summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/generic/pst-platon/pst-platon-doc.tex
blob: a62a135f7ff25eb667ebee35f339b2edd2283a4e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
%% $Id: pst-platon-doc.tex 208 2009-12-25 08:54:53Z herbert $
\documentclass[11pt,english,BCOR10mm,DIV12,bibliography=totoc,parskip=false,smallheadings
    headexclude,footexclude,oneside]{pst-doc}
\usepackage[utf8]{inputenc}
\usepackage{pst-platon}
\let\pstFV\fileversion
\lstset{language=PSTricks,basicstyle=\footnotesize\ttfamily}
%
\def\bgImage{\psset{psscale=2,PstPicture=false,faceNameFont=\huge\sffamily}
  \psIcosahedron%[Frame=false,Viewpoint=-1 0.5 1.2]}
}
\title{\texttt{pst-platon}}
\subtitle{A PSTricks package for drawing platonic solids; v.\pstFV}
\author{Manuel Luque \\ Herbert Vo\ss}
\docauthor{}
\date{\today}

\begin{document}
\maketitle

\begin{abstract}
A platonic solid is a convex polyhedron that is a regular polygon.
The faces of a platonic solid are congruent regular polygons, 
with the same number of faces meeting at each vertex. 
All edges are congruent, as are its vertices and angles.
There exists five platonic solids.
\end{abstract}

\vfill
\clearpage


\tableofcontents

\newpage

\section{The optional Arguments}
\subsection{\nxLkeyword{PstPicture}}
With \Lkeyset{PstPicture=true} (default) the image is set into a \Lenv{pspicture} environment, which 
reserves some space. The correct bounding box depends to the viewpoint. With setting of \Lkeyset{PstPicture=false}
you can set the image inside your own \Lenv{pspicture} environment with other coordinates. All
solids areplaced relative to the origin of the coordinate system. Use \Lcs{rput} to place the
platonic solid elsewhere.

\begin{LTXexample}[pos=t,rframe=]
\begin{pspicture}[showgrid=true](-1,-2)(10,5)
\psTetrahedron[PstPicture=false]
\rput(2,2){\psTetrahedron[PstPicture=false,Viewpoint=1 1.2 0.5]}
\psset{unit=1.3}
\rput(5,3){\psTetrahedron[PstPicture=false,Frame=false,Viewpoint=-1 0.5 2]}
\end{pspicture}
\end{LTXexample}

\subsection{\nxLkeyword{Frame}}

With \Lkeyset{Frame=true} (default) the unique cube with a=1 is printed with
dotted lines.

\begin{LTXexample}[width=7cm,rframe=]
\psTetrahedron 
\psTetrahedron[Frame=false] 
\end{LTXexample}

\clearpage

\subsection{\nxLkeyword{Viewpoint}}

With \Lkeyword{Viewpoint} the three dimensional view point from which the 
solid is seen can be set. The default is \verb=1 1 1=.

\begin{LTXexample}[width=10.5cm,rframe=,wide]
\psTetrahedron
\psTetrahedron[Viewpoint=-1 1 .5]
\psTetrahedron[Viewpoint=0.4 -1 .5] 
\end{LTXexample}

\subsection{\nxLkeyword{faceName}}

With \Lkeyword{faceName} the name of the faces can be set with setting
it to one of the macros \Lcs{Alph} (default), \Lcs{alph}, \Lcs{arabic},
\Lcs{Roman}, and \Lcs{roman}.

\begin{LTXexample}[width=10.5cm,rframe=,wide]
\psHexahedron%
\psHexahedron[faceName=\alph]% 
\psHexahedron[faceName=\Roman] 
\end{LTXexample}


\subsection{\nxLkeyword{faceNameFont}}

With \Lkeyword{faceNameFont} the font for the face name can be set.
Any valid \LaTeX\ command is possible.

\begin{LTXexample}[width=10.5cm,rframe=,wide]
\psHexahedron%
\psHexahedron[faceNameFont=\Huge]% 
\psHexahedron[faceNameFont=\Huge\sffamily] 
\end{LTXexample}

\subsection{\nxLkeyword{psscale}}

The solids can be magnified by the keyword \Lkeyword{psscale}
which is preset to 1.

\begin{LTXexample}[width=8cm,rframe=]
\psOctahedron[Frame=false]
\psOctahedron[Frame=false,psscale=2]
\end{LTXexample}

\subsection{Colors}
The faces are defined by the colors of type A or B with 
\begin{verbatim}
\newcommand\colorTypeA{%
\definecolor{ColorA}{cmyk}{0.1,0.1,0.05,0}
\definecolor{ColorB}{cmyk}{0.15,0.15,0.05,0}
...
}
\newcommand\colorTypeB{%
\definecolor{ColorA}{cmyk}{0.1,0.2,0.1,0}
\definecolor{ColorB}{cmyk}{0.15,0.2,0.15,0}
...
}
\end{verbatim}

New types can be definied in the same way and then set by the keyword \Lkeyword{colorType}=\Larga{type}.

\begin{LTXexample}[width=5cm,rframe=]
\newcommand\colorTypeC{%
  \colorlet{ColorA}{red}
  \colorlet{ColorB}{green}
  \colorlet{ColorC}{blue}
  \definecolor{ColorD}{rgb}{0.55,0.2,0.15}
}
\psTetrahedron[colorType=C]
\end{LTXexample}


\section{The Platonic Solids}
There are the five platonic solids with the macronames 
\Lcs{psTetrahedron}, \Lcs{psHexahedron}, \Lcs{psOctahedron}, \Lcs{psDodecahedron}, 
and \Lcs{psIcosahedron}.


\subsection{Tetrahedron}

\begin{LTXexample}[width=5cm,rframe=]
\psTetrahedron
\end{LTXexample}

\begin{LTXexample}[width=5cm,rframe=]
\psTetrahedron[Viewpoint=1 1.2 0.5]
\end{LTXexample}

\begin{LTXexample}[width=5cm,rframe=]
\psTetrahedron[Frame=false,Viewpoint=0.7 -0.5 -0.8]
\end{LTXexample}

\begin{LTXexample}[pos=t,rframe=]
\psTetrahedron[Frame=false,Viewpoint=1 1.2 0.7] 
\psTetrahedron[Frame=false,Viewpoint=-1 0.5 2] 
\psTetrahedron[Frame=false,Viewpoint=0.7 -0.5 -0.8]
\end{LTXexample}

\subsection{Hexahedron}
\begin{LTXexample}[width=5cm,rframe=]
\psHexahedron
\end{LTXexample}

\begin{LTXexample}[width=5cm,rframe=]
\psHexahedron[Viewpoint=1 1.2 0.5]
\end{LTXexample}

\begin{LTXexample}[width=5cm,rframe=]
\psHexahedron[Frame=false,Viewpoint=0.7 -0.5 -0.8]
\end{LTXexample}

\begin{LTXexample}[pos=t,rframe=]
\psHexahedron[Frame=false,Viewpoint=1 1.2 0.7] 
\psHexahedron[Frame=false,Viewpoint=-1 0.5 2] 
\psHexahedron[Frame=false,Viewpoint=0.7 -0.5 -0.8]
\end{LTXexample}


\subsection{Octahedron}
\begin{LTXexample}[width=5cm,rframe=]
\psOctahedron
\end{LTXexample}

\begin{LTXexample}[width=5cm,rframe=]
\psOctahedron[Viewpoint=1 1.2 0.5]
\end{LTXexample}

\begin{LTXexample}[width=5cm,rframe=]
\psOctahedron[Frame=false,Viewpoint=0.7 -0.5 -0.8]
\end{LTXexample}

\begin{LTXexample}[pos=t,rframe=]
\psset{psscale=2}
\psOctahedron[Frame=false,Viewpoint=1 1.2 0.7] 
\psOctahedron[Frame=false,Viewpoint=-1 0.5 2] 
\psOctahedron[Frame=false,Viewpoint=0.7 -0.5 -0.8]
\end{LTXexample}

\clearpage
\subsection{Dodecahedron}
\begin{LTXexample}[width=5cm,rframe=]
\psDodecahedron
\end{LTXexample}

\begin{LTXexample}[pos=t,rframe=]
\psDodecahedron[Viewpoint=-0.5 0.9 0.9]
\psDodecahedron[Viewpoint=-0.5 0.7 -1.2]
\psDodecahedron[Viewpoint=0.5 -0.7 -0.5]
\end{LTXexample}

\begin{LTXexample}[pos=t,rframe=]
\psDodecahedron[Frame=false,Viewpoint=-0.2 0.2 0.2]
\psDodecahedron[Frame=false,Viewpoint=-0.707 -0.707 -1]
\psDodecahedron[Frame=false,Viewpoint=0.6 -0.7 -0.5]
\end{LTXexample}

\subsection{Isocahedron}

\begin{LTXexample}[width=5cm,rframe=]
\psIcosahedron
\end{LTXexample}

\begin{LTXexample}[pos=t,rframe=]
\psIcosahedron[Viewpoint=1 1.2 0.5]
\psIcosahedron[Viewpoint=-1 1.2 0.5]
\psIcosahedron[Viewpoint=-1 -1.2 0.5]
\psIcosahedron[Viewpoint=1 -1.2 0.5]
\end{LTXexample}

\begin{LTXexample}[pos=t,rframe=]
\psIcosahedron[Frame=false,Viewpoint=0.5 -1 1]
\psIcosahedron[Frame=false,Viewpoint=-1 0.5 1.2]
\psIcosahedron[Frame=false,Viewpoint=0.7 -0.5 -0.8]
\psIcosahedron[Frame=false,Viewpoint=-0.7 -0.7 -0.2]
\end{LTXexample}



\section{List of all optional arguments for \texttt{pst-platon}}

\xkvview{family=pst-platon,columns={key,type,default}}





\nocite{*}
\bgroup
\RaggedRight
\bibliographystyle{plain}
\bibliography{pst-platon-doc}
\egroup

\printindex



\end{document}