summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/generic/pst-sigsys/pst-sigsys-doc.tex
blob: 98d547a8a131322823921fa44439f0c48b09c66a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
%%====================================
%% This is pst-sigsys documentation.
%% Farshid Delgosha
%% 04/01/2009
%%====================================

\documentclass[10pt]{article}

\usepackage[T1]{fontenc}
\usepackage[latin1]{inputenc}
\usepackage[cmex10]{amsmath}
\usepackage{amssymb}
\usepackage{array}
\usepackage[bf,labelsep=period]{caption}
\usepackage[margin=1in,dvips]{geometry}
\usepackage{xspace}
\usepackage{subfig}
\usepackage{enumitem}
\usepackage{url}
\usepackage[table]{xcolor}
\usepackage{multido}
\usepackage{xkeyval}
\usepackage[pstadd]{pst-sigsys}
\usepackage{pst-plot}
\usepackage{pstricks-add}
\usepackage{multicol}
\usepackage{showexpl}
\lstset{explpreset={numbers=left,numberstyle=\tiny,numbersep=.5em},width=7cm,%
basicstyle=\ttfamily\small,rframe=,frame=single,backgroundcolor=\color{orange!30}}
\definecolor{BrickRed}{RGB}{233,49,16}
\usepackage{hyperref}
\hypersetup{colorlinks,backref,pagebackref,breaklinks,linkcolor=BrickRed,dvips,%
bookmarksopen=true,bookmarksopenlevel=2,pdfpagelayout=SinglePage,pdfview=Fit,%
pdftitle={The pst-sigsys Package},pdfauthor={Farshid Delgosha}}



\makeatletter
%=== some settings =================================================
\setlength{\parskip}{.5\baselineskip}
\def\tableofcontents{\@starttoc{toc}}
%=== end some settings =============================================



%=== new macros ====================================================
\def\package{\texttt{pst-sigsys}\xspace}
\def\CMD#1{{\ttfamily\textbackslash #1}}
\def\rmit#1{\textrm{\textit{#1}}}
\def\keys{[\rmit{keys}]}
%
\newsavebox{\syntaxbox}
\newenvironment{syntax}{%
\begin{lrbox}{\syntaxbox}%
\begin{minipage}{\textwidth}%
}
{
\end{minipage}%
\end{lrbox}%
\par\vspace{.5\baselineskip}%
\noindent\fbox{\usebox{\syntaxbox}}%
\vspace{.5\baselineskip}%
\par}
%
\newenvironment{keytable}[1]{
\rowcolors{1}{}{orange!30}
\begin{tabular}{>{\ttfamily}l  >{\itshape}c  c  p{#1}}
\hline
\rmit{Key}  &  \rmit{Value}  &  \rmit{Default}  &  \rmit{Description} \\
\hline
}
{\hline
\end{tabular}
\rowcolors{1}{}{}
}
%
\def\@choice{}
\newif\if@lineA
\newif\if@lineB
%
\define@choicekey*{xdashline}{lines}[\val\@choice]{t,b,tb}{%
  \ifcase\@choice\relax
     \@lineAtrue\@lineBfalse
  \or
     \@lineAfalse\@lineBtrue
  \else
     \@lineAtrue\@lineBtrue
  \fi
}
\def\xdashline{\@ifnextchar[{\xdashline@i}{\xdashline@i[lines=b]}}
\def\xdashline@i[#1](#2,#3,#4)#5#6#7{{%
\setkeys{xdashline}{#1}%
\psset{linecolor=#6}%
\if@lineA%
\rput(#2,#3){\psline[linestyle=dashed,linewidth=.5pt](-#5,0)}%
\fi%
\if@lineB%
\rput(#2,#4){\psline[linestyle=dashed,linewidth=.5pt](-#5,0)}%
\fi%
\rput(#2,#3){\psline[arrows=|<-](0,.5)}%
\rput(#2,#4){\psline[arrows=|<-](0,-.5)}%
\rput(#2,#3){\rput[l]{90}(0,.65){\textcolor{#6}{\texttt{#7}}}}%
}\ignorespaces}
%
%
\define@choicekey*{ydashline}{lines}[\val\@choice]{l,r,lr}{%
  \ifcase\@choice\relax
     \@lineAtrue\@lineBfalse
  \or
     \@lineAfalse\@lineBtrue
  \else
     \@lineAtrue\@lineBtrue
  \fi
}
\def\ydashline{\@ifnextchar[{\ydashline@i}{\ydashline@i[lines=r]}}
\def\ydashline@i[#1](#2,#3,#4)#5#6#7{{%
\setkeys{ydashline}{#1}%
\psset{linecolor=#6}%
\if@lineA%
\rput(#2,#4){\psline[linestyle=dashed,linewidth=.5pt](0,-#5)}%
\fi%
\if@lineB%
\rput(#3,#4){\psline[linestyle=dashed,linewidth=.5pt](0,-#5)}%
\fi%
\rput(#2,#4){\psline[arrows=|<-](-.5,0)}%
\rput(#3,#4){\psline[arrows=|<-](0,0)(.5,0)}%
\rput(#3,#4){\rput[l](.65,0){\textcolor{#6}{\texttt{#7}}}}%
}\ignorespaces}
%
\newcount\example@cnt
\example@cnt=0
\def\Example#1{%
\advance\example@cnt\@ne%
\ifx\empty#1\empty%
\noindent\textbf{Example \the\example@cnt.}\hspace{.5em}
\else%
\noindent\textbf{Example \the\example@cnt.{\normalfont\footnotesize\ttfamily({\normalfont use} #1)}}\hspace{.5em}%
\fi}
%===================================================================
\makeatother



\title{The \package Package \\ {\large (version 1.1)}}
\author{Farshid Delgosha \\ \texttt{fdelgosha@gmail.com}}
\date{April 1, 2009}



\begin{document}

\maketitle



\begin{abstract}
This package is a collection of useful macros for disciplines related to signal processing. It defines macros for plotting a sequence of numbers, drawing the pole-zero diagram of a system, shading the region of convergence, creating an adder or a multiplier node, placing a framed node at a given coordinate, creating an up-sampler or a down-sampler node, and connecting a list of nodes using any node-connecting macro. I welcome all comments for further improvements of this package and suggestions for adding new macros or features.
\end{abstract}


\section*{Contents}
\begin{multicols}{2}
\tableofcontents
\end{multicols}


\section{Introduction}

To use the \package package, add the following command to the preamble of your document.
\begin{verbatim}
   \usepackage{pst-sigsys}
\end{verbatim}
It loads \texttt{pstricks} \cite{pstricks}, \texttt{pst-node} \cite{pst-node}, and \texttt{pst-xkey} \cite{pst-xkey} packages. Moreover, it activates polar coordinates through the \CMD{SpecialCoor} macro defined by the \texttt{pstricks} package. Hence, all macros support polar coordinates.

The \package provides the following options.
\begin{itemize}[label=$\scriptscriptstyle\blacksquare$,topsep=0pt,leftmargin=*]
\item \textbf{notelegant:} When drawing block diagrams, I have found it more elegant to have round corner frames and line breaks. Hence, the \package package sets the following PSTricks keys when loaded.
\begin{verbatim}
   framesep=0.125
   framearc=0.25
   linearc=0.1
\end{verbatim}
To disable them, load the package with the \texttt{notelegant} option.

\item \textbf{pstadd:} The \package defines some PSTricks styles that can be used only with the \texttt{pstricks-add} package \cite{pstricks-add}. Use this option to define those styles that are introduced in Section~\ref{sec:styles}.
\end{itemize}




\section{What's New?}

In version 1.1, four new macros \CMD{pshtick}, \CMD{psvtick}, \CMD{pshTick}, and \CMD{psvTick} are added. The codes of macros \CMD{psusampler} and \CMD{psdsampler} are updated. However, there is no change in their user interface.




\section{Styles Defined by \package}
\label{sec:styles}

The \package package defines a few useful PSTricks styles for drawling arrows and dashed lines as shown in Figure~\ref{fig:styles}. (New styles are in green.) Some of these styles, which are shown in Figure~\ref{subfig:pstricks-add styles}, can be used only with the \texttt{pstricks-add} package. The usage of these styles is shown in Section~\ref{sec:examples} with many examples.
%%=======================================================================
\begin{figure}[ht!]
\centering
\subfloat[\texttt{pstricks} style\label{subfig:pstricks styles}]{%
\begin{pspicture}[showgrid=false](0,-.5)(5,5)
%
\rput[l](0,4.5){Default arrow}
\rput[l](2.5,4.5){\psline{->}(2,0)}
%
\rput[l](0,3.75){{\bfseries\color{green!50!black}Arrow}}
\rput[l](2.5,3.75){\psline[style=Arrow](2,0)}
%
\rput[l](0,3){Default dash}
\rput[l](2.5,3){\psline[linestyle=dashed](2,0)}
%
\rput[l](0,2.25){{\bfseries\color{green!50!black}Dash}}
\rput[l](2.5,2.25){\psline[style=Dash](2,0)}
%
\rput[l](0,1.5){Default line}
\rput[l](2.5,1.5){\psline(2,0)}
%
\rput[l](0,.75){{\bfseries\color{green!50!black}Graph}}
\rput[l](2.5,.75){\psline[style=Graph](2,0)}
%
\rput[l](0,0){{\bfseries\color{green!50!black}Stem}}
\rput[l](2.5,0){\psline[style=Stem]{-*}(2,0)}
%
\end{pspicture}}
%
\hspace{1cm}
%
\subfloat[\texttt{pstricks-add} styles\label{subfig:pstricks-add styles}]{%
\begin{pspicture}[showgrid=false](0,-.5)(5,5)
%
\rput[l](0,.75){{\bfseries\color{green!50!black}ArrowIn}}
\rput[l](2.5,.75){\psline[style=ArrowIn](2,0)}
%
\rput[l](0,0){{\bfseries\color{green!50!black}DashDot}}
\rput[l](2.5,0){\psline[style=DashDot](2,0)}
%
\end{pspicture}}
%
\caption{New styles}
\label{fig:styles}
\end{figure}
%%=======================================================================

In addition, the \package package defines the four styles \texttt{BraceUp}, \texttt{BraceDown}, \texttt{BraceRight}, and \texttt{BraceLeft} in conjunction with the \texttt{psbrace} macro define by the \texttt{pstricks-add} package. In these styles, the distance of the text from the brace is controlled by the \texttt{labelsep} key. Note that the new assignment for the \texttt{labelsep} key must precede the usage of any one of the \texttt{Brace} styles for the distance to take effect. The usage of these styles is shown by the following example.

\begin{LTXexample}
\begin{pspicture}[showgrid=true](5,3)
  \psframe(1,1)(4,2)
  \psset{linecolor=red}
  \psbrace*[labelsep=5mm,style=BraceUp]%
     (4,2)(1,2){Up}
  \psbrace*[style=BraceDown](1,1)(4,1){Down}
  \psbrace*[style=BraceRight](4,1)(4,2){Right}
  \psbrace*[style=BraceLeft](1,2)(1,1){Left}
\end{pspicture}
\end{LTXexample}





\section{Simples Macros}

The \package package defines four macros \CMD{RE}, \CMD{sRE}, \CMD{IM}, and \CMD{sIM} that generate the symbols \RE, \sRE, \IM, and \sIM, respectively. (The small symbols are in script size.) These symbols can be used to refer to the real and imaginary parts of a complex number. All four macros can be used both inside and outside the math mode.

\begin{LTXexample}
The real part of the complex number $c=a+jb$
is $a = \RE(c)$ and its imaginary part
is $b = \IM(c)$.
\end{LTXexample}




\section{Graphical Macros}
\label{sec:graphical macros}

In this section, we introduce all the graphical macros defined by the \package package. Every macro has some keys that can be assigned either directly inside optional brackets right after the macro name or through the \CMD{psset} macro provided by the \texttt{pstricks} package. Unless directly stated, all coordinate inputs specified by \rmit{coor} could be either in cartesian form $(x, y)$ or polar form $(\rho; \theta)$. (Recall that \package activates the polar coordinates on loading. Hence, there is no need to use the \CMD{SpecialCoor} macro.) After the introduction of every macro, some examples are provided to illustrate the usage of that macro.



\subsection{psaxeslabels}

\begin{syntax}
\CMD{psaxeslabels}\keys\{\rmit{arrows}\}($x_0, y_0$)($x_1, y_1$)($x_2, y_2$)\{\rmit{x-label}\}\{\rmit{y-label}\}
\end{syntax}
This macro is a simplified version of the \CMD{psaxes} macro defined by the \texttt{pst-plot} package \cite{pst-plot}. As depicted in Figure~\ref{fig:psaxeslabels}, the \CMD{psaxeslabels} draws two straight lines, one vertical and one horizontal, that intersect at the point ($x_0, y_0$).
%%=======================================================================
\begin{figure}[ht!]
\centering
\begin{pspicture}[showgrid=false](-2,-1)(4,3)
%
\psgrid[griddots=10,subgriddiv=1,gridlabels=0pt](0,0)(-2,-1)(3,2)
\psaxeslabels(0,0)(-2,-1)(3,2){\rmit{x-label}}{\rmit{y-label}}
\psset{linecolor=red}
\dotnode(0,0){org}
\dotnode(-2,-1){xy1}
\dotnode(3,2){xy2}
\nput{45}{org}{\textcolor{red}{$(x_0, y_0)$}}
\nput{45}{xy1}{\textcolor{red}{$(x_1, y_1)$}}
\nput{225}{xy2}{\textcolor{red}{$(x_2, y_2)$}}
\xdashline(3.35,0,-\pslabelsep){1.5}{purple}{labelsep}
\ydashline(0,\pslabelsep,2.35){1.5}{purple}{labelsep}
%
\end{pspicture}
\caption{\CMD{psaxeslabels} macro}
\label{fig:psaxeslabels}
\end{figure}
%%=======================================================================
These lines are enclosed by a virtual rectangular box with the lower left and upper right corners at ($x_1, y_1$) and ($x_2, y_2$), respectively. The two lines are labeled by \rmit{x-label} and \rmit{y-label}, respectively. Similar to \CMD{psaxes} macro, the use of \rmit{arrows} is optional. The keys employed by the \CMD{psaxeslabels} are summarized in Table~\ref{tab:psaxeslabels}.
%%=======================================================================
\begin{table}[ht!]
\centering
\caption{\CMD{psaxeslabels} Keys}
\label{tab:psaxeslabels}
\begin{keytable}{2.8in}
xlpos   &  {\normalfont\ttfamily t | b}  &  \texttt{b}  &  Position of the $x$-label along the horizontal axis  \\
ylpos   &  {\normalfont\ttfamily l | r}  &  \texttt{r}  &  Position of the $y$-label along the vertical axis \\
\end{keytable}
\end{table}
%%=======================================================================


\begin{LTXexample}
\begin{pspicture}[showgrid=true](-2,-1)(2,1)
  \psaxeslabels(0,0)(-2,-1)(2,1){\RE}{\IM}
\end{pspicture}
\end{LTXexample}

\begin{LTXexample}
\begin{pspicture}[showgrid=true](-2,-1)(2,2)
  \psset{linecolor=blue,xlpos=t,ylpos=l}
  \psaxeslabels{->}(-1,0)(-2,-1)(2,2){$x$}{$y$}
\end{pspicture}
\end{LTXexample}




\subsection{pshtick}

\begin{syntax}
\CMD{pshtick}\keys(\rmit{coor})\{\rmit{ticklength}\}
\end{syntax}

As depicted in Figure~\ref{fig:pshtick}, the \CMD{pshtick} macro draws a horizontal line centered at \rmit{coor} with length $2\rmit{ticklength}$. This could be used for adding a tick line to coordinate axes.
%%=======================================================================
\begin{figure}[ht!]
\centering
\begin{pspicture}[showgrid=false](-2,-1)(2,.5)
%
\pnode(0,0){org}
\rput(0,-1){\rnode{coor}{\textcolor{red}{(\rmit{coor})}}}
\ncline[linecolor=red,nodesepA=.15]{->}{coor}{org}
%
\pshtick(0,0){2}
%
\psbrace[style=BraceUp,linecolor=purple,fillstyle=solid,fillcolor=purple]%
(2,0)(0,0){{\ttfamily\footnotesize\color{purple}ticklength}}
%
\psbrace[style=BraceUp,linecolor=purple,fillstyle=solid,fillcolor=purple]%
(0,0)(-2,0){{\ttfamily\footnotesize\color{purple}ticklength}}
%
\end{pspicture}
\caption{\CMD{pshtick} macro}
\label{fig:pshtick}
\end{figure}
%%=======================================================================

\begin{LTXexample}
\begin{pspicture}[showgrid=true](-3,0)(3,2)
   \psaxeslabels(0,0)(-3,0)(3,2){$x$}{$y$}
   \pshtick[linecolor=red](0,.5){.1}
   \pshtick[linecolor=blue](0,1.25){.25}
\end{pspicture}
\end{LTXexample}




\subsection{psvtick}

\begin{syntax}
\CMD{psvtick}\keys(\rmit{coor})\{\rmit{ticklength}\}
\end{syntax}

Similar to the previous macro, the \CMD{psvtick} macro draws a vertical line centered at \rmit{coor} with length $2\rmit{ticklength}$ (Figure~\ref{fig:psvtick}). This could be used for adding a tick line to coordinate axes.
%%=======================================================================
\begin{figure}[ht!]
\centering
\begin{pspicture}[showgrid=false](-1.5,-2)(.5,2)
%
\pnode(0,0){org}
\rput(-1.5,0){\rnode{coor}{\textcolor{red}{(\rmit{coor})}}}
\ncline[linecolor=red,nodesepA=.15]{->}{coor}{org}
%
\psvtick(0,0){2}
%
\psbrace[style=BraceRight,linecolor=purple,fillstyle=solid,fillcolor=purple]%
(0,0)(0,2){{\ttfamily\footnotesize\color{purple}ticklength}}
%
\psbrace[style=BraceRight,linecolor=purple,fillstyle=solid,fillcolor=purple]%
(0,-2)(0,0){{\ttfamily\footnotesize\color{purple}ticklength}}
%
\end{pspicture}
\caption{\CMD{psvtick} macro}
\label{fig:psvtick}
\end{figure}
%%=======================================================================

\begin{LTXexample}
\begin{pspicture}[showgrid=true](-3,-1)(3,1)
   \psaxeslabels(0,0)(-3,-1)(3,1){$x$}{$y$}
   \psvtick[linecolor=red](1,0){.1}
   \psvtick[linecolor=blue](2,0){.25}
\end{pspicture}
\end{LTXexample}




\subsection{pshTick}

\begin{syntax}
\CMD{pshTick}\keys(\rmit{coor})
\end{syntax}

Similar to \CMD{pshtick}, the \CMD{pshTick} macro draws a horizontal line centered at \rmit{coor}. The only difference is that the tick length is specified by the \texttt{ticklength} key. This is useful when multiple ticks are drawn all with the same length.

\begin{LTXexample}
\begin{pspicture}[showgrid=true](-2,0)(2,2)
   \psaxeslabels(0,0)(-2,0)(2,2){$x$}{$y$}
   \psset{ticklength=.1,linecolor=red}
   \pshTick(0,.5)
   \pshTick(0,1)
   \pshTick(0,1.5)
\end{pspicture}
\end{LTXexample} 




\subsection{psvTick}

\begin{syntax}
\CMD{psvTick}\keys(\rmit{coor})
\end{syntax}

Similar to \CMD{psvtick}, the \CMD{psvTick} macro draws a vertical line centered at \rmit{coor}. The only difference is that the tick length is specified by the \texttt{ticklength} key. This is useful when multiple ticks are drawn all with the same length.

\begin{LTXexample}
\begin{pspicture}[showgrid=true](-2,-1)(2,1)
   \psaxeslabels(0,0)(-2,-1)(2,1){$x$}{$y$}
   \psset{ticklength=.1,linecolor=red}
   \psvTick(.5,0)
   \psvTick(1,0)
   \psvTick(1.5,0)
\end{pspicture}
\end{LTXexample}




\subsection{psstem}

\begin{syntax}
\CMD{psstem}\keys($x_0, \Delta$)\{\rmit{list}\} \\
\CMD{psstem}\keys\{\rmit{list}\}
\end{syntax}

The \CMD{psstem} macro plots the sequence defined by \rmit{list} that is a comma-separated list of real or integer~numbers. As shown in Figure~\ref{subfig:psstem:sample}, if $\rmit{list} = n_1, n_2, n_3, \dotsc$, then \CMD{psstem} draws vertical lines (stems) at $x_0, x_0 + \Delta, x_0 + 2\Delta, \dotsc$ on the horizontal axis ($y = 0$) with heights $n_1, n_2, n_3, \dotsc$, respectively. \emph{Note that both $x_0$ and $\Delta$ must be integers.} In case their values are not explicitly given, they are assumed $x_0 = 0$ and $\Delta = 1$. The \CMD{psstem} macro is also capable of numerically tagging the stems. As depicted in Figure~\ref{subfig:psstem:tag}, the tag of every stem is place either below or above it depending on whether the corresponding number in the sequence is nonnegative (positive or zero) or negative, respectively. The distance of tags to stems is determined by the \texttt{labelsep} key. The keys employed by the \CMD{psstem} macro are summarized in Table~\ref{tab:psstem}.
%%=======================================================================
\begin{figure}[ht!]
\centering
%-------------------------------------------------------
% Sample
%-------------------------------------------------------
\subfloat[Sample sequence]{\label{subfig:psstem:sample}
\begin{pspicture}[showgrid=false](-1,-1)(4,3)
%
\psgrid[griddots=10,subgriddiv=1,gridlabels=0pt](3,2)
%
\pnode(0,0){a}
\pnode(0,2){b}
\ncline{-*}{a}{b}
\nput{-90}{a}{$x_0$}
\ncline[offset=.35,linecolor=gray]{|*-|*}{a}{b}
\ncput*{$n_1$}
%
\pnode(1.5,0){a}
\pnode(1.5,1){b}
\ncline{-*}{a}{b}
\nput{-90}{a}{$x_0+\Delta$}
\ncline[offset=.35,linecolor=gray]{|*-|*}{a}{b}
\ncput*{$n_2$}
%
\pnode(3,0){a}
\pnode(3,1.5){b}
\ncline{-*}{a}{b}
\nput{-90}{a}{$x_0+2\Delta$}
\ncline[offset=.35,linecolor=gray]{|*-|*}{a}{b}
\ncput*{$n_3$}
%
\end{pspicture}}
%
\hspace{2cm}
%
%-------------------------------------------------------
% Tag
%-------------------------------------------------------
\subfloat[Tagging]{\label{subfig:psstem:tag}
\begin{pspicture}[showgrid=false](-1,-1)(4,3)
%
\psgrid[griddots=10,subgriddiv=1,gridlabels=0pt](3,2)
%
\psset{labelsep=.25}
%
\psline{-*}(0,0)(0,2)
\rput[t](0,-\pslabelsep){$x_i$}
\xdashline[lines=tb](.5,0,-\pslabelsep){1}{purple}{labelsep}
%
\psline{-*}(2.5,0)(2.5,-1)
\rput[b](2.5,\pslabelsep){$x_j$}
\xdashline[lines=tb](3,\pslabelsep,0){1}{purple}{labelsep}
%
\end{pspicture}}
%
\caption{\CMD{psstem} macro}
\label{fig:psstem}
\end{figure}
%%=======================================================================
\begin{table}[ht!]
\centering
\caption{\CMD{psstem} Keys}
\label{tab:psstem}
\begin{keytable}{2.5in}
stemhead       &  style    &  *                  &  Stem head. Possible choices are \texttt{*}, \texttt{o}, \texttt{>}, \texttt{<}, \texttt{>\kern.5pt>}, \texttt{<\kern.5pt<}, \texttt{|}, \texttt{)}, \texttt{(}, \texttt{>|}, and \texttt{<|}. \\
stemtag        &  Boolean  &  \texttt{false}     &  Tagging the stems \\
stemtagformat  &  format   &  \CMD{scriptstyle}  &  Tag format \\
\end{keytable}
\end{table}
%%=======================================================================


\begin{LTXexample}
\begin{pspicture}[showgrid=true](0,-1)(6,2)
  \psstem[style=Stem]{0,.5,1,-1,2}
\end{pspicture}
\end{LTXexample}

\begin{LTXexample}
\begin{pspicture}[showgrid=true](0,-1)(6,2)
  \psset{style=Stem,linecolor=red}
  \psstem[stemhead=>,stemtag](1,2){-1,1,2}
\end{pspicture}
\end{LTXexample}

\begin{LTXexample}
\begin{pspicture}[showgrid=true](0,-1)(6,2)
   \psset{style=Stem,stemtag}
   \psstem[linecolor=red](0,2){1,-.75,1}
   \psset{stemhead=o}
   \psstem[linecolor=blue](1,2){.5,2,-1}
\end{pspicture}
\end{LTXexample}


\begin{LTXexample}
\begin{pspicture}[showgrid=true](5,3)
  \psstem[stemhead=*](0,1){1}
  \psstem[stemhead=o](1,1){1}
  \psstem[stemhead=>](2,1){1}
  \psstem[stemhead=<](3,1){1}
  \psstem[stemhead=>>](4,1){1}
  \psstem[stemhead=<<](5,1){1}

  \rput(0,1.5){%
    \psstem[stemhead=|](0,1){1}
    \psstem[stemhead=)](1,1){1}
    \psstem[stemhead=(](2,1){1}
    \psstem[stemhead=>|](3,1){1}
    \psstem[stemhead=<|](4,1){1}
  }
\end{pspicture}
\end{LTXexample}





\subsection{pszero}

\begin{syntax}
\CMD{pszero}\keys(\rmit{coor})\{\rmit{node}\}
\end{syntax}
This macro is used to generate a circle node centered at \rmit{coor} and labeled \rmit{node} that represents a zero of a system. It could also be used to generate several circles, all centered at \rmit{coor}, representing high order zeros. As shown in Figure~\ref{fig:pszero}, the radius of innermost circle is \texttt{zeroradius} and it is incremented by \texttt{zeroradiusinc} for high order zeros.
%%=======================================================================
\begin{figure}[ht!]
\centering
\begin{pspicture}[showgrid=false](-2.5,-2.5)(2.5,2.5)
%
\dotnode[linecolor=red](0,0){org}
\nput[labelsep=.1]{-90}{org}{\textcolor{red}{(\rmit{coor})}}
%
\pscircle(0,0){1.25}
\pscircle(0,0){1.65}
\rput(2,0){\psldots}
\pscircle(0,0){2.35}
%
\pnode(1.25;45){rad}
\ncline[linecolor=purple]{->}{org}{rad}  \naput[nrot=:U]{{\ttfamily\scriptsize\color{purple}zeroradius}}
%
\rput(1.25;-45){\psline[arrows=|<-,linecolor=teal](.5;135)}
\rput(1.65;-45){\psline[arrows=|<-,linecolor=teal](.5;-45)}
\pnode(1.45;-45){inc}
\nput[rot=-45]{45}{inc}{{\ttfamily\scriptsize\color{teal}zeroradiusinc}}
%
\end{pspicture}
\caption{\CMD{pszero} macro}
\label{fig:pszero}
\end{figure}
%%=======================================================================
The line-width of all circles is determined by the \texttt{zerowidth} key. The key \texttt{order} determines the order of the zero. The key \texttt{scale} can be used to scale up or down the radius of innermost circle (\texttt{zeroradius}), the radius increment (\texttt{zeroradiusinc}), and the line-width of all circles (\texttt{zerowidth}). Table~\ref{tab:pszero} summarizes keys corresponding to \CMD{pszero} and their default values.
%%=======================================================================
\begin{table}[ht!]
\centering
\caption{\CMD{pszero} Keys}
\label{tab:pszero}
\begin{keytable}{1.85in}
zerowidth      &  num[dimen]  &  $0.7$pt &  Line-width of all circles \\
zeroradius     &  num[dimen]  &  $0.08$  &  Radius of the innermost circle \\
zeroradiusinc  &  num[dimen]  &  $0.07$  &  Radius increment \\
order          &  int         &  $1$     &  Order of the zero \\
scale          &  num         &  $1$     &  Scale factor \\
\end{keytable}
\end{table}
%%=======================================================================

\begin{LTXexample}
\begin{pspicture}[showgrid=true](6,2)
  \pszero(0,1){z1}   \nput{-90}{z1}{$z_1$}
  \pszero[linecolor=red](1,1){z2}
  \pszero[zerowidth=2pt](2,1){z3}
  \pszero[zeroradius=.25](3,1){z4}
  \pszero[order=3](4,1){z5}
    \nput{-90}{z5}{$z_5$}
  \pszero[zeroradiusinc=.15,order=2](5,1){z6}
  \pszero[scale=3](6,1){z7}
\end{pspicture}
\end{LTXexample}




\subsection{pspole}

\begin{syntax}
\CMD{pspole}\keys(\rmit{coor})\{\rmit{node}\}
\end{syntax}

This macro is used to generate a cross node, as shown in Figure~\ref{fig:pspole}, centered at \rmit{coor} and labeled \rmit{node} that represents the pole of a system. The key \texttt{scale} can be used to scale up or down the pole line-width (\texttt{polewidth}) and pole length (\texttt{polelength}). The keys corresponding to the \CMD{pspole} macro are summarized in Table~\ref{tab:pspole}.
%%=======================================================================
\begin{figure}[ht!]
\centering
\begin{pspicture}[showgrid=false](-2,-1.5)(2,1.5)
%
\pnode(0,0){org}
\rput(0,-1){\rnode{coor}{\textcolor{red}{(\rmit{coor})}}}
\ncline[linecolor=red,nodesepA=.15]{->}{coor}{org}
%
\psline[linestyle=dashed,linecolor=gray](-2,0)(2,0)
\psarc[linecolor=gray](0,0){1}{0}{45}
\rput(1.35;22.5){\textcolor{gray}{$45^\circ$}}
%
\pspole[polelength=2,linewidth=1pt](0,0){p}
%
\psbrace[style=Brace,rot=-90,nodesepA=-.15,nodesepB=-.15,linecolor=purple,fillstyle=solid,fillcolor=purple]%
(2;45)(0,0){{\ttfamily\footnotesize\color{purple}polelength}}
%
\end{pspicture}
\caption{\CMD{pspole} macro}
\label{fig:pspole}
\end{figure}
%%=======================================================================
\begin{table}[ht!]
\centering
\caption{\CMD{pspole} Keys}
\label{tab:pspole}
\begin{keytable}{1in}
polewidth   &  num[dimen]  &  $0.7$pt &  Cross line-width \\
polelength  &  num[dimen]  &  $0.12$  &  Cross length \\
scale       &  num         &  $1$     &  Scale factor \\
\end{keytable}
\end{table}
%%=======================================================================

\begin{LTXexample}
\begin{pspicture}[showgrid=true](6,2)
  \pspole(1,1){p1}   \nput{-90}{p1}{$p_1$}
  \pspole[linecolor=red](2,1){p2}
  \pspole[polewidth=2pt](3,1){p3}
  \pspole[polelength=.5](4,1){p4}
  \pspole[scale=3](5,1){p5}
    \nput{-90}{p5}{$p_5$}
\end{pspicture}
\end{LTXexample}




\subsection{pscircleop}

\begin{syntax}
\CMD{pscircleop}\keys(\rmit{coor})\{\rmit{node}\}
\end{syntax}

This macro draws a cross inside a circle that are both centered at \rmit{coor} and labeled \rmit{node} as shown in Figure~\ref{fig:pscircleop}. The length of the cross and its line-width are controlled by the \texttt{oplength} and \texttt{opwidth} keys, respectively. Note that the line-width of the enclosing circle is separately controlled by the \texttt{linewidth} key. The distance between the circle and the cross is determined by the key \texttt{opsep}. The type of the operation (whether plus or times) is controlled by the key \texttt{operation}. Another way of determining the operation inside the circle is through the key \texttt{angle} that determines the angle of the cross. The key \texttt{scale} can be used to scale up or down the cross line-width (\texttt{opwidth}), the cross length (\texttt{oplength}), the separation between the cross and the circle (\texttt{opsep}), and the circle line-width (\texttt{linewidth}). The keys corresponding to the \CMD{pscircleop} macro are summarized in Table~\ref{tab:pscircleop}.
%%=======================================================================
\begin{figure}[ht!]
\centering
\begin{pspicture}[showgrid=false](-2,-2)(2,2)
%
\pnode(0,0){org}
\rput(1;-105){\rnode{coor}{\textcolor{red}{(\rmit{coor})}}}
\ncline[linecolor=red,nodesepA=.15]{->}{coor}{org}
%
\psline[linestyle=dashed,linecolor=gray](-1.5,0)(1.5,0)
\psarc[linecolor=gray](0,0){1}{0}{30}
\rput[l](1.1;15){{\ttfamily\footnotesize\color{gray}angle}}
%
\pscircleop[oplength=1.5,opsep=.5,angle=30](0,0){op}
%
\psbrace[style=Brace,rot=-90,nodesepA=-.15,nodesepB=-.15,linecolor=purple,fillstyle=solid,fillcolor=purple]%
(1.5;30)(0,0){{\ttfamily\footnotesize\color{purple}oplength}}
%
\pscircle[linestyle=dashed,linecolor=gray]{1.5}
\rput(2;150){\psline[arrows=|<-,linecolor=teal](.5;150)}
\rput(1.5;150){\psline[arrows=|<-,linecolor=teal](.5;-30)}
\pnode(1.75;150){sep}
\nput[rot=-30]{60}{sep}{{\ttfamily\scriptsize\color{teal}opsep}}
\end{pspicture}
\caption{\CMD{pscircleop} macro}
\label{fig:pscircleop}
\end{figure}
%%=======================================================================
\begin{table}[ht!]
\centering
\caption{\CMD{pscircleop} Keys}
\label{tab:pscircleop}
\begin{keytable}{2.75in}
opwidth    &  num[dimen]                         &  $0.7$pt        &  Cross line-width \\
oplength   &  num[dimen]                         &  $0.125$        &  Cross length \\
opsep      &  num[dimen]                         &  $0.1$          &  Separation between the cross and the frame \\
operation  &  {\normalfont\ttfamily plus|times}  &  \texttt{plus}  &  Operation \\
angle      &  angle                              &  $0$            &  Cross angle \\
scale      &  num                                &  $1$            &  Scale factor \\
\end{keytable}
\end{table}
%%=======================================================================


\begin{LTXexample}
\begin{pspicture}[showgrid=true](6,2)
  \pscircleop(.5,1){op1}
  \pscircleop[opwidth=2pt](1.25,1){op2}
  \pscircleop[oplength=.25](2,1){op3}
  \pscircleop[opsep=0](2.75,1){op4}
  \pscircleop[operation=times](3.5,1){op5}
  \pscircleop[angle=20](4.25,1){op6}
  \pscircleop[scale=2.5](5.5,1){op7}
\end{pspicture}
\end{LTXexample}




\subsection{psframeop}

\begin{syntax}
\CMD{psframeop}\keys(\rmit{coor})\{\rmit{node}\}
\end{syntax}

This macro is very similar to the \CMD{pscircleop} macro. The only difference is that the operation is enclosed inside a square frame rather than a circular one.


\begin{LTXexample}
\begin{pspicture}[showgrid=true](6,2)
  \psframeop(.5,1){op1}
  \psframeop[opwidth=2pt](1.25,1){op2}
  \psframeop[oplength=.25](2,1){op3}
  \psframeop[opsep=0](2.75,1){op4}
  \psframeop[operation=times](3.5,1){op5}
  \psframeop[angle=20](4.25,1){op6}
  \psframeop[scale=2.5](5.5,1){op7}
\end{pspicture}
\end{LTXexample}




\subsection{psdisk}

\begin{syntax}
\CMD{psdisk}\keys(\rmit{coor})\{\rmit{radius}\}
\end{syntax}

It draws a solid disk centered at \rmit{coor} with radius \rmit{radius} as depicted in Figure~\ref{fig:psdisk}. The fill color is specified by the \texttt{fillcolor} key. This macro is used to shade the region of convergence of a system in the $z$ plane.
%%=======================================================================
\begin{figure}[ht!]
\centering
\begin{pspicture}[showgrid=false](-1.5,-1.5)(1.5,1.5)
%
\psdisk[fillcolor=blue!20](0,0){1.5}
%
\dotnode[linecolor=red](0,0){org}
\nput{-90}{org}{\textcolor{red}{\rmit{coor}}}
\pnode(1.5;45){rad}
\ncline{->}{org}{rad}
\naput[nrot=:U]{\rmit{radius}}
%
\end{pspicture}
\caption{\CMD{psdisk} macro}
\label{fig:psdisk}
\end{figure}
%%=======================================================================


\begin{LTXexample}
\begin{pspicture}[showgrid=true](5,2)
  \psdisk[fillcolor=red](1,1){.5}
  \psdisk[fillcolor=blue](3,1){1}
\end{pspicture}
\end{LTXexample}




\subsection{psring}

\begin{syntax}
\CMD{psring}\keys(\rmit{coor})\{\rmit{inner-radius}\}\{\rmit{outer-radius}\}
\end{syntax}

This macro draws a solid ring centered at \rmit{coor} with inner radius \rmit{inner-radius} and outer radius \rmit{outer-radius} as shown in Figure~\ref{fig:psring}. The fill color is specified by the \texttt{fillcolor} key. This macro is used to shade the region of convergence of a system in the $z$ plane.
%%=======================================================================
\begin{figure}[ht!]
\centering
\begin{pspicture}[showgrid=false](-2,-2)(2,2)
%
\psring[fillcolor=blue!20](0,0){1}{2}
%
\dotnode[linecolor=red](0,0){org}
\nput{-90}{org}{\textcolor{red}{\rmit{coor}}}
\pnode(1;0){rad1}
\pnode(2;50){rad2}
\ncline{->}{org}{rad1}  \naput[nrot=:U,npos=1.25]{{\footnotesize\rmit{inner-radius}}}
\ncline{->}{org}{rad2}  \naput[nrot=:U]{{\footnotesize\rmit{outer-radius}}}
%
\end{pspicture}
\caption{\CMD{psring} macro}
\label{fig:psring}
\end{figure}
%%=======================================================================




\begin{LTXexample}
\begin{pspicture}[showgrid=true](5,2)
  \psring[fillcolor=red](1,1){.5}{1}
  \psring[fillcolor=green](3,1){.25}{.5}
\end{pspicture}
\end{LTXexample}




\subsection{psdiskc}

\begin{syntax}
\CMD{psdiskc}\keys(\rmit{coor})($x_0, y_0$)\{\rmit{radius}\}
\end{syntax}

As shown in Figure~\ref{fig:psdiskc}, this macro shades the area confined between a circle centered at \rmit{coor} with radius \rmit{radius} and a rectangle centered at \rmit{coor} and side lengths $2x_0$ and $2y_0$. The fill color is specified by the \texttt{fillcolor} key. This macro is used to shade the region of convergence of a system in the $z$ plane.
%%=======================================================================
\begin{figure}[ht!]
\centering
\begin{pspicture}[showgrid=false](-4,-2)(3,2.15)
%
\psdiskc[fillcolor=blue!20,framearc=0](0,0)(2,1.5){1}
%
\dotnode[linecolor=red](0,0){org}
\nput{-90}{org}{\textcolor{red}{\rmit{coor}}}
\pnode(1;45){rad}
\ncline{->}{org}{rad}  \naput[nrot=:U]{{\small\rmit{radius}}}
\dotnode(2,1.5){a}    \nput{45}{a}{$(x_0, y_0)$}
\dotnode(-2,-1.5){b}  \nput{225}{b}{$(-x_0, -y_0)$}
%
\rput(0,2){%
\psline{|<->|}(-2,0)(2,0)
\rput*(0,0){$2x_0$}}
%
\rput(-2.5,0){%
\psline{|<->|}(0,-1.5)(0,1.5)
\rput*{90}(0,0){$2y_0$}}
%
\end{pspicture}
\caption{\CMD{psdiskc} macro}
\label{fig:psdiskc}
\end{figure}
%%=======================================================================

\begin{LTXexample}
\begin{pspicture}[showgrid=true](6,2)
  \psdiskc[fillcolor=red](1.5,1)(1.5,1){.5}
  \psdiskc[fillcolor=blue](4.5,1)(.5,1){.15}
\end{pspicture}
\end{LTXexample}




\subsection{psldots}

\begin{syntax}
\CMD{psldots}\keys
\end{syntax}

As depicted in Figure~\ref{fig:psldots}, this macro draws three dots each with diameter \texttt{ldotssize} on the same straight line. Every two consecutive dots are separated by \texttt{ldotssep}. The angle of the line on which the dots lie with the horizontal axis is controlled by the key \texttt{angle}. The key \texttt{scale} can be used to scale up or down the dot diameter (\texttt{ldotssize}) and the dot separation (\texttt{ldotssep}). The keys corresponding to \CMD{pslodots} are summarized in Table~\ref{tab:psldots}.
%%=======================================================================
\begin{figure}[ht!]
\centering
\begin{pspicture}[showgrid=false](-4,-2.5)(5,1.5)
%
\psset{linecolor=teal}
\psline[linestyle=dashed](-4;15)(4.5;15)
\psline[linestyle=dashed](-4,0)(4.5,0)
\psarc(0,0){4}{0}{15}
\rput{-82.5}(4.25;7.5){{\ttfamily\color{teal}angle}}
\pnode(-3;15){L1}
\rput(L1){\pnode(1.25;-75){L2}}
\pnode(0,0){O1}
\rput(O1){\pnode(1.25;-75){O2}}
\pnode(3;15){R1}
\rput(R1){\pnode(1.25;-75){R2}}
%
\psset{linecolor=purple,linestyle=dashed,style=Dash}
\ncline{L1}{L2}
\ncline{O1}{O2}
\ncline{R1}{R2}
%
\psset{linestyle=solid}
\ncline{|<*->|*}{L2}{O2}   \nbput[nrot=:U]{{\ttfamily\color{purple}ldotssep}}
\ncline{|<*->|*}{O2}{R2}   \nbput[nrot=:U]{{\ttfamily\color{purple}ldotssep}}
%
\psline[linestyle=dashed](-.5,0)(-.5,1)
\psline[linestyle=dashed](.5,0)(.5,1)
\psline{|<*->|*}(-.5,1)(.5,1)
\rput(0,1.25){{\ttfamily\color{purple}ldotssize}}
%
\psset{linecolor=black}
\rput(0,0){\psldots[ldotssize=1,ldotssep=3,angle=15]}
%
\end{pspicture}
\caption{\CMD{psldots} macro}
\label{fig:psldots}
\end{figure}
%%=======================================================================
\begin{table}[ht!]
\centering
\caption{\CMD{psldots} Keys}
\label{tab:psldots}
\begin{keytable}{2.15in}
ldotssize  &  num[dimen]           &  $0.05$         &  Dot diameter \\
ldotssep   &  num[dimen]           &  $0.15$         &  Distance between consecutive dots \\
angle      &  angle                &  $0$            &  Dots angle \\
scale      &  num                  &  $1$            &  Scale factor \\
\end{keytable}
\end{table}
%%=======================================================================


\begin{LTXexample}
\begin{pspicture}[showgrid=true](6,2)
  \rput(1,1){\psldots}
  \rput(2,1){\psldots[angle=45]}
  \rput(4,1){\psldots[angle=90,ldotssize=.1]}
  \rput(3,1){\psldots[angle=90,ldotssep=.5]}
  \rput(5,1){\psldots[angle=90,scale=3]}
\end{pspicture}
\end{LTXexample}




\subsection{psblock}

\begin{syntax}
\CMD{psblock}\keys(\rmit{coor})\{\rmit{node}\}\{\rmit{stuff}\}
\end{syntax}

This macro places \rmit{stuff} at coordinate \rmit{coor}, encloses it in a rectangular frame, and turns that into a node labeled \rmit{node}. The separation between the \rmit{stuff} and the frame is controlled by the \texttt{framesep} key.


\begin{LTXexample}
\begin{pspicture}[showgrid=true](6,2)
  \rput(0,1){\rnode{x}{$x[n]$}}
  \psblock(1.5,1){a}{$z^{-1}$}
  \psblock(4,1){b}{$h[n], H(z)$}
  \rput(6,1){\rnode{y}{$y[n]$}}
  %-----------------
  \psset{style=Arrow}
  \ncline[nodesepA=.15]{x}{a}
  \ncline{a}{b}
  \ncline[nodesepB=.15]{b}{y}
\end{pspicture}
\end{LTXexample}




\subsection{psfblock}

\begin{syntax}
\CMD{psfblock}\keys(\rmit{coor})\{\rmit{node}\}\{\rmit{stuff}\}
\end{syntax}

This macro is very similar to the \CMD{psblock} macro except that the size of the frame is controlled by the key \texttt{framesize}. The frame size is specified as \texttt{framesize=\rmit{num1[dimen]} \rmit{num2[dimen]}}. Note that \rmit{num1} and \rmit{num2} are separated by a space, not by comma. If \rmit{num2} is absent, then a square frame is created.


\begin{LTXexample}
\begin{pspicture}[showgrid=true](6,2)
  \rput(0,1){\rnode{x}{$x[n]$}}
  \psfblock[framesize=.75 .5](2,1){a}{$H_1$}
  \psfblock[framesize=1.5 1](4,1){b}{$H_2$}
  \rput(6,1){\rnode{y}{$y[n]$}}
  %-----------------
  \psset{style=Arrow}
  \ncline[nodesepA=.15]{x}{a}
  \ncline{a}{b}
  \ncline[nodesepB=.15]{b}{y}
\end{pspicture}
\end{LTXexample}



\subsection{psusampler}

\begin{syntax}
\CMD{psusampler}\keys(\rmit{coor})\{\rmit{node}\}\{\rmit{stuff}\}
\end{syntax}

This macro is similar to the \CMD{psfblock} except that \rmit{stuff} is placed next to an up-arrow in math mode representing an up-sampler. \emph{Notice that \rmit{stuff} must be in text mode, not in the math mode, i.e., do not put \$ around \rmit{stuff}.}

\begin{LTXexample}
\begin{pspicture}[showgrid=true](6,2)
  \rput(0,1){\rnode{x}{$x[n]$}}
  \psusampler[framesize=1 .75](3,1){a}{2}
  \rput(6,1){\rnode{y}{$y[n]$}}
  %-----------------
  \psset{style=Arrow}
  \ncline[nodesepA=.15]{x}{a}
  \ncline[nodesepB=.15]{a}{y}
\end{pspicture}
\end{LTXexample}



\subsection{psdsampler}

\begin{syntax}
\CMD{psdsampler}\keys(\rmit{coor})\{\rmit{node}\}\{\rmit{stuff}\}
\end{syntax}

This macro is similar to the \CMD{psfblock} except that \rmit{stuff} is placed next to a down-arrow in math mode representing a  down-sampler. \emph{Notice that \rmit{stuff} must be in text mode, not in the math mode, i.e., do not put \$ around \rmit{stuff}.}

\begin{LTXexample}
\begin{pspicture}[showgrid=true](6,2)
  \rput(0,1){\rnode{x}{$x[n]$}}
  \psdsampler[framesize=1 .75](3,1){a}{3}
  \rput(6,1){\rnode{y}{$y[n]$}}
  %-----------------
  \psset{style=Arrow}
  \ncline[nodesepA=.15]{x}{a}
  \ncline[nodesepB=.15]{a}{y}
\end{pspicture}
\end{LTXexample}




\subsection{nclist}

\begin{syntax}
\CMD{nclist}\keys\{\rmit{nc-macro}\}\{\rmit{node-list}\}
\end{syntax}

This macro is very useful when connecting several nodes using a single node-connecting macro. The \rmit{node-list} must be a comma-separated list of nodes. If \rmit{node-list} is $n_1, n_2, n_3, \dotsc$ is a list of nodes, then \CMD{nclist} connects $n_1$ to $n_2$, $n_2$ to $n_3$, and so forth all using the macro \rmit{nc-macro}.

\begin{LTXexample}
\begin{pspicture}[showgrid=true](6,2)
  \psblock(1,1){a}{A}
  \psblock(2.5,1){b}{B}
  \psblock(4,1){c}{C}
  \psblock(5.5,1){d}{D}
  \nclist[style=Arrow]{ncline}{a,b,c,d}
\end{pspicture}
\end{LTXexample}


\begin{LTXexample}
\begin{pspicture}[showgrid=true](6,2)
  \dotnode(0,1){a}
  \dotnode(1.5,1){b}
  \dotnode(3,1){c}
  \dotnode(4.5,1){d}
  \dotnode(6,1){e}
  \psset{style=ArrowIn,arcangle=35}
  \psset{linecolor=red}
  \nclist{ncarc}{a,b,c,d,e}
\end{pspicture}
\end{LTXexample}



%%=======================================================================
%% Examples
%%=======================================================================

\lstset{pos=t}

\section{Examples}
\label{sec:examples}

In this section, we provide some examples to illustrate the benefits and usage of macros defined in Section~\ref{sec:graphical macros}. Note that some of these examples require the use of additional packages. In that case, additional packages are mentioned next to the example number.



\subsection{Complex Number}

%%------------------------
%%--- example ------------
%%------------------------

\Example{pstricks-add} Show the complex number $c = a + j b = \rho e^{j\theta}$ as a point in the complex plane.

\bigskip

\begin{LTXexample}
\begin{pspicture}[showgrid=true](-1,-1)(3,3)
  %--- Drawing axes ---
  \psaxeslabels[xlpos=t](0,0)(0,0)(3,3){\RE}{\IM}

  %--- Defining some useful nodes ---
  \dotnode[linecolor=blue](2,2){c}
  \pnode(0,0){org}
  \pnode(2,0){a}
  \pnode(0,2){b}

  %--- Connecting nodes ---
  \ncline{org}{c}
  \ncline[linecolor=gray,style=Dash]{c}{a}
  \ncline[linecolor=gray,style=Dash]{c}{b}

  %--- Labeling ---
  \color{purple}
  \psset{linecolor=purple,arrows=|-|,nrot=:U}
  \psbrace*[style=BraceDown](org)(a){$a$}
  \psbrace*[style=BraceLeft](b)(org){$b$}
  \ncline[offset=.25]{org}{c} \ncput*{$\rho$}
  \psarc[linecolor=gray](org){.75}{0}{45}
  \rput(1;22.5){$\theta$}
\end{pspicture}
\end{LTXexample}



\newpage

\subsection{Plotting}

%%------------------------
%%--- example ------------
%%------------------------

\Example{pst-plot} Consider the continuous-time signal
\[
x_c(t) =
\begin{cases}
\sin(t)\enspace,  &  t \geq 0 \\
0\enspace,  &  t < 0\enspace.
\end{cases}
\]
Draw the sampled sequence $x[n] = x_c(\pi n/4)$.

\bigskip

\begin{LTXexample}
\begin{pspicture}[showgrid=true](-3,-2)(9,2)
  %--- Drawing axes ---
  \psaxeslabels(0,0)(-3,-2)(9,2){$n$}{$x[n]$}

  %--- x_c(t) ---
  \psplot[style=Graph,linecolor=gray,linestyle=dashed]{0}{8}{x 45 mul sin}

  %--- x[n] ---
  \psset{style=Stem,linecolor=teal,stemtagformat={\color{blue}\scriptstyle}}
  \psstem(-2,1){0,0,0}
  \psstem[stemtag](1,1){.707107,1,.707107,0,-.707107,-1,-.707107,0}

  %--- Labeling the origin ---
  \uput[-45](0,0){$\color{blue}\scriptstyle 0$}
  
  %--- Horizontal ticks ----
  \pshtick[linecolor=gray](0,1){.1}
  \pshtick[linecolor=gray](0,-1){.1}
  \uput[180](0,1){$\scriptstyle 1$}
  \uput[180](0,-1){$\scriptstyle -1$}
\end{pspicture}
\end{LTXexample}



\newpage

%%------------------------
%%--- example ------------
%%------------------------

\Example{pst-plot} Consider the process of sampling a continuous-time signal $x_c(t)$ with period $T$ as follows: (1) Multiply $x_c(t)$ by the impulse train $s(t) = \sum_{n=-\infty}^\infty \delta(t - nT)$ to obtain $x_s(t) = x_c(t) s(t)$, and (2) Convert every delta in $x_s(t)$ into a sequence to obtain the sampled sequence $x[n]$. Demonstrate this process for the continuous-time signal $x_c(t) = 0.5\sin(\pi t/2) + 0.5$ and $T = 1$.

\begin{LTXexample}
\begin{pspicture}[showgrid=true](-7,-5)(7,1)
  %--- Some settings and definitions ---
  \psset{plotpoints=500,ylpos=l,stemtag}
  \def\plotsin[#1]{\psplot[#1]{-6}{6}{x 90 mul sin .5 mul .5 add}}

  %--- x_c(t) ---
  \psaxeslabels(0,0)(-7,0)(7,0){$t$}{}
  \rput[tl](-7,1){$x_c(t)$}
  \plotsin[style=Graph,linecolor=teal]
  \multips(-6,0)(1,0){13}{\psline[linecolor=gray](0,-.075)(0,.075)}
  \multido{\nn=-6+1}{13}{\rput[t](\nn,-.25){$\scriptstyle\nn$}}

  %--- s(t) ----
  \rput(0,-1.5){%
    \psaxeslabels(0,0)(-7,0)(7,0){$t$}{}
    \rput[tl](-7,1){$s(t)$}
    \psset{style=Stem,style=Arrow,stemhead=>,linecolor=teal}
    \psstem(-6,1){1,1,1,1,1,1,1,1,1,1,1,1,1}}

  %--- x_s(t) ---
  \rput(0,-3){%
    \psaxeslabels(0,0)(-7,0)(7,0){$t$}{}
    \rput[tl](-7,1){$x_s(t)$}
    \plotsin[style=Graph,linecolor=gray,linestyle=dashed]
    \psset{style=Stem,style=Arrow,stemhead=>,linecolor=teal}
    \psstem(-6,1){.5}  \psstem(-4,1){.5,1,.5}
    \psstem{.5,1,.5}   \psstem(4,1){.5,1,.5}}

  %--- x[n] ----
  \rput(0,-4.5){%
    \psaxeslabels(0,0)(-7,0)(7,0){$n$}{}
    \rput[tl](-7,1){$x[n]$}
    \psset{style=Stem,style=Arrow,linecolor=teal}
    \psstem(-6,1){.5,0,.5,1,.5,0,.5,1,.5,0,.5,1,.5}}
\end{pspicture}
\end{LTXexample}



\newpage

\subsection{Pole-Zero Diagram}

%%------------------------
%%--- example ------------
%%------------------------

\Example{} Draw the pole-zero diagram of a system with the following system function.
\[
H(z) = \frac{z^4 - 2z^3 + 2z^2}{z^2 - 4}
\]


\begin{LTXexample}
\begin{pspicture}[showgrid=true](-3,-2)(3,2)
  %--- Drawing axes ---
  \psaxeslabels(0,0)(-3,-2)(3,2){$\sRE$}{$\sIM$}

  %--- Marking zeros ---
  \pszero[order=2](0,0){z1}
  \pszero(1,1){z2}   \nput{90}{z2}{$1 + j$}
  \pszero(1,-1){z3}  \nput{-90}{z3}{$1 - j$}

  %--- Marking poles ---
  \psset{linecolor=red}
  \pspole(2,0){p1}   \nput{-90}{p1}{$2$}
  \pspole(-2,0){p2}  \nput{-90}{p2}{$-2$}
\end{pspicture}
\end{LTXexample}


\newpage

%%------------------------
%%--- example ------------
%%------------------------

\Example{multido} Draw the pole-zero diagram of a fifth-order Butterworth filter.

\begin{LTXexample}
\begin{pspicture}[showgrid=true](-3,-3)(3,3)
  %--- Drawing axes ---
  \psaxeslabels(0,0)(-3,-3)(3,3){$\sRE$}{$\sIM$}
  \pscircle[linecolor=gray](0,0){2}

  %--- Angle between poles ---
  \psset{linecolor=gray}
  \psline[linestyle=dashed](3;108)
  \psline[linestyle=dashed](3;144)
  \psarc[style=Arrow,arrows=<->](0,0){2.5}{108}{144}
  \rput(2.75;126){\textcolor{gray}{$36^\circ$}}

  %--- Placing poles ---
  \psset{linecolor=red,scale=1.25}
  \multido{\np=108+36}{5}{\pspole(2;\np){p}}
\end{pspicture}
\end{LTXexample}



\newpage


\subsection{Region of Convergence}

%%------------------------
%%--- example ------------
%%------------------------

\Example{} Shade the region of convergence (ROC) of a system with the following system function assuming it is: (1) causal, and (2) stable.
\[
H(z) = \frac{1}{z^2 + z - \tfrac{3}{4}}
\]
Since the poles of the system are at $z = \tfrac{1}{2}$ and $z = -\tfrac{3}{2}$, the ROC of the system with the given assumptions is as follows.

\bigskip

\begin{LTXexample}
\begin{pspicture}[showgrid=true](-5,-4)(5,4)
  %--- Shading ROCs ---
  \psring[fillcolor=teal!30](0,0){.75}{2.25}
  \psdiskc[fillcolor=blue!30](0,0)(3.75,3){2.25}

  %--- Drawing axes ---
  \psaxeslabels(0,0)(-4.25,-3.75)(4.75,4){$\sRE$}{$\sIM$}

  %--- Marking poles ---
  \psset{linecolor=purple,labelsep=.05}
  \pscircle(0,0){1.5}
  \rput[b]{45}(1.68;135){{\scriptsize\color{purple}unit circle}}
  \pscircle[linecolor=gray,linestyle=dashed,style=Dash](0,0){.75}
  \pspole(.75,0){p1}    \nput{-45}{p1}{$\tfrac{1}{2}$}
  \pscircle[linecolor=gray,linestyle=dashed,style=Dash](0,0){2.25}
  \pspole(-2.25,0){p2}  \nput{225}{p2}{$\scriptstyle-\tfrac{3}{2}$}

  %--- Labeling the stable and causal ROCs ---
  \rput*(1.5;45){{\scriptsize Stable}}
  \rput*(3.35;45){{\scriptsize Causal}}
\end{pspicture}
\end{LTXexample}



\newpage


\subsection{Block Diagrams}

%%------------------------
%%--- example ------------
%%------------------------

\Example{} Draw the block diagram of two systems $H_1(z)$ and $H_2(z)$ in both parallel and series combinations.

\bigskip

\begin{LTXexample}
%===========================
%   Parallel Combination
%===========================
\begin{pspicture}[showgrid=true](-3,-1)(3,1)
  %--- Defining blocks ---
  \rput(-3,0){\rnode{x}{$x[n]$}}
  \dotnode(-1.5,0){dot}
  \psblock[fillstyle=solid,fillcolor=red!20](0,.75){H1}{$H_1(z)$}
  \psblock[fillstyle=solid,fillcolor=blue!20](0,-.75){H2}{$H_2(z)$}
  \pscircleop(1.5,0){oplus}
  \rput(3,0){\rnode{y}{$y[n]$}}

  %--- Connecting blocks ---
  \psset{style=Arrow}
  \ncline[nodesepA=.15]{-}{x}{dot}
  \ncangle[angleA=90,angleB=180]{dot}{H1}
  \ncangle[angleA=-90,angleB=180]{dot}{H2}
  \ncangle[angleB=90]{H1}{oplus}
  \ncangle[angleB=-90]{H2}{oplus}
  \ncline[nodesepB=.15]{oplus}{y}
\end{pspicture}
%
%========================
%   Series Combination
%========================
\begin{pspicture}[showgrid=true](-3,-1)(3,1)
  %--- Defining blocks ---
  \rput(-3,0){\rnode{x}{$x[n]$}}
  \psblock[fillstyle=solid,fillcolor=red!20](-1.25,0){H1}{$H_1(z)$}
  \psblock[fillstyle=solid,fillcolor=blue!20](1.25,0){H2}{$H_2(z)$}
  \rput(3,0){\rnode{y}{$y[n]$}}

  %--- Connecting blocks ---
  \ncline[nodesepA=.15]{x}{H1}
  \ncline{H1}{H2}
  \ncline[nodesepB=.15]{H2}{y}
\end{pspicture}
\end{LTXexample}


\newpage

%%------------------------
%%--- example ------------
%%------------------------

\Example{} Draw the block diagram of a continuous-to-discrete-time (C/D) converter.

\bigskip

\begin{LTXexample}
\begin{pspicture}[showgrid=true](-2,-2)(5.5,2)
  %--- Defining blocks ---
  \rput(-1.75,0){\rnode{xc}{$x_c(t)$}}
  \pscircleop[operation=times](0,0){otimes}
  \rput(0,1.25){\rnode{s}{$s(t)$}}
  \psblock[fillstyle=solid,fillcolor=purple!20](2.75,0){conv}{\parbox[c]{2\psunit}%
  {\centering Conversion from impulse train to discrete-time sequence}}
  \rput(5.5,0){\rnode{x}{$x[n]$}}

  %--- Connecting blocks ---
  \psset{style=Arrow}
  \ncline[nodesepA=.15]{xc}{otimes}
  \ncline[nodesepA=.15]{s}{otimes}
  \ncline{otimes}{conv}   \naput{$x_s(t)$}
  \ncline[nodesepB=.15]{conv}{x}

  %--- Drawing the dashed frame ---
  \psframe[linecolor=purple,linestyle=dashed,style=Dash](-.75,-1.5)(4.5,1.5)
  \rput(1.875,1.75){C/D Converter}
\end{pspicture}
\end{LTXexample}



\newpage

%%------------------------
%%--- example ------------
%%------------------------

\Example{multido} Draw the direct-form II block diagram of a discrete-time LTI system with the following system function.
\[
H(z) = \frac{1 - z^{-1} + 2z^{-2} + 3z^{-3}}{1 + z^{-1} - 0.5 z^{-2} + 0.75 z^{-3}}
\]


\begin{LTXexample}
\begin{pspicture}[showgrid=true](-5,-6)(5,1)
  %--- Some settings ---
  \psset{style=Arrow}

  %--- Defining blocks ---
  \dotnode(0,0){dot1}
  \multido{\nA=1+1,\nB=2+1,\ryA=-.9+-1.8,\ryB=-1.8+-1.8}{3}{%
    \psblock(0,\ryA){D\nA}{$z^{-1}$}
    \dotnode(0,\ryB){dot\nB}}
  \multido{\nn=1+1,\ry=0+-1.8}{3}{\pscircleop(-2,\ry){oplusL\nn}}
  \multido{\nn=1+1,\ry=0+-1.8}{3}{\pscircleop(2,\ry){oplusR\nn}}
  \rput(-4,0){\rnode{x}{$x[n]$}}
  \rput(4,0){\rnode{y}{$y[n]$}}

  %--- Connecting blocks ---
  \psset{style=Arrow}
  \ncline[nodesepA=.15]{x}{oplusL1}
  \ncline{oplusL1}{oplusR1}
  \ncline[nodesepB=.15]{oplusR1}{y}
  \nclist{ncline}{dot1,D1,D2,D3}
  \ncline{-}{D3}{dot4}
  \nclist{ncline}{oplusL3,oplusL2,oplusL1}
  \nclist{ncline}{oplusR3,oplusR2,oplusR1}
  \ncline{dot2}{oplusL2}   \nbput{$-1$}
  \ncline{dot2}{oplusR2}   \naput{$-1$}
  \ncline{dot3}{oplusL3}   \nbput{$0.5$}
  \ncline{dot3}{oplusR3}   \naput{$2$}
  \ncangle[angleA=180,angleB=-90]{dot4}{oplusL3}   \nbput[npos=.5]{$-0.75$}
  \ncangle[angleB=-90]{dot4}{oplusR3}   \naput[npos=.5]{$3$}
\end{pspicture}
\end{LTXexample}



\newpage

%%------------------------
%%--- example ------------
%%------------------------

\Example{pstricks-add} Draw the block diagram of an $M$-channel maximally decimated filter bank.


\begin{LTXexample}
\begin{pspicture}[showgrid=true](-6,-4)(6,.5)
  \psset{framesize=1.2 .65}
  \rput(-6,0){\rnode{x}{$x[n]$}}
  \rput(6,0){\rnode{y}{$y[n]$}}
  \dotnode(-4.5,0){dot1}
  \dotnode(-4.5,-1){dot2}
  \newcount\cnt

  %--- First and second channels ---
  \cnt=0
  \psforeach{\ry}{0,-1}{%
    \advance\cnt by 1
    \psfblock(-3,\ry){h\the\cnt}{$h_{\the\cnt}[n]$}
    \psdsampler(-1,\ry){ds\the\cnt}{$M$}
    \psusampler(1,\ry){us\the\cnt}{$M$}
    \psfblock(3,\ry){g\the\cnt}{$g_{\the\cnt}[n]$}
    \pscircleop(4.5,\ry){oplus\the\cnt}}

  %--- Placing dots ---
  \cnt=0
  \psforeach{\rx}{-4.5,-3,-1,1,3,4.5}{%
    \advance\cnt by 1
    \rput(\rx,-2){\rnode{dots\the\cnt}{\psldots[angle=90]}}}

  %--- M-th channel ---
  \psfblock(-3,-3){hM}{$h_M[n]$}
  \psdsampler(-1,-3){dsM}{$M$}
  \psusampler(1,-3){usM}{$M$}
  \psfblock(3,-3){gM}{$g_M[n]$}

  %--- Connecting blocks ---
  \psset{style=Arrow}
  \ncline[nodesepA=.15]{x}{h1}
  \nclist{ncline}{h1,ds1,us1,g1,oplus1}
  \ncline[nodesepB=.15]{oplus1}{y}
  \nclist{ncline}{dot2,h2,ds2,us2,g2,oplus2}
  \ncline[nodesepB=.35]{dot1}{dots1}
  \ncangle[nodesepA=.35,angleA=-90,angleB=180]{dots1}{hM}
  \nclist{ncline}{hM,dsM,usM,gM}
  \ncangle[nodesepB=.35,angleB=-90]{gM}{dots6}
  \ncline[nodesepA=.35]{dots6}{oplus2}
  \ncline{oplus2}{oplus1}
\end{pspicture}
\end{LTXexample}




\bibliographystyle{plain}
\bibliography{pstricks}


\end{document}