Then the two wheels and their axis:
\begin{verbatim}
/axe12{
0 0.1 6 [4 16] newcylindre
{90 0 90 rotateOpoint3d} solidtransform
{-3 4 2 translatepoint3d} solidtransform
dup (White) outputcolors
} def
/roue12axes {
roue12 axe12 solidfuz } def
\end{verbatim}
\item After that the rear wheels and their axis:
\begin{verbatim}
/roue34 {
% solide 3
/R 1.5 def /r 1 def /h 1 def
[Pneu] 36 newanneau
{90 0 110 rotateOpoint3d} solidtransform
{3 -4 1.5 translatepoint3d} solidtransform
dup (White) outputcolors
% solide 4
[Pneu] 36 newanneau
{90 0 110 rotateOpoint3d} solidtransform
{-3 -4 1.5 translatepoint3d} solidtransform
dup (White) outputcolors
% fusion
solidfuz } def
/axe34{
0 0.1 6 [16 16] newcylindre
{90 0 90 rotateOpoint3d} solidtransform
{-3 -4 1.5 translatepoint3d} solidtransform
dup (White) outputcolors
} def
/roue34axes34 {
roue34 axe34 solidfuz } def
\end{verbatim}
\item Then fuse the two wheel assemblies:
\begin{verbatim}
/roues {roue34axes34 roue12axes solidfuz} def
\end{verbatim}
\item The final step is to fuse the previously generated solid with
the chassis:
\begin{verbatim}
/chassis {
0 1 8 [4 16] newcylindre
{100 0 0 rotateOpoint3d} solidtransform
{0 4 2.5 translatepoint3d} solidtransform
dup (White) outputcolors
} def
roues chassis solidfuz
drawsolid**}
\end{verbatim}
\end{itemize}
\subsection{A \Index{wheel} -- or a space station}
\begin{center}
\begin{pspicture}(-6,-5)(6,6)
\psset{lightsrc=50 -50 50,viewpoint=40 50 60,Decran=60,linewidth=0.5\pslinewidth}
%\psframe*[linecolor=black](-6,-5)(6,5)
\codejps{
/rayon0 {
1 0.2 6 [4 16] newcylindre
{90 0 0 rotateOpoint3d} solidtransform
dup (White) outputcolors
} def
36 36 360 {
/angle exch def
/rayon1 {
1 0.2 6 [4 16] newcylindre
{90 0 angle rotateOpoint3d} solidtransform
dup (White) outputcolors
} def
/rayons {rayon0 rayon1 solidfuz} def
/rayon0 rayons def
} for
/moyeu { -2 1 2 [4 10] newcylindre dup (jaune) outputcolors} def
/rayonsmoyeu {rayons moyeu solidfuz} def
/pneu {2 7 [18 36] newtore dup (White) outputcolors} def
/ROUE {pneu rayonsmoyeu solidfuz} def
ROUE drawsolid**}
\end{pspicture}
\end{center}
We define the first spoke:
\begin{verbatim}
/rayon0 {
1 0.2 6 [4 16] newcylindre
{90 0 0 rotateOpoint3d} solidtransform
dup (White) outputcolors
} def
\end{verbatim}
Then, with a loop, we fuse all the spokes of the wheel:
\begin{verbatim}
36 36 360 {
/angle exch def
/rayon1 {
1 0.2 6 [4 16] newcylindre
{90 0 angle rotateOpoint3d} solidtransform
dup (White) outputcolors
} def
/rayons {rayon0 rayon1 solidfuz} def
/rayon0 rayons def
} for
\end{verbatim}
After that, we draw the hub and the tyre of the wheel, and finally
fuse all of them:
\begin{verbatim}
/moyeu { -0.5 1 0.5 [4 10] newcylindre dup (White) outputcolors} def
/rayonsmoyeu {rayons moyeu solidfuz} def
/pneu {2 7 [18 36] newtore dup (jaune) outputcolors} def
/ROUE {pneu rayonsmoyeu solidfuz} def
ROUE drawsolid**
\end{verbatim}
\subsection{Intersection of two cylinders}
\begin{LTXexample}[width=8cm]
\begin{pspicture}(-4,-3)(6,3)
\psset{lightsrc=50 -50 50,viewpoint=100 -30
40,Decran=100,linewidth=0.5\pslinewidth, unit=0.5}
\codejps{
/cylindre1 {
-6 2 6 [36 36] newcylindrecreux %newcylindre
{90 0 0 rotateOpoint3d} solidtransform
dup (Yellow) (White) inoutputcolors
} def
/cylindre2 {
-6 2 6 [36 36] newcylindrecreux %newcylindre
{90 0 90 rotateOpoint3d} solidtransform
dup (Yellow) (White) inoutputcolors
} def
/UnionCylindres {cylindre1 cylindre2 solidfuz} def
UnionCylindres drawsolid**}
\end{pspicture}
\end{LTXexample}
\subsection{Intersection between a sphere and a cylinder}
This time we draw the curve of intersection using
\verb+\psSolid[object=courbe]+.
\begin{LTXexample}[width=8cm]
\psset{unit=0.5,lightsrc=50 -50 50,viewpoint=100 0 0 rtp2xyz,Decran=110,linewidth=0.5\pslinewidth}
\begin{pspicture}(-7,-6)(5,6)
\defFunction{F}(t){t cos dup mul 5 mul}{t cos t sin mul 5 mul}{t sin 5 mul}
\codejps{%
/cylindre1 {
-5 2.5 5 [36 36] newcylindre
{2.5 0 0 translatepoint3d} solidtransform
dup (White) outputcolors
} def
/sphere1 {
5 [36 72] newsphere
dup (White) outputcolors
} def
/CS {cylindre1 sphere1 solidfuz} def
CS drawsolid**}
\psPoint(0,0,0){O}
\psSolid[object=courbe,r=0,
function=F,
range=0 360,
linecolor=red,linewidth=4\pslinewidth]
\end{pspicture}
\end{LTXexample}
\subsection{Two linked \Index{rings}}
\begin{LTXexample}[width=8cm]
\begin{pspicture}(-5,-4)(3,3)
\psset{lightsrc=50 50 50,viewpoint=40 50 60,Decran=30,unit=0.85}
\codejps{
/anneau1 {1 7 [12 36] newtore
{0 0 0 translatepoint3d} solidtransform
dup (Yellow) outputcolors} def
/anneau2 {1 7 [12 36] newtore
{90 0 0 rotateOpoint3d} solidtransform
{7 0 0 translatepoint3d} solidtransform
dup (White) outputcolors} def
/collier {anneau1 anneau2 solidfuz} def
collier drawsolid**}
\end{pspicture}
\end{LTXexample}
\subsection{The \Index{methane molecule}: wooden model}
\begin{LTXexample}[width=8cm]
\begin{pspicture}(-4.5,-4)(3.2,5)
\psset{lightsrc=50 50 10,lightintensity=2,viewpoint=100 50 20 rtp2xyz,
Decran=30}
\psset{linecolor={[cmyk]{0,0.72,1,0.45}},linewidth=0.5\pslinewidth,
unit=1}
%\psframe[fillstyle=solid,fillcolor=green!20](-4,-4)(3.2,5)
\pstVerb{/hetre {0.764 0.6 0.204 setrgbcolor} def
/chene {0.568 0.427 0.086 setrgbcolor} def
/bois {0.956 0.921 0.65 setrgbcolor} def
}%
\codejps{
/H1 {
2 [18 16] newsphere
{-90 0 0 rotateOpoint3d} solidtransform
{0 10.93 0 translatepoint3d} solidtransform
dup (hetre) outputcolors} def
/L1 {
0 0.25 10 [12 10] newcylindre
{-90 0 0 rotateOpoint3d} solidtransform
dup (bois) outputcolors
} def
/HL1{ H1 L1 solidfuz} def
/HL2 { HL1 {0 0 -109.5 rotateOpoint3d} solidtransform } def
/HL3 { HL2 {0 -120 0 rotateOpoint3d} solidtransform } def
/HL4 { HL2 {0 120 0 rotateOpoint3d} solidtransform } def
/C {3 [18 16] newsphere
{90 0 0 rotateOpoint3d} solidtransform
dup (chene) outputcolors} def
/HL12 { HL1 HL2 solidfuz} def
/HL123 { HL12 HL3 solidfuz} def
/HL1234 { HL123 HL4 solidfuz} def
/methane { HL1234 C solidfuz} def
methane drawsolid**}
\end{pspicture}
\end{LTXexample}
\subsection{The \Index{thiosulphate ion}}
\begin{center}
\begin{pspicture}(-4,-3)(4.5,5.5)
\psset{lightsrc=100 10 -20,lightintensity=3,viewpoint=200 30
20 rtp2xyz,Decran=40}
%\psframe(-4,-3)(4.5,5.5)
{\psset{linewidth=0.5\pslinewidth}
\codejps{
/Soufre1 {3.56 [20 16] newsphere
dup (Yellow) outputcolors} def
/Soufre2 {3.56 [20 16] newsphere
{0 0.000 20.10 translatepoint3d} solidtransform
dup (Yellow) outputcolors} def
% Liaison simple
/LiaisonR {
7.5 0.5 15 [10 10] newcylindre
dup (Red) outputcolors
} def
/LiaisonY {
0 0.5 7.5 [10 10] newcylindre
dup (Yellow) outputcolors
} def
% fin Liaison simple
/Liaison{LiaisonR LiaisonY solidfuz} def
/Ox {2.17 [20 16] newsphere
{0 0 15 translatepoint3d} solidtransform
dup (Red) outputcolors} def
/LO { Liaison Ox solidfuz} def
/LO1 { LO {0 -109.5 0 rotateOpoint3d} solidtransform } def
/LOx1 { LO1 {0 0 120 rotateOpoint3d} solidtransform } def
% fin liaison simple S-O
% Liaison double S=O
/LiaisonD1 {Liaison {-0.75 0 0 translatepoint3d} solidtransform} def
/LiaisonD2 {Liaison {0.75 0 0 translatepoint3d} solidtransform} def
/LiaisonDD { LiaisonD1 LiaisonD2 solidfuz} def
/LiaisonDOx {LiaisonDD Ox solidfuz} def
/LiaisonDOx1 {LiaisonDOx {0 -109.5 0 rotateOpoint3d} solidtransform } def
/LiaisonDOx2 {LiaisonDOx1 {0 0 -120 rotateOpoint3d} solidtransform } def
/LO12 { LiaisonDOx1 LiaisonDOx2 solidfuz} def
/LO123 {LO12 LOx1 solidfuz} def
% liaison simple S-S
/L4 { 0 0.5 20.10 [16 10] newcylindre
dup (Yellow) outputcolors
} def
/S1L4{ Soufre1 L4 solidfuz} def
/S1S2L4{ S1L4 Soufre2 solidfuz} def
/S2O3 { S1S2L4 LO123 solidfuz} def
S2O3 drawsolid**}
\axesIIID(0,0,0)(25,20,25)}
\psPoint(0,0,20.1){S2}
\psPoint(-14.14,0,-5){O1}
\psPoint(7.07,-12.24,-5 ){O2}
\psPoint(7.07,12.24,-5 ){O3}
\pcline[linestyle=dotted]{<->}(O2)(O)
\aput{:U}{15 pm}
\pcline[linestyle=dotted]{<->}(O)(S2)
\aput{:U}{\small 20,1 pm}
\pcline[linestyle=dotted]{<->}(O2)(O3)
\lput*{:U}{\small 24,5 pm}
\pcline[linestyle=dotted]{<->}(O2)(S2)
\lput*{:U}{\small 28,8 pm}
\pstMarkAngle[arrows=<->,MarkAngleRadius=0.8,linestyle=dotted]{O2}{O}{O3}{\footnotesize 109,4$^{\mathrm{o}}$}
\pstMarkAngle[arrows=<->,MarkAngleRadius=0.8,linestyle=dotted]{O1}{O}{S2}{\footnotesize 109,5$^{\mathrm{o}}$}
\rput(0,-2.5){$\mathrm{S_2^{\phantom{2}}O_3^{2-}}$}
\end{pspicture}
\end{center}
We first define the two sulphur atoms and place them on the $Oz$
axis. $\mathrm{S_1}$ is placed at the origin $O$.
\begin{verbatim}
\codejps{
/Soufre1 {3.56 [20 16] newsphere
dup (Yellow) outputcolors} def
/Soufre2 {3.56 [20 16] newsphere
{0 0.000 20.10 translatepoint3d} solidtransform
dup (Yellow) outputcolors} def
\end{verbatim}
Then the single bond \textsf{S-O} using the following convention:
half red---the half connected to \textsf{O}, and half yellow---the half connected to \textsf{S}.
\begin{verbatim}
/LiaisonR {
7.5 0.5 15 [10 10] newcylindre
dup (Red) outputcolors
} def
/LiaisonY {
0 0.5 7.5 [10 10] newcylindre
dup (Yellow) outputcolors
} def
/Liaison{LiaisonR LiaisonY solidfuz} def
\end{verbatim}
The oxygen atom, its bond, and the setting of the combined unit:
\begin{verbatim}
/Ox {2.17 [20 16] newsphere
{0 0 15 translatepoint3d} solidtransform
dup (Red) outputcolors} def
/LO { Liaison Ox solidfuz} def
/LO1 { LO {0 -109.5 0 rotateOpoint3d} solidtransform } def
/LOx1 { LO1 {0 0 120 rotateOpoint3d} solidtransform } def
% fin liaison simple S-O
\end{verbatim}
For the double bond \textsf{S=O}, we take the single bond above
and duplicate it with shifts of 0.75~cm along the $Ox$ axis.
\begin{verbatim}
% Liaison double S=O
/LiaisonD1 {Liaison {-0.75 0 0 translatepoint3d} solidtransform} def
/LiaisonD2 {Liaison {0.75 0 0 translatepoint3d} solidtransform} def
/LiaisonDD { LiaisonD1 LiaisonD2 solidfuz} def
\end{verbatim}
Connecting it to the \textsf{O} atom:
\begin{verbatim}
/LiaisonDOx {LiaisonDD Ox solidfuz} def
\end{verbatim}
and with two successive rotations we position the two bonds
\textsf{=O}:
\begin{verbatim}
/LiaisonDOx1 {LiaisonDOx {0 -109.5 0 rotateOpoint3d} solidtransform } def
/LiaisonDOx2 {LiaisonDOx1 {0 0 -120 rotateOpoint3d} solidtransform } def
\end{verbatim}
The following step consists of fusing the two connections:
\begin{verbatim}
/LO12 { LiaisonDOx1 LiaisonDOx2 solidfuz} def
/LO123 {LO12 LOx1 solidfuz} def
\end{verbatim}
Then the single bond \textsf{S-S} is created:
\begin{verbatim}
% liaison simple S-S
/L4 { 0 0.5 20.10 [16 10] newcylindre
dup (Yellow) outputcolors
} def
\end{verbatim}
and fused with the two atoms \textsf{S-S}:
\begin{verbatim}
/S1L4{ Soufre1 L4 solidfuz} def
/S1S2L4{ S1L4 Soufre2 solidfuz} def
\end{verbatim}
The last step will be to fuse the two \textsf{S-S} and the three
\textsf{O} already equipped with their bonds:
\begin{verbatim}
/S2O3 { S1S2L4 LO123 solidfuz} def
S2O3 drawsolid**}
\end{verbatim}
\endinput
|