summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/generic/pst-solides3d/doc-en/source/par-projectionpoint-en.tex
blob: 520083b705235464e7d629132fefe17d94419368 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
\section{Points}

\subsection{Direct definition}

The object \Lkeyword{point} defines a \Index{point}. The values $(x,y)$ of
its coordinates can be passed directly to the macro
\Lcs{psProjection} or indirectly via the option \Lkeyword{args}.

Thus the two commands \verb+\psProjection[object=point](1,2)+ and
\verb+\psProjection[object=point,arg=1 2]+ are equivalent and lead
to the projection of the point with coordinates $(1,2)$ onto the
chosen plane.

\subsection{Labels}

The option \texttt{\Lkeyword{text}=my text} allows us to project a string of
characters onto the chosen plane next to a chosen point. The
positioning is made with the argument \texttt{\Lkeyword{pos}=value} where
\texttt{value} is one of the following $\{$ul, cl, bl, dl, ub, cb, bb,
db, uc, cc, bc, dc, ur, cr, br, dr$\}$.

The details of the parameter \Lkeyword{pos} will be discussed in a
later paragraph.

\begin{LTXexample}[width=7.5cm]
\begin{pspicture}(-3,-3)(4,3.5)%
\psframe*[linecolor=blue!50](-3,-3)(4,3.5)
\psset{viewpoint=50 30 15,Decran=60}
\psset{solidmemory}
%% definition du plan de projection
\psSolid[object=plan,
   definition=equation,
   args={[1 0 0 0] 90},
   name=monplan,
   planmarks,
   showBase]
\psset{plan=monplan}
%% definition du point A
\psProjection[object=point,
   args=-2 1,
   text=A,
   pos=ur]
\psProjection[object=point,
   text=B,
   pos=ur](2,1)
\composeSolid
\axesIIID(4,2,2)(5,4,3)
\end{pspicture}
\end{LTXexample}



\subsection{Naming and memorising a point}

If the option \texttt{\Lkeyword{name}=myName} is given, the coordinates
$(x,y)$ of the chosen point are saved under the name \texttt{myName} and so
can be reused.

\subsection{Some other definitions}

There are other methods to define a point in 2D. The options
\Lkeyword{definition} and \Lkeyword{args} support the following
methods:

\begin{itemize}

\item \texttt{\Lkeyword{definition}=\Lkeyval{milieu}};
\texttt{\Lkeyword{args}=$A$ $B$}.

The midpoint of the line segment $[AB]$

\item \texttt{\Lkeyword{definition}=\Lkeyval{parallelopoint}};
\texttt{\Lkeyword{args}=$A$ $B$ $C$}.

The point $D$ for which $(ABCD)$ is a
parallelogram.

\item \texttt{\Lkeyword{definition}=\Lkeyval{translatepoint}};
\texttt{\Lkeyword{args}=$M$ $u$}.

The image of the point $M$ shifted by the vector
$\vec u$


\item \texttt{\Lkeyword{definition}=\Lkeyval{rotatepoint}};
\texttt{\Lkeyword{args}=$M$ $I$ $r$}.

The image of the point $M$ under a
rotation about the point $I$ through an angle $r$ (in degrees)

\item \texttt{\Lkeyword{definition}=\Lkeyval{hompoint}};
\texttt{\Lkeyword{args}=$M$ $A$ $k$}.

The point $M'$ satisfying
$\overrightarrow {AM'} = k \overrightarrow {AM}$

\item \texttt{\Lkeyword{definition}=\Lkeyval{orthoproj}};
\texttt{\Lkeyword{args}=+$M$ $d$}.

The orthogonal projection of the point
$M$ onto the line $d$.

\item \texttt{\Lkeyword{definition}=\Lkeyval{projx}};
\texttt{\Lkeyword{args}=$M$}.

The projection of the point $M$ onto the $Ox$
axis.

\item \texttt{\Lkeyword{definition}=\Lkeyval{projy}};
\texttt{\Lkeyword{args}=$M$}.

The projection of the point $M$ onto the $Oy$
axis.

\item \texttt{\Lkeyword{definition}=\Lkeyval{sympoint}};
\texttt{\Lkeyword{args}=$M$ $I$}.

The point of symmetry of $M$ with respect
to the point $I$.

\item \texttt{\Lkeyword{definition}=\Lkeyval{axesympoint}};
\texttt{\Lkeyword{args}=$M$ $d$}.

The axially symmetrical point of $M$ with
respect to the line $d$.

\item \texttt{\Lkeyword{definition}=\Lkeyval{cpoint}};
\texttt{\Lkeyword{args}=$\alpha $ $C$}.

The point corresponding to the
angle $\alpha $ on the circle $C$

\item \texttt{[definition=xdpoint]};
\verb+args=+$x$ $d$.

The $Ox$ intercept $x$ of the line $d$.

\item \texttt{\Lkeyword{definition}=\Lkeyval{ydpoint}};
\texttt{\Lkeyword{args}=$y$ $d$}.

The $Oy$ intercept $y$ of the line $d$.

\item \texttt{\Lkeyword{definition}=\Lkeyval{interdroite}};
\texttt{\Lkeyword{args}=$d_1$ $d_2$}.

The intersection point of the lines
$d_1$ and $d_2$.

\item \texttt{\Lkeyword{definition}=\Lkeyval{interdroitecercle}};
\texttt{\Lkeyword{args}=$d$ $I$ $r$}.

The intersection points of the line
$d$ with a circle of centre $I$ and radius $r$.

\end{itemize}

In the example below, we define and name three points $A$, $B$ and
$C$, and then calculate the point $D$ for which $(ABCD)$ is a
parallelogram together with the centre of this parallelogram.

\begin{LTXexample}[width=7.5cm]
\begin{pspicture}(-3,-3)(4,3.5)%
\psframe*[linecolor=blue!50](-3,-3)(4,3.5)
\psset{viewpoint=50 30 15,Decran=60}
\psset{solidmemory}
%% definition du plan de projection
\psSolid[object=plan,
   definition=equation,
   args={[1 0 0 0] 90},
   name=monplan,
   planmarks,
   showbase]
\psset{plan=monplan}
%% definition du point A
\psProjection[object=point,
   text=A,pos=ur,name=A](-1,.7)
%% definition du point B
\psProjection[object=point,
   text=B,pos=ur,name=B](2,1)
%% definition du point C
\psProjection[object=point,
   text=C,pos=ur,name=C](1,-1.5)
%% definition du point D
\psProjection[object=point,
   definition=parallelopoint,
   args=A B C,
   text=D,pos=ur,name=D]
%% definition du point G
\psProjection[object=point,
   definition=milieu,
   args=D B]
\composeSolid
\axesIIID(4,2,2)(5,4,3)
\end{pspicture}
\end{LTXexample}

\endinput