summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/generic/pst-feyn/pst-feyn-doc.tex
blob: 31a191f2a616d18097572586b4d551022f0e6ef5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
%% $Id: pst-feyn-doc.tex 826 2018-09-27 09:21:43Z herbert $
\PassOptionsToPackage{dvipsnames,svgnames,x11names}{xcolor}
\documentclass[11pt,english,BCOR10mm,DIV12,bibliography=totoc,parskip=false,smallheadings,
    headexclude,footexclude,oneside,dvipsnames,svgnames]{pst-doc}
\listfiles

\usepackage[utf8]{inputenc}
\usepackage{pst-feyn}
\let\pstFV\fileversion
\let\pstFD\filedate
\let\belowcaptionskip\abovecaptionskip
\usepackage{pst-plot}


%\usepackage[dvipsnames,svgnames,x11names]{xcolor}

\def\textRed#1{\textcolor{red}{#1}}
\def\textBlack#1{\textcolor{black}{#1}}
\def\textOliveGreen#1{\textcolor{OliveGreen}{#1}}

\makeatletter
\renewcommand*\l@subsection{\bprot@dottedtocline{2}{1.5em}{3.6em}}
\renewcommand*\l@subsubsection{\bprot@dottedtocline{3}{3.8em}{4.5em}}
\makeatother
\def\bgImage{\begin{pspicture}(0,-1)(4.4,2)
\psArrowLine(0,0)(1,1) \psArrowLine(1,1)(0,2)
\psArrowLine(3,1)(4,0) \psArrowLine(4,2)(3,1)
\psPhoton[windings=4.5,amplitude=4pt,linecolor=blue](1,1)(3,1)
\psGluon[windings=4,amplitude=3pt,linecolor=Green](3.5,1.5)(4.2,0.9)
\rput(0.5,1.9){$\mathrm{e}^-$} \rput(3.5,1.9){$\bar{\mathrm{q}}$}
\rput(0.5,0.2){$\mathrm{e}^+$} \rput(3.5,0.2){q}
\rput(2,1.5){$\gamma$}\rput[r](4.2,1.3){$\mathrm{g}$}
\psline{->}(0,-0.2)(4,-0.2)\uput[0](4,-0.2){$t$}
\end{pspicture} 
}
\lstset{explpreset={pos=l,width=-99pt,overhang=0pt,hsep=\columnsep,vsep=\bigskipamount,rframe={}},
    escapechar=?}
\def\textat{\char064}%

\let\KeyWord\Lkeyword
%#1{$\backslash\!\!\textRed{#1}\textBlack\!\!$}

\addbibresource{\jobname.bib}


\begin{document}
\author{Herbert Voß}
\date{\today}
\title{pst-feyn}
\subtitle{A PSTricks package for drawing Feynman diagrams\newline  v\pstFV~--~\pstFD}
\maketitle

\tableofcontents

\begin{abstract}
\LPack{pst-feyn} is a set of drawing graphical elements which are used for Feynman diagrams. 
Simple flow charts and other graphics are possible, too. The package is based on the
macros of the old package \LPack{axodraw} from John Collins and Jos Vermaseren (\cite{axodraw2}), but uses the 
capabilities of PSTricks (\cite{PSTricks2,PSTricksE}).


\vfill\noindent
Thanks for feedback and contributions to:\\

\end{abstract}
\clearpage

\section{Using pst-feyn}

The commands of \LPack{pst-feyn} should be executed inside either the \Lenv{pspicture}  
environment. Inside this environment it is possible to place objects 
at arbitrary positions and put text between them.  An example would be


\begin{LTXexample}[width=5cm]
\begin{pspicture}[showgrid](-1,-3.3)(4,3)
\psGluonArc[linecolor=red,windings=8,radius=2cm](1.5,0)(0,180)
\psGluonArc[linecolor=green,windings=8,radius=2cm](1.5,0)(180,360)
\psGluon[linecolor=blue,windings=4](-0.5,0)(1,0)\psdot(-0.5,0)
\psGluon[linecolor=blue,windings=4](2,0)(3.5,0)\psdot(3.5,0)
\end{pspicture}   
\end{LTXexample}

The syntax and the meaning of these command are explained in the next 
section. One should note that all coordinates are presented in the current
user units, which is by default 1cm.
It is possible to use scale 
transformations if these units are not convenient.



\section{The commands}

The commands that are currently available in \LPack{pst-feyn} are (in alphabetic 
order):

\subsection*{\Lcs{psArrowArc}\OptArgs\Largr{$x,y$}\Largr{$\phi_1,\phi_2$}}

    Draws an arc segment centered around $(x,y)$. The radius can be set by the optional argument \Lkeyword{radius}
The arc-segment runs counterclockwise from $\phi_1$ to $\phi_2$. All 
    angles are given in degrees. In the middle of the segment there will 
    be an arrow.

\begin{LTXexample}[width=5cm]
\begin{pspicture}[showgrid](-0.4,-0.4)(4,2.4)
\psArrowArc[linecolor=blue,
  linewidth=1.5pt,radius=1.75](2,0)(0,180)
\end{pspicture}   
\end{LTXexample}

\subsection*{\Lcs{psArrowArcn}\OptArgs\Largr{$x,y$}\Largr{$\phi_1,\phi_2$}}

The same, but clockwise.

\subsection*{\Lcs{psArrowLine}\OptArgs\Largr{$x_1,y_1$}\Largr{$x_2,y_2$}}

    Draws a line from ($x_1$,$y_1$) to ($x_2$,$y_2$). There will be an 
    arrow in the middle of the line.

\begin{LTXexample}[width=5cm]
\begin{pspicture}[showgrid](-0.4,-0.4)(4,2.4)
\psArrowLine[linecolor=blue,
  linewidth=1.5pt](0,0)(4,2)
\end{pspicture}   
\end{LTXexample}


\subsection*{\Lcs{psBCirc}\OptArgs\Largr{x,y}\Largb{radius}}

    Draws a circle of which the contents are blanked out. This means that 
    anything that was present at the position of the circle will be 
    overwritten. The center of the circle is at $(x,y)$. 

\begin{LTXexample}[width=5cm]
\begin{pspicture}[showgrid](-0.4,-0.4)(4,4.2)
\psBCirc[linecolor=blue,
  linewidth=1.5pt](2,2){2}
\end{pspicture}   
\end{LTXexample}


\subsection*{\Lcs{psBText}\OptArgs\Largr{$x,y$}\Largb{text}}
    Draws a box with one line of text in it. The coordinates refer to the 
    center of the box. The box is like a BBox in that it blanks out 
    whatever was at the position of the box. 

\begin{LTXexample}[width=5cm]
\begin{pspicture}[showgrid](-0.4,-0.4)(4,4.2)
\psBText[linecolor=blue](2,3.5){A short line}
\psBText[linecolor=red](2,1.5){%
  A short line\\ and another one \\a.s.o.}
\end{pspicture}   
\end{LTXexample}


\subsection*{\Lcs{psCArc}\OptArgs\Largr{$x,y$}\Largr{$\phi_1,\phi_2$}}

    Draws an arc segment centered around $(x,y)$. The radius is set by the optional argument \Lkeyword{radius}. The 
    arc-segment runs counterclockwise from $\phi_1$ to $\phi_2$. The star version (\Lcs{psCArc*}) creates a filled arc.

\begin{LTXexample}[width=5cm]
\begin{pspicture}[showgrid](-0.4,-0.4)(4,2.2)
\psCArc[linecolor=blue,radius=2,
  linewidth=1.5pt](2,0)(80,180)
\psCArc[linecolor=red,linestyle=dashed,radius=2,
  linewidth=1.5pt](2,0)(0,80)
\end{pspicture}   
\end{LTXexample}


\subsection*{\Lcs{psCCirc}\Largr{$x,y$}\Largb{radius}\Largb{color1}\Largb{color2}}
Draws a circle around $(x,y)$. The contents of 
    the circle are lost. The color of the box will be color1 and the color 
    of the background inside the box will be color2. It is the same as\\
\verb|\pscircle[linecolor=color1,fillstyle=solid,fillcolor=color2](x,y){radius}|

\begin{LTXexample}[width=5cm]
\begin{pspicture}[showgrid](-0.4,-0.4)(4,4)
\psCCirc[linewidth=1.5pt](1.5,2){1.5}{blue}{red}
\psCCirc[linewidth=2.5pt](3,1){1}{green}{cyan}
\end{pspicture}   
\end{LTXexample}


\subsection*{\Lcs{psCText}\OptArgs\Largr{$x,y$}\Largb{col1}\Largb{col2}\Largb{text}}
    Draws a box with test in it. The 
    box is just big enough to fit around the text. The box is like a CBox in that it blanks out 
    whatever was at the position of the box. The color of the box and the 
    text inside is color1 and the background inside has the color color2.

\begin{LTXexample}[width=5cm]
\begin{pspicture}[showgrid](-0.4,-0.4)(4,4.2)
\psCText(2,3.5){red}{cyan}{A short line}
\psCText(2,1.5){green}{yellow}{%
  A short line\\ and another one \\a.s.o.}
\end{pspicture}   
\end{LTXexample}


\subsection*{\Lcs{psGluonArc}\Largr{$x,y$}\Largr{$\phi_1,\phi_2$}}

    Draws a gluon on an arc-segment. The center of the arc is (x,y) and r 
    is its radius. The arc segment runs counterclockwise from $\phi_1$ 
    to $\phi_2$. The width of the gluon is twice `amplitude'. Note that whether 
    the curls are inside or outside can be influenced with the sign of 
    the amplitude. When it is positive the curls are on the inside.

\begin{LTXexample}[width=5cm]
\begin{pspicture}[showgrid](-0.4,-0.4)(4,4.2)
\psGluonArc(0,2)(-90,90)% shows the default setting
\psGluonArc[windings=8,amplitude=5mm,radius=2cm,
           linecolor=red](4,2)(90,270)
\psGluonArc[windings=8,amplitude=-3mm,radius=2cm,
           linecolor=blue](4,2)(90,270)
\end{pspicture}   
\end{LTXexample}

\subsection*{\Lcs{psGluon}\Largr{$x_1,y_1$}\Largr{$x_2,y_2$}}
    Draws a gluon from ($x_1$,$y_1$) to ($x_2$,$y_2$). The width of the 
    gluon will be twice the value of `amplitude'. If the number of windings is not an integer 
    it will be rounded. The side at which the 
    windings lie is determined by the order of the two coordinates. Also 
    a negative amplitude can change this side.

\begin{LTXexample}[width=5cm]
\begin{pspicture}[showgrid](-0.4,-0.4)(4,4.2)
\psGluon(0,3)(4,3)% shows the default setting
\psGluon[windings=5,amplitude=5mm,linecolor=red](0,2)(4,2)
\psGluon[windings=6,amplitude=-3mm,linecolor=blue](0,1)(4,1)
\end{pspicture}   
\end{LTXexample}

\subsection*{\Lcs{psPhoton}\Largr{$x_1,y_1$}\Largr{$x_2,y_2$}}
    Draws a photon from $(x_1,y_1)$ to $(x_2,y_2)$. The width of the 
    photon will be twice the value of `amplitude'. The number of wiggles 
    is given by the last parameter. If twice this parameter is not an integer 
    it will be rounded to an integer value. Whether the first wiggle 
    starts up or down can be influenced with the sign of the amplitude.

\begin{LTXexample}[width=5cm]
\begin{pspicture}[showgrid](-0.4,-0.4)(4,4.2)
\psPhoton(0,3)(4,3)% shows the default setting
\psPhoton[windings=5,amplitude=5mm,linecolor=red](0,2)(4,2)
\psPhoton[windings=6,amplitude=-2mm,linecolor=blue](0,1)(4,1)
\end{pspicture}   
\end{LTXexample}



\subsection*{\Lcs{psPhotonArc}\Largr{$x,y$}\Largr{$\phi_1,\phi_2$}}
    Draws a photon on an arc-segment. The center of the arc is $(x,y)$. The arc segment runs counterclockwise from $\phi_1$ 
    to $\phi_2$. The width of the photon is twice `amplitude', and the 
    number of wiggles is given by the last parameter. Note that 
    the sign of the amplitude influences whether the photon starts going 
    outside (positive) or starts going inside (negative). If one likes 
    the photon to reach both endpoints from the outside the number of 
    wiggles should be an integer plus 0.5.

\begin{LTXexample}[width=5cm]
\begin{pspicture}[showgrid](-0.4,-0.4)(4,4.2)
\psPhotonArc(0,2)(-90,90)% shows the default setting
\psPhotonArc[windings=8,amplitude=5mm,radius=2cm,
           linecolor=red](4,2)(90,270)
\psPhotonArc[windings=8,amplitude=-3mm,radius=2cm,
           linecolor=blue](4,2)(90,270)
\end{pspicture}   
\end{LTXexample}


\subsection*{\Lcs{psPText}\OptArg{mode}\Largr{$x,y$}\Largr{$\phi$}\Largb{text}}
    The focal point of the text box is $(x,y)$. The mode parameter tells how the text should be 
    positioned with respect to the focal point. If this parameter is 
    omitted the center of the text will correspond to the focal point. 
    Other options are: l for having the left side correspond to the 
    focal point, r for having the right side correspond to it, t for 
    having the top at the focal point and b for the bottom. One may 
    combine two letters as in [bl], as long as it makes sense. The 
    parameter $\phi$ is a rotation angle. The command is the same as\\
    \verb|\rput[mode]{phi}(x,y){\shortstack{#4}}|


\begin{LTXexample}[width=5cm]
\begin{pspicture}[showgrid](-0.4,-0.4)(4,4.2)
\psPText(2,3.5)(0){A short line}
\psPText[lb](3,0)(90){%
  A short line\\ and another one \\a.s.o.}
\end{pspicture}   
\end{LTXexample}



\subsection*{\Lcs{psText}\OptArg{mode}\Largr{$x,y$}\Largb{text}}
Same as \Lcs{rput}.



\subsection*{\Lcs{psZigZag}\Largr{$x_1,y_1$}\Largr{$x_2,y_2$}}
    Draws a zigzag line from ($x_1$,$y_1$) to ($x_2$,$y_2$). The width of the 
    zigzagging will be twice the value of `amplitude'. The number of zigzags 
    is given by the last parameter. If twice this parameter is not an integer 
    it will be rounded to an integer value. Whether the first zigzag 
    starts up or down can be influenced with the sign of the amplitude.

\begin{LTXexample}[width=5cm]
\begin{pspicture}[showgrid](-0.4,-0.4)(4,4.2)
\psZigZag(0,3)(4,3)% shows the default setting
\psZigZag[windings=5,amplitude=5mm,linecolor=red](0,2)(4,2)
\psZigZag[windings=6,amplitude=-2mm,linecolor=blue](0,1)(4,1)
\end{pspicture}   
\end{LTXexample}



\iffalse
\begin{itemize}
\item \Lcs{psLinAxis}($x_1$,$y_1$)($x_2$,$y_2$)($N_D$,$d$,hashsize
    ,offset,width) \hfill \\
    This draws a line to be used as an axis in a graph. Along the axis 
    are hash marks. Going from the first coordinate to the second, the 
    hash marks are on the left side if `hashsize', which is the size of the 
    hash marks, is positive and on the right side if it is negative. 
    $N_D$ is the number of `decades', indicated by fat hash marks, and 
    $d$ is the number of subdivisions inside each decade. The offset 
    parameter tells to which subdivision the first coordinate 
    corresponds. When it is zero, this coordinate corresponds to a fat 
    mark of a decade. Because axes have their own width, this is 
    indicated with the last parameter.
\item \Lcs{psLogAxis}($x_1$,$y_1$)($x_2$,$y_2$)($N_L$,hashsize
    ,offset,width) \hfill \\
    This draws a line to be used as an axis in a graph. Along the axis 
    are hash marks. Going from the first coordinate to the second, the 
    hash marks are on the left side if `hashsize', which is the size of the 
    hash marks, is positive and on the right side if it is negative. 
    $N_L$ is the number of orders of magnitude, indicated by fat 
    hash marks. The offset parameter tells to which integer subdivision 
    the first coordinate corresponds. When it is zero, this coordinate 
    corresponds to a fat mark, which is identical to when the value 
    would have been 1. Because axes have their own width, this is 
    indicated with the last parameter.
\end{itemize}
\fi

A note about color. The names of the colors can be found in the documentation
of package \LPack{xcolor}.
This package gives also the commands that allow the user to change the color of the text.
It is loaded by default with PSTricks.

\section{Examples}

\subsection{Text modes}
The meaning of the mode characters in the text commands can best be 
demonstrated. The statements
produce 9 texts and for each the focal point is indicated by a little 
circle. It looks like


\begin{LTXexample}[width=7cm]
\begin{pspicture}[showgrid](7,2)
\psset{linecolor=BrickRed,radius=2pt}\footnotesize
\psCArc*(0,2)(0,360)\psText[lt](0,2){left-top}
\psCArc(0,1)(0,360) \psText[l] (0,1){left-center}
\psCArc*(0,0)(0,360)\psText[lb](0,0){left-bottom}
\psCArc*(3,2)(0,360)\psText[t] (3,2){center-top}
\psCArc(3,1)(0,360) \psText    (3,1){center-center}
\psCArc*(3,0)(0,360)\psText[b] (3,0){center-bottom}
\psCArc*(7,2)(0,360)\psText[rt](7,2){right-top}
\psCArc(7,1)(0,360) \psText[r](7,1){right-center}
\psCArc*(7,0)(0,360)\psText[rb](7,0){right-bottom}
\end{pspicture}
\end{LTXexample}

This illustrates exactly all the combinations of the mode characters and 
what their effects are. The text is 
insensitive to the scaling commands, and the color of the text should be 
set with the regular color commands. In the case of \LaTeX{} text 
it can of course contain different fonts, 
math mode and all those little things.



\subsection{The windings of a gluon}

Gluons are traditionally represented by a two dimensional projection of 
a helix. Actually close inspection of some pretty gluons reveals that 
it is usually not quite a helix. Hence the gluons in pst-feyn are also 
not quite helices. In addition one may notice that the begin and end 
points deviate slightly from the regular windings. This makes it more in 
agreement with hand drawn gluons. When a gluon is drawn, one needs not 
only its begin and end points but there is an amplitude connected to 
this almost helix, and in addition there are windings. The number of 
windings is the number of curls that the gluon will have. Different 
people may prefer different densities of curls. This can effect the 
appearance considerably:

\begin{LTXexample}[pos=t]
\begin{pspicture}[showgrid](0,-0.4)(10,4)
\psset{linecolor=Red}\footnotesize
\psGluon[windings=4](1,0.5)(1,4)\psText(1,0.25){4 windings}
\psGluon[windings=5](3,0.5)(3,4)\psText(3,0.25){5 windings}
\psGluon[windings=6](5,0.5)(5,4)\psText(5,0.25){6 windings}
\psGluon[windings=7](7,0.5)(7,4)\psText(7,0.25){7 windings}
\psGluon[windings=8](9,0.5)(9,4)\psText(9,0.25){8 windings}
\end{pspicture}
\end{LTXexample}

The influence of the amplitude is also rather great. The user should 
experiment with it. There is however an aspect to the amplitude that 
should be discussed. For a straight gluon the amplitude can determine on 
which side the curls are. So does the direction of the gluon:


\begin{LTXexample}[pos=t]
\begin{pspicture}[showgrid](0,-0.4)(10,4)
\psset{linecolor=Red,windings=10}\footnotesize
\psGluon[amplitude=0.2](2,0.5)(2,4) \psText(2,0.2){amp $> 0$}\psText(1.5,2){$\uparrow$}
\psGluon[amplitude=0.2](4,4)(4,0.5) \psText(4,0.2){amp $> 0$}\psText(3.5,2){$\downarrow$}
\psGluon[amplitude=-0.2](6,0.5)(6,4)\psText(6,0.2){amp $< 0$}\psText(5.5,2){$\uparrow$}
\psGluon[amplitude=-0.2](8,4)(8,0.5)\psText(8,0.2){amp $< 0$}\psText(7.5,2){$\downarrow$}
\end{pspicture}
\end{LTXexample}

For straight gluons one does not need the option of the negative 
amplitude. It is however necessary for gluons on an arc segment. In that 
case the arc is always drawn in an anticlockwise direction. Hence the 
direction is fixed and only the amplitude is left as a tool for 
determining the side with the curls.

\subsection{Scaling}

Sometimes it is much easier to design a figure on a larger scale than it 
is needed in the eventual printing. In that case one can use a scale 
factor, either during the design or in the final result. We use the 
figure in the first section as an example:

\begin{LTXexample}[pos=t]
\psset{unit=0.3,amplitude=0.2}
\begin{pspicture}[shift=*](0,-0.4)(10,3.5)
\psGluonArc[linecolor=Red,radius=2,windings=8](5,2)(0,180)
\psGluonArc[linecolor=Green,radius=2,windings=8](5,2)(180,360)
\psGluon[windings=6,linecolor=Blue](0,2)(3,2)\psdot(3,2) 
\psGluon[windings=6,linecolor=Blue](7,2)(10,2)\psdot(7,2) 
\end{pspicture} 
$+ \textrm{ others} = C_A(\frac{5}{3}+\frac{31}{9}\epsilon)
   + n_F(-\frac{2}{3}-\frac{10}{9}\epsilon)$
\end{LTXexample}

This way it is rather straightforward to make whole pictorial equations.
Of course some things are not scale invariant. The appreciation of a 
figure may be somewhat different when the scale is changed. In the above 
case one might consider changing the amplitude of the gluons a little 
bit. Changing this to 0.5cm and at the same time reducing the number 
of windings from 6 to 3 for the straight gluons and from 8 to 7 for the 
gluons in the arcs gives

\begin{LTXexample}[pos=t]
\psset{unit=0.3,amplitude=0.5}
\begin{pspicture}[shift=*](0,-0.4)(10,3.5)
\psGluonArc[linecolor=Red,radius=2,windings=7](5,2)(0,180)
\psGluonArc[linecolor=Green,radius=2,windings=7](5,2)(180,360)
\psGluon[windings=3,linecolor=Blue](0,2)(3,2)\psdot(3,2) 
\psGluon[windings=3,linecolor=Blue](7,2)(10,2)\psdot(7,2) 
\end{pspicture} 
$+ \textrm{ others} = C_A(\frac{5}{3}+\frac{31}{9}\epsilon)
   + n_F(-\frac{2}{3}-\frac{10}{9}\epsilon)$
\end{LTXexample}

\subsection{Photons}

When drawing photons one should take care that the number of wiggles is 
selected properly. Very often this number should be an integer plus 
$0.5$. This can be seen in the following example:

\begin{LTXexample}[width=5cm]
\begin{pspicture}[showgrid](0,-0.4)(4,3)
\psdot(0.5,0.4)\psdot(3.5,0.4)
\psArrowLine[linecolor=Red](0,0.4)(4,0.4)
\psarc[linecolor=Green,arrowscale=2]{->}(2,0.4){1}{60}{120}
\psPhotonArc[amplitude=4pt,windings=8.5,% wiggles
  radius=1.5,linecolor=Brown](2,0.4)(0,180)
\end{pspicture} 
\end{LTXexample}



When the number of wiggles is reduced to 8 we obtain:

\begin{LTXexample}[width=5cm]
\begin{pspicture}[showgrid](0,-0.4)(4,3)
\psdot(0.5,0.4)\psdot(3.5,0.4)
\psArrowLine[linecolor=Red](0,0.4)(4,0.4)
\psarc[linecolor=Green,arrowscale=2]{->}(2,0.4){1}{60}{120}
\psPhotonArc[amplitude=4pt,windings=8,% wiggles
  radius=1.5,linecolor=Brown](2,0.4)(0,180)
\end{pspicture} 
\end{LTXexample}

This is not as nice. Somehow the symmetry is violated. One should also 
take care that the wiggles start in the proper way. If we make the 
amplitude negative we see that the photons are not `right' either:


\begin{LTXexample}[width=5cm]
\begin{pspicture}[showgrid](0,-0.4)(4,3)
\psdot(0.5,0.4)\psdot(3.5,0.4)
\psArrowLine[linecolor=Red](0,0.4)(4,0.4)
\psarc[linecolor=Green,arrowscale=2]{->}(2,0.4){1}{60}{120}
\psPhotonArc[amplitude=-4pt,windings=8.5,% wiggles
  radius=1.5,linecolor=Brown](2,0.4)(0,180)
\end{pspicture} 
\end{LTXexample}


\begin{LTXexample}[width=5cm]
\begin{pspicture}[showgrid](0,-0.4)(4,2)
\psArrowLine(0,0)(1,1) \psArrowLine(1,1)(0,2)
\psArrowLine(3,1)(4,0) \psArrowLine(4,2)(3,1)
\psPhoton[windings=4.5,amplitude=4pt](1,1)(3,1)
\psdot(1,1) \psdot(3,1) 
\end{pspicture} 
\end{LTXexample}


\begin{LTXexample}[width=5cm]
\begin{pspicture}(0,-1)(4.4,2)
\psArrowLine(0,0)(1,1) \psArrowLine(1,1)(0,2)
\psArrowLine(3,1)(4,0) \psArrowLine(4,2)(3,1)
\psPhoton[windings=4.5,amplitude=4pt,linecolor=blue](1,1)(3,1)
\psGluon[windings=4,amplitude=3pt,linecolor=Green](3.5,1.5)(4.2,0.9)
\rput(0.5,1.9){$\mathrm{e}^-$} \rput(3.5,1.9){$\bar{\mathrm{q}}$}
\rput(0.5,0.2){$\mathrm{e}^+$} \rput(3.5,0.2){q}
\rput(2,1.5){$\gamma$}\rput[r](4.2,1.3){$\mathrm{g}$}
\psline{->}(0,-0.2)(4,-0.2)\uput[0](4,-0.2){$t$}
\end{pspicture} 
\end{LTXexample}



\subsection{Curves and graphs}

\LPack{pst-feyn} is a PSTricks related package and can use all commands by one of
the nearly``endless'' PSTricks packages.
An example of a complete picture would be:

%\begin{LTXexample}[pos=t]
\psset{unit=1pt}
\begin{pspicture}(-30,-30)(360,440)
\psLinAxis(0,0)(300,0)(3,10,5,0)\psLinAxis(0,400)(300,400)(3,10,-5,0)
\psLogAxis(0,0)(0,400)(4,-5,2)  \psLogAxis(300,0)(300,400)(4,5,2)
\readdata\DataA{data/data0.dat} \readdata\DataB{data/data1.dat} 
\listplot[plotstyle=curve,linecolor=Blue,linewidth=1.5pt,unit=100,curvature=.5 2 0]{\DataA}
\listplot[plotstyle=curve,linecolor=Red,linewidth=1.5pt,linestyle=dashed,unit=100,
        curvature=.5 2 0]{\DataB}
\psline[linecolor=Blue](200,360)(270,360)
\rput[r](195,360){\blue\large$e^+e^-\rightarrow\mu^+\mu^-$}
\psline[linestyle=dashed,linecolor=Red](200,330)(270,330)
\rput[r](195,330){\red\large$e^+e^-\rightarrow\tau^+\tau^-$}
\rput(0,-10){0} \rput(100,-10){1}\rput(200,-10){2}\rput(300,-10){3}
\rput(150,-25){Beam energy in GeV (Threshold effects for $\mu$ and $\tau$)}
\rput(-10,70){$1$} \rput(-10,170){$10$}\rput(-10,270){$10^2$}\rput(-10,370){$10^3$}
\rput{90}(-25,220){\large$\sigma$ in nb}
\psArrowLine(190,270)(160,300) \psArrowLine(160,240)(190,270)
\psArrowLine(270,300)(240,270) \psArrowLine(240,270)(270,240)
\psPhoton[windings=4.5,amplitude=4](190,270)(240,270)
\psdot(190,270) \psdot(240,270) 
\end{pspicture}
%\end{LTXexample}

\begin{lstlisting}
\psset{unit=1pt}
\begin{pspicture}(-30,-30)(360,440)
\psLinAxis(0,0)(300,0)(3,10,5,0)\psLinAxis(0,400)(300,400)(3,10,-5,0)
\psLogAxis(0,0)(0,400)(4,-5,2)  \psLogAxis(300,0)(300,400)(4,5,2)
\readdata\DataA{data/data0.dat} \readdata\DataB{data/data1.dat} 
\listplot[plotstyle=curve,linecolor=Blue,linewidth=1pt,unit=100,curvature=.5 2 0]{\DataA}
\listplot[plotstyle=curve,linecolor=Red,linewidth=1.5pt,linestyle=dashed,unit=100,
        curvature=.5 2 0]{\DataB}
\psline[linecolor=Blue](200,360)(270,360)
\rput[r](195,360){\blue\large$e^+e^-\rightarrow\mu^+\mu^-$}
\psline[linestyle=dashed,linecolor=Red](200,330)(270,330)
\rput[r](195,330){\red\large$e^+e^-\rightarrow\tau^+\tau^-$}
\rput(0,-10){0} \rput(100,-10){1}\rput(200,-10){2}\rput(300,-10){3}
\rput(150,-25){Beam energy in GeV (Threshold effects for $\mu$ and $\tau$)}
\rput(-10,70){$1$} \rput(-10,170){$10$}\rput(-10,270){$10^2$}\rput(-10,370){$10^3$}
\rput{90}(-25,220){\large$\sigma$ in nb}
\psArrowLine(190,270)(160,300) \psArrowLine(160,240)(190,270)
\psArrowLine(270,300)(240,270) \psArrowLine(240,270)(270,240)
\psPhoton[windings=4.5,amplitude=4](190,270)(240,270)
\psdot(190,270) \psdot(240,270) 
\end{pspicture}
\end{lstlisting}

\psset{unit=1cm}


\begin{LTXexample}[width=5cm]
\begin{pspicture}(0,-0.4)(4,2)
\psline[linecolor=Blue](0,1)(2,1)
\psGluon[linecolor=Green,amplitude=3pt,windings=6](2,1)(4,1)
\psPhoton[linecolor=Red,amplitude=3pt,windings=6](2,1.5)(4,2)
\psZigZag[linecolor=Lime,amplitude=3pt,windings=6](2,0.5)(4,0)
\psellipse[fillcolor=Yellow,fillstyle=solid](2,1)(0.45,0.8)
\end{pspicture}
\end{LTXexample}



\subsection{Flowcharts}

There are several commands for creating boxes with text in them. The rest 
is just a matter of drawing lines and circle segments with arrows. It might describe 
a system for the automatic computation of cross-sections:

%\begin{LTXexample}[pos=t]
\begin{center}
\psscalebox{0.9}{%
\begin{pspicture}(11,14)
\sffamily\psset{unit=1pt,linecolor=Magenta}
\psArrowLine(200,40)(200,10)  \psArrowLine(200,100)(200,40)
\psArrowLine(200,150)(200,100)\psArrowLine(100,130)(200,100)
\psArrowLine(85,95)(200,100)  \psArrowLine(260,105)(200,100)
\psArrowLine(250,135)(200,100)\psArrowLine(160,75)(200,100)
\psArrowLine(200,100)(250,70) \psArrowLine(200,185)(200,150)
\psArrowLine(200,220)(200,185)\psArrowLine(200,250)(200,220)
\psArrowLine(240,263)(200,250)\psArrowLine(240,237)(200,250)
\psArrowLine(200,285)(200,250)\psArrowLine(200,310)(200,285)
\psArrowLine(200,335)(200,310)\psArrowLine(180,360)(200,335)
\psArrowLine(200,385)(180,360)\psArrowLine(50,370)(180,360)
\psArrowArc[radius=62.5](200,247.5)(90,180)\psArrowArc[radius=62.5](200,247.5)(180,270)
\psArrowLine(210,385)(300,360) \psArrowLine(210,335)(300,360)
\psArrowLine(80,300)(80,130)   \psArrowLine(190,335)(80,300)
\psArrowLine(190,385)(80,300)  \psArrowLine(50,335)(80,300)
\psArrowLine(300,360)(340,340) \psArrowArcn[radius=37.5](205,347.5)(90,270)
\psBCirc[linecolor=Blue](200,100){10} \psBCirc[linecolor=Blue](200,100){5}
\psBCirc[linecolor=Blue](200,40){7.5} \psBCirc[linecolor=Blue](200,250){10}
\psBCirc[linecolor=Blue](200,250){5}  \psBCirc[linecolor=Blue](200,310){7.5}
\psBCirc[linecolor=Blue](180,360){7.5}\psBCirc[linecolor=Blue](80,300){7.5}
\psBCirc[linecolor=Blue](300,360){7.5}\psCCirc(200,185){7.5}{Blue}{Yellow}
\footnotesize\psBText[linecolor=Red](200,285){\red Form program}
\psBText[linecolor=Red](200,335){\red Diagrams}\psBText[linecolor=Red](200,385){\red Model} 
\psBText[linecolor=Red](200,10){\red events}\psBText[linecolor=Red](80,95){\red Axolib}  
\psBText[linecolor=Red](350,335){\red Pictures}\psCText(137.5,247.5){Blue}{Yellow}{instructions}
\psBText(260,70){Cross-sections\\Histograms}\psBText(140,75){Monte Carlo\\Routine}
\psBText(275,105){FF\\1 loop integrals}\psCText(260,135){Blue}{Yellow}{Spiderlib\\Fortran/C}
\psCText(200,150){Blue}{Yellow}{Matrix\\Element}\psBText(80,130){Kinematics\\Configuration}
\psCText(200,220){Blue}{Yellow}{Output\\Formula}
\psCText(260,263){Blue}{Yellow}{Spiderlib\\Form part}
\psCText(260,237){Blue}{Yellow}{FF support\\library}\psBText(40,370){Reaction\\selection}
\psBText(40,340){Specification\\Cuts, etc.}\psPText[lb](211,36)(0){Event Generator}
\psPText[lb](211,181)(0){Code Generator}\psPText[lb](162,258)(0){FORM}
\psPText[lb](211,301)(0){Form program construction}\psPText[lb](191,362)(0){Diagram}
\psPText[lb](191,352)(0){Generator}\psPText[lb](311,370)(0){Postscript}
\psPText[lb](311,360)(0){Generator}\psPText[lb](91,292)(0){Kinematics}
\psPText[lb](91,282)(0){Generator}
\end{pspicture}%
}
%\end{LTXexample}
\end{center}

\begin{lstlisting}
\begin{pspicture}(11,14)
\sffamily\psset{unit=1pt,linecolor=Magenta}
\psArrowLine(200,40)(200,10)  \psArrowLine(200,100)(200,40)
\psArrowLine(200,150)(200,100)\psArrowLine(100,130)(200,100)
\psArrowLine(85,95)(200,100)  \psArrowLine(260,105)(200,100)
\psArrowLine(250,135)(200,100)\psArrowLine(160,75)(200,100)
\psArrowLine(200,100)(250,70) \psArrowLine(200,185)(200,150)
\psArrowLine(200,220)(200,185)\psArrowLine(200,250)(200,220)
\psArrowLine(240,263)(200,250)\psArrowLine(240,237)(200,250)
\psArrowLine(200,285)(200,250)\psArrowLine(200,310)(200,285)
\psArrowLine(200,335)(200,310)\psArrowLine(180,360)(200,335)
\psArrowLine(200,385)(180,360)\psArrowLine(50,370)(180,360)
\psArrowArc[radius=62.5](200,247.5)(90,180)\psArrowArc[radius=62.5](200,247.5)(180,270)
\psArrowLine(210,385)(300,360) \psArrowLine(210,335)(300,360)
\psArrowLine(80,300)(80,130)   \psArrowLine(190,335)(80,300)
\psArrowLine(190,385)(80,300)  \psArrowLine(50,335)(80,300)
\psArrowLine(300,360)(340,340) \psArrowArcn[radius=37.5](205,347.5)(90,270)
\psBCirc[linecolor=Blue](200,100){10} \psBCirc[linecolor=Blue](200,100){5}
\psBCirc[linecolor=Blue](200,40){7.5} \psBCirc[linecolor=Blue](200,250){10}
\psBCirc[linecolor=Blue](200,250){5}  \psBCirc[linecolor=Blue](200,310){7.5}
\psBCirc[linecolor=Blue](180,360){7.5}\psBCirc[linecolor=Blue](80,300){7.5}
\psBCirc[linecolor=Blue](300,360){7.5}\psCCirc(200,185){7.5}{Blue}{Yellow}
\footnotesize\psBText[linecolor=Red](200,285){\red Form program}
\psBText[linecolor=Red](200,335){\red Diagrams}\psBText[linecolor=Red](200,385){\red Model} 
\psBText[linecolor=Red](200,10){\red events}\psBText[linecolor=Red](80,95){\red Axolib}  
\psBText[linecolor=Red](350,335){\red Pictures}\psCText(137.5,247.5){Blue}{Yellow}{instructions}
\psBText(260,70){Cross-sections\\Histograms}\psBText(140,75){Monte Carlo\\Routine}
\psBText(275,105){FF\\1 loop integrals}\psCText(260,135){Blue}{Yellow}{Spiderlib\\Fortran/C}
\psCText(200,150){Blue}{Yellow}{Matrix\\Element}\psBText(80,130){Kinematics\\Configuration}
\psCText(200,220){Blue}{Yellow}{Output\\Formula}
\psCText(260,263){Blue}{Yellow}{Spiderlib\\Form part}
\psCText(260,237){Blue}{Yellow}{FF support\\library}\psBText(40,370){Reaction\\selection}
\psBText(40,340){Specification\\Cuts, etc.}\psPText[lb](211,36)(0){Event Generator}
\psPText[lb](211,181)(0){Code Generator}\psPText[lb](162,258)(0){FORM}
\psPText[lb](211,301)(0){Form program construction}\psPText[lb](191,362)(0){Diagram}
\psPText[lb](191,352)(0){Generator}\psPText[lb](311,370)(0){Postscript}
\psPText[lb](311,360)(0){Generator}\psPText[lb](91,292)(0){Kinematics}
\psPText[lb](91,282)(0){Generator}
\end{pspicture}
\end{lstlisting}


\clearpage
\section{List of all optional arguments for \nxLPack{pst-feyn}}

\xkvview{family=pst-feyn,columns={key,type,default}}


\bgroup
\raggedright
\nocite{*}
\printbibliography
\egroup

\printindex




\end{document}