1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
|
% Copyright 2003 by Till Tantau <tantau@cs.tu-berlin.de>.
%
% This program can be redistributed and/or modified under the terms
% of the LaTeX Project Public License Distributed from CTAN
% archives in directory macros/latex/base/lppl.txt.
\section{Transformations}
\pgfname\ has a powerful transformation mechanism that is similar to
the transformation capabilities of \textsc{metafont}. The present
section explains how you can access it in \tikzname.
\subsection{The Different Coordinate Systems}
It is a long process from a coordinate like, say, $(1,2)$ or
$(1\mathrm{cm},5\,mathrm{pt})$, to the position a point is finally
placed on the display or paper. In order to find out where the point
should go, it is constantly ``transformed,'' which means that it is
mostly shifted around and possibly rotated, slanted, scaled, and
otherwise mutilated.
In detail, (at least) the following transformations are applied to a
coordinate like $(1,2)$ before a point on the screen is chosen:
\begin{enumerate}
\item
\pgfname\ interprets a coordinate like $(1,2)$ in its
$xy$-coordinate system as ``add the current $x$-vector once and the
current $y$-vector twice to obtain the new point.''
\item
\pgfname\ applies its coordinate transformation matrix to the
resulting coordinate. This yields the final position of the point
inside the picture.
\item
The backend driver (like |dvips| or |pdftex|) adds transformation
commands such the coordinate is shifted to the correct position in
\TeX's page coordinate system.
\item
\textsc{pdf} (or PostScript) apply the canvas transformation
matrix to the point, which can once more change the position on the
page.
\item
The viewer application or the printer applies the device
transformation matrix to transform the coordinate to its final pixel
coordinate on the screen or paper.
\end{enumerate}
In reality, the process is even more involved, but the above should
give the idea: A point is constantly transformed by changes of the
coordinate system.
In \tikzname, you only have access to the first two coordinate systems:
The $xy$-coordinate system and the coordinate transformation matrix
(these will be explained later). \pgfname\ also allows you to change
the canvas transformation matrix, but you have to use commands of
the core layer directly to do so and you ``better know what you are
doing'' when you do this. The moment you start modifying the
canvas matrix, \pgfname\ immediately looses track of all
coordinates and shapes, anchors, and bounding box computations will no
longer work.
\subsection{The Xy- and Xyz-Coordinate Systems}
The first and easiest coordinate systems are \pgfname's $xy$- and
$xyz$-coordinate systems. The idea is very simple: Whenever you
specify a coordinate like |(2,3)| this means $2v_x + 3v_y$, where
$v_x$ is the current \emph{$x$-vector} and $v_y$ is the current
\emph{$y$-vector}. Similarly, the coordinate |(1,2,3)| means $v_x +
2v_y + 3v_z$.
Unlike other packages, \pgfname\ does not insist that $v_x$ actually
has a $y$-component of $0$, that is, that it is a horizontal
vector. Instead, the $x$-vector can point anywhere you
want. Naturally, \emph{normally} you will want the $x$-vector to point
horizontally.
One undesirable effect of this flexibility is that it is not possible
to provide mixed coordinates as in $(1,2\mathrm{pt})$. Life is hard.
To change the $x$-, $y$-, and $z$-vectors, you can use the following
options:
\begin{itemize}
\itemoption{x}|=|\meta{dimension}
Sets the $x$-vector of \pgfname's $xyz$-coordinate system to point
\meta{dimension} to the right, that is, to
$(\meta{dimension},0pt)$. The default is 1cm.
\begin{codeexample}[]
\begin{tikzpicture}
\draw (0,0) -- +(1,0);
\draw[x=2cm,color=red] (0,0.1) -- +(1,0);
\end{tikzpicture}
\end{codeexample}
\begin{codeexample}[]
\tikz \draw[x=1.5cm] (0,0) grid (2,2);
\end{codeexample}
The last example shows that the size of steppings in grids, just like
all other dimensions, are not affected by the $x$-vector. After all,
the $x$-vector is only used to determine the coordinate of the upper
right corner of the grid.
\itemoption{x}|=|\meta{coordinate}
Sets the $x$-vector of \pgfname's $xyz$-coordinate system to the
specified \meta{coordinate}. If \meta{coordinate} contains a comma,
it must be put in braces.
\begin{codeexample}[]
\begin{tikzpicture}
\draw (0,0) -- (1,0);
\draw[x={(2cm,0.5cm)},color=red] (0,0) -- (1,0);
\end{tikzpicture}
\end{codeexample}
You can use this, for example, to exchange the meaning of the $x$- and
$y$-coordinate.
\begin{codeexample}[]
\begin{tikzpicture}[smooth]
\draw plot coordinates{(1,0) (2,0.5) (3,0) (3,1)};
\draw[x={(0cm,1cm)},y={(1cm,0cm)},color=red]
plot coordinates{(1,0) (2,0.5) (3,0) (3,1)};
\end{tikzpicture}
\end{codeexample}
\itemoption{y}|=|\meta{value}
Works like the |x=| option, only if \meta{value} is a dimension, the
resulting vector points to $(0,\meta{value})$.
\itemoption{z}|=|\meta{value}
Works like the |z=| option, but now a dimension is means the point
$(\meta{value},\meta{value})$.
\begin{codeexample}[]
\begin{tikzpicture}[z=-1cm,->,thick]
\draw[color=red] (0,0,0) -- (1,0,0);
\draw[color=blue] (0,0,0) -- (0,1,0);
\draw[color=orange] (0,0,0) -- (0,0,1);
\end{tikzpicture}
\end{codeexample}
\end{itemize}
\subsection{Coordinate Transformations}
\pgfname\ and \tikzname\ allow you to specify \emph{coordinate
transformations}. Whenever you specify a coordinate as in |(1,0)| or
|(1cm,1pt)| or |(30:2cm)|, this coordinate is first
``reduced'' to a position of the form ``$x$ points to the right and
$y$ points upwards.'' For example, |(1in,5pt)| is reduced to
``$72\frac{72}{100}$ points to the right and 5 points upwards'' and
|(90:100pt)| means ``0pt to the right and 100 points upwards.''
The next step is to apply the current \emph{coordinate transformation
matrix} to the coordinate. For example, the coordinate
transformation matrix might currently be set such that it adds a
certain constant to the $x$ value. Also, it might be setup such that
it, say, exchanges the $x$ and $y$ value. In general, any
``standard'' transformation like translation, rotation, slanting, or
scaling or any combination thereof is possible. (Internally, \pgfname\
keeps track of a coordinate transformation matrix very much like the
concatenation matrix used by \textsc{pdf} or PostScript.)
\begin{codeexample}[]
\begin{tikzpicture}
\draw[style=help lines] (0,0) grid (3,2);
\draw (0,0) rectangle (1,0.5);
\begin{scope}[xshift=1cm]
\draw [red] (0,0) rectangle (1,0.5);
\draw[yshift=1cm] [blue] (0,0) rectangle (1,0.5);
\draw[rotate=30] [orange] (0,0) rectangle (1,0.5);
\end{scope}
\end{tikzpicture}
\end{codeexample}
The most important aspect of the coordinate transformation matrix is
\emph{that it applies to coordinates only!} In particular, the
coordinate transformation has no effect on things like the line width
or the dash pattern or the shading angle. In certain cases, it is not
immediately clear whether the coordinate transformation matrix
\emph{should} apply to a certain dimension. For example, should the
coordinate transformation matrix apply to grids? (It does.) And what
about the size of arced corners? (It does not.) The general rule is
``If there is no `coordinate' involved, even `indirectly,' the matrix
is not applied.'' However, sometimes, you simply have to try or look
it up in the documentation whether the matrix will be applied.
Setting the matrix cannot be done directly. Rather, all you can do is
to ``add'' another transformation to the current matrix. However, all
transformations are local to the current \TeX-group. All
transformations are added using graphic options, which are described
below.
Transformations apply immediately when they are encountered ``in the
middle of a path'' and they apply only to the coordinates on the path
following the transformation option.
\begin{codeexample}[]
\tikz \draw (0,0) rectangle (1,0.5) [xshift=2cm] (0,0) rectangle (1,0.5);
\end{codeexample}
A final word of warning: You should refrain from using ``aggressive''
transformations like a scaling of a factor of 10000. The reason is
that all transformations are done using \TeX, which has a fairly low
accuracy. Furthermore, in certain situations it is necessary that
\tikzname\ \emph{inverts} the current transformation matrix and this will
fail if the transformation matrix is badly conditioned or even
singular (if you do not know what singular matrices are, you are blessed).
\begin{itemize}
\itemoption{shift}|={|\meta{coordinate}|}|
adds the \meta{coordinate} to all coordinates.
\begin{codeexample}[]
\begin{tikzpicture}
\draw[style=help lines] (0,0) grid (3,2);
\draw (0,0) -- (1,1) -- (1,0);
\draw[shift={(1,1)},blue] (0,0) -- (1,1) -- (1,0);
\draw[shift={(30:1cm)},red] (0,0) -- (1,1) -- (1,0);
\end{tikzpicture}
\end{codeexample}
\itemoption{xshift}|=|\meta{dimension}
adds \meta{dimension} to the $x$ value of all coordinates.
\begin{codeexample}[]
\begin{tikzpicture}
\draw[style=help lines] (0,0) grid (3,2);
\draw (0,0) -- (1,1) -- (1,0);
\draw[xshift=2cm,blue] (0,0) -- (1,1) -- (1,0);
\draw[xshift=-10pt,red] (0,0) -- (1,1) -- (1,0);
\end{tikzpicture}
\end{codeexample}
\itemoption{yshift}|=|\meta{dimension}
adds \meta{dimension} to the $y$ value of all coordinates.
\itemoption{scale}|=|\meta{factor}
multiplies all coordinates by the given \meta{factor}. The
\meta{factor} should not be excessively large in absolute terms or
very near to zero.
\begin{codeexample}[]
\begin{tikzpicture}
\draw[style=help lines] (0,0) grid (3,2);
\draw (0,0) -- (1,1) -- (1,0);
\draw[scale=2,blue] (0,0) -- (1,1) -- (1,0);
\draw[scale=-1,red] (0,0) -- (1,1) -- (1,0);
\end{tikzpicture}
\end{codeexample}
\itemoption{xscale}|=|\meta{factor}
multiplies only the $x$-value of all coordinates by the given
\meta{factor}.
\begin{codeexample}[]
\begin{tikzpicture}
\draw[style=help lines] (0,0) grid (3,2);
\draw (0,0) -- (1,1) -- (1,0);
\draw[xscale=2,blue] (0,0) -- (1,1) -- (1,0);
\draw[xscale=-1,red] (0,0) -- (1,1) -- (1,0);
\end{tikzpicture}
\end{codeexample}
\itemoption{yscale}|=|\meta{factor}
multiplies only the $y$-value of all coordinates by \meta{factor}.
\itemoption{xslant}|=|\meta{factor}
slants the coordinate horizontally by the given \meta{factor}:
\begin{codeexample}[]
\begin{tikzpicture}
\draw[style=help lines] (0,0) grid (3,2);
\draw (0,0) -- (1,1) -- (1,0);
\draw[xslant=2,blue] (0,0) -- (1,1) -- (1,0);
\draw[xslant=-1,red] (0,0) -- (1,1) -- (1,0);
\end{tikzpicture}
\end{codeexample}
\itemoption{yslant}|=|\meta{factor}
slants the coordinate vertically by the given \meta{factor}:
\begin{codeexample}[]
\begin{tikzpicture}
\draw[style=help lines] (0,0) grid (3,2);
\draw (0,0) -- (1,1) -- (1,0);
\draw[yslant=2,blue] (0,0) -- (1,1) -- (1,0);
\draw[yslant=-1,red] (0,0) -- (1,1) -- (1,0);
\end{tikzpicture}
\end{codeexample}
\itemoption{rotate}|=|\meta{degree}
rotates the coordinate system by \meta{degree}:
\begin{codeexample}[]
\begin{tikzpicture}
\draw[style=help lines] (0,0) grid (3,2);
\draw (0,0) -- (1,1) -- (1,0);
\draw[rotate=40,blue] (0,0) -- (1,1) -- (1,0);
\draw[rotate=-20,red] (0,0) -- (1,1) -- (1,0);
\end{tikzpicture}
\end{codeexample}
\itemoption{rotate around}|={|\meta{degree}|:|\meta{coordinate}|}|
rotates the coordinate system by \meta{degree} around the point
\meta{coordinate}.
\begin{codeexample}[]
\begin{tikzpicture}
\draw[style=help lines] (0,0) grid (3,2);
\draw (0,0) -- (1,1) -- (1,0);
\draw[rotate around={40:(1,1)},blue] (0,0) -- (1,1) -- (1,0);
\draw[rotate around={-20:(1,1)},red] (0,0) -- (1,1) -- (1,0);
\end{tikzpicture}
\end{codeexample}
\itemoption{cm}|={|\meta{$a$}|,|\meta{$b$}|,|\meta{$c$}|,|\meta{$d$}|,|\meta{coordinate}|}|
applies the following transformation to all coordinates: Let $(x,y)$
be the coordinate to be transformed and let \meta{coordinate}
specify the point $(t_x,t_y)$. Then the new coordinate is given by
$\left(\begin{smallmatrix} a & b \\ c & d\end{smallmatrix}\right)
\left(\begin{smallmatrix} x \\ y \end{smallmatrix}\right) +
\left(\begin{smallmatrix} t_x \\ t_y
\end{smallmatrix}\right)$. Usually, you do not use this option
directly.
\begin{codeexample}[]
\begin{tikzpicture}
\draw[style=help lines] (0,0) grid (3,2);
\draw (0,0) -- (1,1) -- (1,0);
\draw[cm={1,1,0,1,(0,0)},blue] (0,0) -- (1,1) -- (1,0);
\draw[cm={0,1,1,0,(1cm,1cm)},red] (0,0) -- (1,1) -- (1,0);
\end{tikzpicture}
\end{codeexample}
\itemoption{reset cm}
completely resets the coordinate transformation matrix to the
identity matrix. This will destroy not only the transformations
applied in the current scope, but also all transformations inherited
from surrounding scopes. Do not use this option.
\end{itemize}
|