1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
|
\section{Lines}
\subsection{Direct definition}
The object \texttt{droite} allows us to define and draw a \Index{line}. In
the \texttt{pst-solides3d} package, a line in 2D is defined by its
two end-points.
We use the option \Lkeyword{args} to specify the end-points of the
chosen line. We can use coordinates or named points.
As with points and vectors, we can save the coordinates of the
line with the option \Lkeyword{name}.
\begin{LTXexample}[width=7.5cm]
\begin{pspicture}(-3,-3)(4,3.5)%
\psframe*[linecolor=blue!50](-3,-3)(4,3.5)
\psset{viewpoint=50 30 15,Decran=60}
\psset{solidmemory}
%% definition du plan de projection
\psSolid[object=plan,
definition=equation,
args={[1 0 0 0] 90},
planmarks,name=monplan]
\psset{plan=monplan}
%% definition du point A
\psProjection[object=point,
name=A,text=A,
pos=ur](-2,1.25)
\psProjection[object=point,
name=B,text=B,
pos=ur](1,.75)
\psProjection[object=droite,
linecolor=blue,
args=0 0 1 .5]
\psProjection[object=droite,
linecolor=orange,
args=A B]
\composeSolid
\end{pspicture}
\end{LTXexample}
\subsection{Some other definitions}
There are other methods to define a line in 2D. The options
\Lkeyword{definition} and \Lkeyword{args} are used in these variants:
\begin{itemize}
\item \texttt{\Lkeyword{definition}=\Lkeyval{horizontale}};
\texttt{\Lkeyword{args}=$b$}.
The line with equation $y=b$.
\item \texttt{\Lkeyword{definition}=\Lkeyval{verticale}};
\texttt{\Lkeyword{args}=$a$}.
The line with equation $x=a$.
\item \texttt{\Lkeyword{definition}=\Lkeyval{paral}};
\texttt{\Lkeyword{args}=$d$ $A$}.
A line parallel to $d$ passing through
$A$.
\item \texttt{\Lkeyword{definition}=\Lkeyword{perp}};
\texttt{\Lkeyword{args}=$d$ $A$}.
A line perpendicular to $d$ passing
through $A$.
\item \texttt{\Lkeyword{definition}=\Lkeyval{mediatrice}};
\texttt{\Lkeyword{args}=$A$ $B$}.
The perpendicular bisector of the line
segment $[AB]$.
\item \texttt{\Lkeyword{definition}=\Lkeyword{bissectrice}};
\texttt{\Lkeyword{args}=$A$ $B$ $C$}.
The bisector of the angle $\widehat
{ABC}$.
\item \texttt{\Lkeyword{definition}=\Lkeyword{axesymdroite}};
\texttt{\Lkeyword{args}=$d$ $D$}.
The reflection of the line $d$ in the
line $D$.
\item \texttt{\Lkeyword{definition}=\Lkeyword{rotatedroite}};
\texttt{\Lkeyword{args}=$d$ $I$ $r$}.
The image of the line $d$ after a
rotation with centre $I$ through an angle $r$ (in degrees)
\item \texttt{\Lkeyword{definition}=\Lkeyword{translatedroite}};
\texttt{\Lkeyword{args}=$d$ $u$}.
The image of the line $d$ shifted by the vector $\vec u$.
\end{itemize}
\endinput
|