1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
|
% Copyright 2007 by Mark Wibrow
%
% This file may be distributed and/or modified
%
% 1. under the LaTeX Project Public License and/or
% 2. under the GNU Free Documentation License.
%
% See the file doc/generic/pgf/licenses/LICENSE for more details.
%
\section{Evaluating Mathematical Expressions}
The easiest way of using \pgfname's mathematical engine is to provide
a mathematical expression given in familiar infix notation, for
example, |1cm+4*2cm/5.5| or |2*3+3*sin(30)|. This expression can be
parsed by the mathematical engine and the result can be placed in a
dimension register, a counter, or a macro.
It should be noted that all
calculations must not exceed $\pm16383.99999$ at \emph{any} point,
because the underlying computations rely on \TeX{} dimensions. This
means that many of the underlying computations are necessarily
approximate and, in addition, not very fast. \TeX{} is,
after all, a typesetting language and not ideally
suited to relatively advanced mathematical operations. However, it
is possible to change the computations as described in
Section~\ref{pgfmath-reimplement}.
In the present section, the high-level macros for parsing an
expression are explained first, then the syntax for expression is
explained.
\subsection{Commands for Parsing Expressions}
\label{pgfmath-registers}
\label{pgfmath-parsing}
The basic command for invoking the parser of \pgfname's mathematical
engine is the following:
\begin{command}{\pgfmathparse\marg{expression}}
This macro parses \meta{expression} and returns the result without
units in the macro |\pgfmathresult|.
\example |\pgfmathparse{2pt+3.5pt}| will set |\pgfmathresult| to the
text |5.5|.
In the following, the special properties of this command are
explained. The exact syntax of mathematical expressions is explained
in Section~\ref{pgfmath-syntax}.
\begin{itemize}
\item
The result stored in the macro |\pgfmathresult| is a decimal
\emph{without units}. This is true regardless of whether the
\meta{expression} contains any unit specification. All numbers
with units are converted to points first.
You can check whether an expression contained a unit using
the following \TeX-if.
{\let\ifpgfmathunitsdeclared\relax
\begin{command}{\ifpgfmathunitsdeclared}
After a call of |\pgfmathparse| this if will be true exactly if
some unit was encountered in the expression. It is always set
globally in each call.
\end{command}
}
A special kind of units are \TeX's ``math units'' (|mu|). It will
be treated as if |pt| had been used, but you can
check whether an expression contained a math unit using the
following:
{\let\ifpgfmathmathunitsdeclared\relax
\begin{command}{\ifpgfmathmathunitsdeclared}
This \TeX-if is similar to |\ifpgfmathunitsdeclared|, but it
is only set when the unit |mu| is encountered at least
once. In this case, |\ifpgfmathunitsdeclared| will \emph{also}
be set to true.
\end{command}
}
\item
The parser will recognize \TeX{} registers and box dimensions,
so |\mydimen|, |0.5\mydimen|, |\wd\mybox|, |0.5\dp\mybox|,
|\mycount\mydimen| and so on can be parsed.
\item
The $\varepsilon$-TeX\ extensions |\dimexpr|, |\numexpr|, |\glueexpr|, and
|\muexpr| are recognized and evaluated. The values they
result in will be used in the further evaluation, as if you had
put |\the| before them.
\item
Parenthesis can be used to change the order of the evaluation.
\item
Various functions are recognized, so it is possible to parse
|sin(.5*pi r)*60|, which means ``the sine of $0.5$ times $\pi$
radians, multiplied by 60''. The argument of functions can
be any expression.
\item
Scientific notation in the form |1.234e+4| is recognized (but
the restriction on the range of values still applies). The exponent
symbol can be upper or lower case (i.e., |E| or |e|).
\item
An integer with a zero-prefix (excluding, of course zero itself),
is interpreted as an octal number and is automatically converted
to base 10.
\item
An integer with prefix |0x| or |0X| is interpreted as a hexadecimal
number and is automatically converted to base 10. Alphabetic digits
can be in uppercase or lowercase.
\item
An integer with prefix |0b| or |0B| is interpreted as a binary
number and is automatically converted to base 10.
\item
An expression (or part of an expression) surrounded with double
quotes (i.e., the character |"|) will not be evaluated.
Obviously this should be used with great care.
\end{itemize}
\end{command}
\begin{command}{\pgfmathqparse\marg{expression}}
This macro is similar to |\pgfmathparse|: it parses
\meta{expression} and returns the result in the macro
|\pgfmathresult|. It differs in two respects. Firstly,
|\pgfmathqparse| does not parse functions, scientific
notation, the prefixes for binary octal, or hexadecimal numbers,
nor does it accept the special use of |"|, |?| or |:| characters.
Secondly, numbers in \meta{expression} \emph{must}
specify a \TeX{} unit (except in such instances as |0.5\pgf@x|),
which greatly simplifies the problem of parsing real numbers.
As a result of these restrictions |\pgfmathqparse|
is about twice as fast as |\pgfmathparse|. Note that the result
will still be a number without units.
\end{command}
\begin{command}{\pgfmathpostparse}
At the end of the parse this command is executed, allowing some
custom action to be performed on the result of the parse. When this
command is executed, the macro |\pgfmathresult| will hold the result
of the parse (as always, without units). The result of the custom
action should be used to redefine |\pgfmathresult| appropriately.
By default, this command is equivalent to |\relax|. This differs
from previous versions, where, if the parsed expression contained
no units, the result of the parse was scaled according to the value
in |\pgfmathresultunitscale| (which by default was |1|).
This scaling can be turned on again using:
|\let\pgfmathpostparse=\pgfmathscaleresult|.
Note, however that by scaling the result, the base conversion
functions will not work, and the |"| character should not be
used to quote parts of an expression.
\end{command}
Instead of the |\pgfmathparse| macro you can also use wrapper commands,
whose usage is very similar to their cousins in the \calcname{}
package. The only difference is that the expressions can be any
expression that is handled by |\pgfmathparse|.
For all of the following commands, if \meta{expression} starts with
|+|, no parsing is done and a simple assignment or increment is done
using normal \TeX\ assignments or increments. This will be orders of
magnitude faster than calling the parser.
The effect of the following commands is always local to the current
\TeX\ scope.
\begin{command}{\pgfmathsetlength\marg{register}\marg{expression}}
Basically, this command sets the length of the \TeX{}
\meta{register} to the value specified by
\meta{expression}. However, there is some fine print:
First, in case \meta{expression} starts with a |+|, a simple \TeX\
assignment is done. In particular, \meta{register} can be a glue
register and \meta{expression} be something like |+1pt plus 1fil|
and the \meta{register} will be assigned the expected value.
Second, when the \meta{expected} does not start with |+|, it is
first parsed using |\pgfmathparse|, resulting in a (dimensionless)
value |\pgfmathresult|. Now, if the parser encountered the unit |mu|
somewhere in the expression, it assumes that \meta{register} is a
|\muskip| register and will try to assign to \meta{register} the
value |\pgfmathresult| followed by |mu|. Otherwise, in case |mu| was
not encountered, it is assumed that \meta{register} is a dimension
register or a glue register and we assign |\pgfmathresult| followed
by |pt| to it.
The net effect of the above is that you can write things like
\begin{codeexample}[]
\muskipdef\mymuskip=0
\pgfmathsetlength{\mymuskip}{1mu+3*4mu} \the\mymuskip
\end{codeexample}
\begin{codeexample}[]
\dimendef\mydimen=0
\pgfmathsetlength{\mydimen}{1pt+3*4pt} \the\mydimen
\end{codeexample}
\begin{codeexample}[]
\skipdef\myskip=0
\pgfmathsetlength{\myskip}{1pt+3*4pt} \the\myskip
\end{codeexample}
One thing that will \emph{not} work is
|\pgfmathsetlength{\myskip}{1pt plus 1fil}| since the parser does
not support fill's. You can, however, use the |+| notation in this
case:
\begin{codeexample}[]
\skipdef\myskip=0
\pgfmathsetlength{\myskip}{+1pt plus 1fil} \the\myskip
\end{codeexample}
\end{command}
\begin{command}{\pgfmathaddtolength\marg{register}\marg{expression}}
Adds the value of \meta{expression} to the \TeX{}
\meta{register}. All of the special consideration mentioned for
|\pgfmathsetlength| also apply here in the same way.
\end{command}
\begin{command}{\pgfmathsetcount\marg{count register}\marg{expression}}
Sets the value of the \TeX{} \meta{count register}, to the
\emph{truncated} value specified by \meta{expression}.
\end{command}
\begin{command}{\pgfmathaddtocount\marg{count register}\marg{expression}}
Adds the \emph{truncated} value of \meta{expression} to the \TeX{}
\meta{count register}.
\end{command}
\begin{command}{\pgfmathsetcounter\marg{counter}\marg{expression}}
Sets the value of the \LaTeX{} \meta{counter} to the \emph{truncated}
value specified by \meta{expression}.
\end{command}
\begin{command}{\pgfmathaddtocounter\marg{counter}\marg{expression}}
Adds the \emph{truncated} value of \meta{expression} to
\meta{counter}.
\end{command}
\begin{command}{\pgfmathsetmacro\marg{macro}\marg{expression}}
Defines \meta{macro} as the value of \meta{expression}. The result
is a decimal without units.
\end{command}
\begin{command}{\pgfmathsetlengthmacro\marg{macro}\marg{expression}}
Defines \meta{macro} as the value of \meta{expression}
\LaTeX{} \emph{in points}.
\end{command}
\begin{command}{\pgfmathtruncatemacro\marg{macro}\marg{expression}}
Defines \meta{macro} as the truncated value of \meta{expression}.
\end{command}
\section{Syntax for mathematical expressions}
\label{pgfmath-syntax}
The syntax for the expressions recognized by |\pgfmathparse| and
friends is straightforward, and the following sections describe the
operators and functions that are recognized by default.
\subsection{Operators}
\label{pgfmath-operators}
The following operators (presented in the context in which they are used)
are recognized:
\begin{math-operator}{+}{infix}{add}
Adds \mvar{x} to \mvar{y}.
\end{math-operator}
\begin{math-operator}{-}{infix}{subtract}
Subtracts \mvar{y} from \mvar{x}.
\end{math-operator}
\begin{math-operator}{-}{prefix}{neg}
Reverses the sign of \mvar{x}.
\end{math-operator}
\begin{math-operator}{*}{infix}{multiply}
Multiples \mvar{x} by \mvar{y}.
\end{math-operator}
\begin{math-operator}{/}{infix}{divide}
Divides \mvar{x} by \mvar{y}. An error will result if \mvar{y} is 0,
or if the result of the division is too big for the mathematical
engine. Please remember when using this command that accurate (and
reasonably quick) division of real numbers that are not integers
is particularly tricky in \TeX.
\end{math-operator}
\begin{math-operator}{\char`\^}{infix}{pow}
Raises \mvar{x} to the power \mvar{y}.
\end{math-operator}
\begin{math-operator}{\protect\exclamationmarktext}{postfix}{factorial}
Calculates the factorial of \mvar{x}.
\end{math-operator}
\begin{math-operator}{r}{postfix}{deg}
Converts \mvar{x} to degrees (\mvar{x} is assumed to be in radians).
This operator has the same precedence as multiplication.
\end{math-operator}
\begin{math-operators}{?}{:}{conditional}{ifthenelse}
|?| and |:| are special operators which can be used as a shorthand
for |if| \mvar{x} |then| \mvar{y} |else| \mvar{z} inside the parser.
The expression \mvar{x} is taken to be true if it evaluates to any
non-zero value.
\end{math-operators}
\begin{math-operator}{==}{infix}{equal}
Returns |1| if \mvar{x}$=$\mvar{y}, |0| otherwise.
\end{math-operator}
\begin{math-operator}{>}{infix}{greater}
Returns |1| if \mvar{x}$>$\mvar{y}, |0| otherwise.
\end{math-operator}
\begin{math-operator}{<}{infix}{less}
Returns |1| if \mvar{x}$<$\mvar{y}, |0| otherwise.
\end{math-operator}
\begin{math-operator}{\protect\exclamationmarktext=}{infix}{notequal}
Returns |1| if \mvar{x}$\neq$\mvar{y}, |0| otherwise.
\end{math-operator}
\begin{math-operator}{>=}{infix}{notless}
Returns |1| if \mvar{x}$\geq$\mvar{y}, |0| otherwise.
\end{math-operator}
\begin{math-operator}{<=}{infix}{notgreater}
Returns |1| if \mvar{x}$\leq$\mvar{y}, |0| otherwise.
\end{math-operator}
\begin{math-operator}{{\char`\&}{\char`\&}}{infix}{and}
Returns |1| if both \mvar{x} and \mvar{y} evaluate to some
non-zero value. Both arguments are evaluated.
\end{math-operator}
{
\catcode`\|=12
\begin{math-operator}[no index]{||}{infix}{or}
\index{*pgfmanualvbarvbarr@\protect\texttt{\protect\pgfmanualvbarvbar} math operator}%
\index{Math operators!*pgfmanualvbarvbar@\protect\texttt{\protect\pgfmanualvbarvbar}}%
Returns {\tt 1} if either \mvar{x} or \mvar{y} evaluate to some
non-zero value.
\end{math-operator}
}
\begin{math-operator}{\protect\exclamationmarktext}{prefix}{not}
Returns |1| if \mvar{x} evaluates to zero, |0| otherwise.
\end{math-operator}
\begin{math-operators}{(}{)}{group}{}
These operators act in the usual way, that is, to control the order
in which operators are executed, for example, |(1+2)*3|. This
includes the grouping of arguments for functions, for example,
|sin(30*10)| or |mod(72,3)| (the comma character is also treated
as an operator).
Parentheses for functions with one argument are not always
necessary, |sin 30| (note the space) is the same as |sin(30)|.
However, functions have the highest precedence so, |sin 30*10|
is the same as |sin(30)*10|.
\end{math-operators}
\begin{math-operators}{\char`\{}{\char`\}}{array}{}
These operators are used to process array-like structures (within an
expression these characters do not act like \TeX{} grouping tokens).
The \meta{array specification} consists of comma separated elements,
for example, |{1, 2, 3, 4, 5}|. Each element in the array will be
evaluated as it is parsed, so expressions can be used.
In addition, an element of an array can be an array itself,
allowing multiple dimension arrays to be simulated:
|{1, {2,3}, {4,5}, 6}|.
When storing an array in a macro, do not forget the surrounding
braces: |\def\myarray{{1,2,3}}| not |\def\myarray{1,2,3}|.
\begin{codeexample}[]
\def\myarray{{1,"two",2+1,"IV","cinq","sechs",sin(\i*5)*14}}
\foreach \i in {0,...,6}{\pgfmathparse{\myarray[\i]}\pgfmathresult, }
\end{codeexample}
\end{math-operators}
\begin{math-operators}{\char`\[}{\char`\]}{array access}{array}
|[| and |]| are two operators used in one particular circumstance: to
access an array (specified using the |{| and |}| operators)
using the index \mvar{x}. Indexing starts from zero,
so, if the index is greater than, or equal to, the number of values in
the array, an error will occur, and zero will be returned.
\begin{codeexample}[]
\def\myarray{{7,-3,4,-9,11}}
\pgfmathparse{\myarray[3]} \pgfmathresult
\end{codeexample}
If the array is defined to have multiple dimensions, then the array
access operators can be immediately repeated.
\begin{codeexample}[]
\def\print#1{\pgfmathparse{#1}\pgfmathresult}
\def\identitymatrix{{{1,0,0},{0,1,0},{0,0,1}}}
\tikz[x=0.5cm,y=0.5cm]\foreach \i in {0,1,2} \foreach \j in {0,1,2}
\node at (\j,-\i) [anchor=base] {\print{\identitymatrix[\i][\j]}};
\end{codeexample}
\end{math-operators}
\begin{math-operators}{\char`\"}{\char`\"}{group}{}
These operators are used to quote \mvar{x}. However, as every
expression is expanded with |\edef| before it is parsed, macros
(e.g., font commands like |\tt| or |\Huge|) may need to be
``protected'' from this expansion (e.g., |\noexpand\Huge|). Ideally,
you should avoid such macros anyway.
Obviously, these operators should be used with great care as further
calculations are unlikely to be possible with the result.
\begin{codeexample}[]
\def\x{5}
\foreach \y in {0,10}{
\pgfmathparse{\x > \y ? "\noexpand\Large Bigger" : "\noexpand\tiny smaller"}
\x\ is \pgfmathresult\ than \y.
}
\end{codeexample}
\end{math-operators}
\subsection{Functions}
\label{pgfmath-functions}
The following functions are recognized:
\medskip
\def\mathlink#1{\hyperlink{math:#1}{\tt#1}}
\begin{tikzpicture}
\foreach \f [count=\i from 0] in
{abs,acos,add,and,array,asin,atan,atan2,bin,ceil,cos,
cosec,cosh,cot,deg,depth,div,divide,e,equal,factorial, false,
floor,frac,gcd,greater,height,hex,Hex,int,ifthenelse,iseven,isodd,isprime,
less,ln,log10,log2,max,min,mod,Mod,multiply,
neg,not,notequal,notgreater,notless,
oct,or,pi,pow,rad,rand,random,real,rnd,round,
sec,sin,sinh,sqrt,subtract,tan,tanh,true, veclen,width}
\node [anchor=base west] at ({int(\i/12)*2.5cm},{-mod(\i,12)*1.1*\baselineskip}) {\mathlink{\f}};
\end{tikzpicture}
\bigskip
Each function has a \pgfname{} command associated with it (which is
also shown with the function below). In general, the command
is simply the name of the function prefixed with |\pgfmath|, for
example, |\pgfmathadd|, but there are some notable exceptions.
\subsubsection{Basic arithmetic functions}
\label{pgfmath-functions-basic}
\begin{math-function}{add(\mvar{x},\mvar{y})}
\mathcommand
Adds $x$ and $y$.
\begin{codeexample}[]
\pgfmathparse{add(75,6)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{subtract(\mvar{x},\mvar{y})}
\mathcommand
Subtract $x$ from $y$.
\begin{codeexample}[]
\pgfmathparse{subtract(75,6)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{neg(\mvar{x})}
\mathcommand
This returns $-\mvar{x}$.
\begin{codeexample}[]
\pgfmathparse{neg(50)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{multiply(\mvar{x},\mvar{y})}
\mathcommand
Multiply $x$ by $y$.
\begin{codeexample}[]
\pgfmathparse{multiply(75,6)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{divide(\mvar{x},\mvar{y})}
\mathcommand
Divide $x$ by $y$.
\begin{codeexample}[]
\pgfmathparse{divide(75,6)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{div(\mvar{x},\mvar{y})}
\mathcommand
Divide $x$ by $y$ and round to the nearest integer
\begin{codeexample}[]
\pgfmathparse{div(75,9)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{factorial(\mvar{x})}
\mathcommand
Return \mvar{x}!.
\begin{codeexample}[]
\pgfmathparse{factorial(5)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{sqrt(\mvar{x})}
\mathcommand
Calculates $\sqrt{\textrm{\mvar{x}}}$.
\begin{codeexample}[]
\pgfmathparse{sqrt(10)} \pgfmathresult
\end{codeexample}
\begin{codeexample}[]
\pgfmathparse{sqrt(8765.432)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{pow(\mvar{x},\mvar{y})}
\mathcommand
Raises \mvar{x} to the power \mvar{y}. For greatest accuracy,
\mvar{y} should be an integer. If \mvar{y} is not an integer,
the actual calculation will be an approximation of $e^{y\text{ln}(x)}$.
\begin{codeexample}[]
\pgfmathparse{pow(2,7)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{e}
\mathcommand
Returns the value 2.718281828.
{
\catcode`\^=7
\begin{codeexample}[]
\pgfmathparse{(e^2-e^-2)/2} \pgfmathresult
\end{codeexample}
}
\end{math-function}
\begin{math-function}{exp(\mvar{x})}
\mathcommand
{
\catcode`\^=7
Maclaurin series for $e^x$.
}
\begin{codeexample}[]
\pgfmathparse{exp(1)} \pgfmathresult
\end{codeexample}
\begin{codeexample}[]
\pgfmathparse{exp(2.34)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{ln(\mvar{x})}
\mathcommand
{
\catcode`\^=7
An approximation for $\ln(\textrm{\mvar{x}})$.
This uses an algorithm of Rouben Rostamian, and coefficients
suggested by Alain Matthes.
}
\begin{codeexample}[]
\pgfmathparse{ln(10)} \pgfmathresult
\end{codeexample}
\begin{codeexample}[]
\pgfmathparse{ln(exp(5))} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{log10(\mvar{x})}
\mathcommand[logten(\mvar{x})]
An approximation for $\log_{10}(\textrm{\mvar{x}})$.
\begin{codeexample}[]
\pgfmathparse{log10(100)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{log2(\mvar{x})}
\mathcommand[logtwo(\mvar{x})]
An approximation for $\log_2(\textrm{\mvar{x}})$.
\begin{codeexample}[]
\pgfmathparse{log2(128)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{abs(\mvar{x})}
\mathcommand
Evaluates the absolute value of $x$.
\begin{codeexample}[]
\pgfmathparse{abs(-5)} \pgfmathresult
\end{codeexample}
\begin{codeexample}[]
\pgfmathparse{-abs(4*-3)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{mod(\mvar{x},\mvar{y})}
\mathcommand
This evaluates \mvar{x} modulo \mvar{y}, using truncated division.
The sign of the result is the same as the sign of
$\frac{\textrm{\mvar{x}}}{\textrm{\mvar{y}}}$.
\begin{codeexample}[]
\pgfmathparse{mod(20,6)} \pgfmathresult
\end{codeexample}
\begin{codeexample}[]
\pgfmathparse{mod(-100,30)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{Mod(\mvar{x},\mvar{y})}
\mathcommand
This evaluates \mvar{x} modulo \mvar{y}, using floored division.
The sign of the result is never negative.
\begin{codeexample}[]
\pgfmathparse{Mod(-100,30)} \pgfmathresult
\end{codeexample}
\end{math-function}
\subsubsection{Rounding functions}
\label{pgfmath-functions-rounding}
\begin{math-function}{round(\mvar{x})}
\mathcommand
Rounds \mvar{x} to the nearest integer. It uses ``asymmetric half-up''
rounding. So |1.5| is rounded to |2|, but |-1.5| is rounded to |-2|
(\emph{not} |-1|).
\begin{codeexample}[]
\pgfmathparse{round(32.5/17)} \pgfmathresult
\end{codeexample}
\begin{codeexample}[]
\pgfmathparse{round(398/12)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{floor(\mvar{x})}
\mathcommand
Rounds \mvar{x} down to the nearest integer.
\begin{codeexample}[]
\pgfmathparse{floor(32.5/17)} \pgfmathresult
\end{codeexample}
\begin{codeexample}[]
\pgfmathparse{floor(398/12)} \pgfmathresult
\end{codeexample}
\begin{codeexample}[]
\pgfmathparse{floor(-398/12)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{ceil(\mvar{x})}
\mathcommand
Rounds \mvar{x} up to the nearest integer.
\begin{codeexample}[]
\pgfmathparse{ceil(32.5/17)} \pgfmathresult
\end{codeexample}
\begin{codeexample}[]
\pgfmathparse{ceil(398/12)} \pgfmathresult
\end{codeexample}
\begin{codeexample}[]
\pgfmathparse{ceil(-398/12)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{int(\mvar{x})}
\mathcommand
Returns the integer part of \mvar{x}.
\begin{codeexample}[]
\pgfmathparse{int(32.5/17)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{frac(\mvar{x})}
\mathcommand
Returns the fractional part of \mvar{x}.
\begin{codeexample}[]
\pgfmathparse{frac(32.5/17)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{real(\mvar{x})}
\mathcommand
Ensures \mvar{x} contains a decimal point.
\begin{codeexample}[]
\pgfmathparse{real(4)} \pgfmathresult
\end{codeexample}
\end{math-function}
\subsubsection{Integer arithmetics functions}
\label{pgfmath-functions-integerarithmetics}
\begin{math-function}{gcd(\mvar{x},\mvar{y})}
\mathcommand
Computes the greatest common divider of \mvar{x} and \mvar{y}.
\begin{codeexample}[]
\pgfmathparse{gcd(42,56)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{isodd(\mvar{x})}
\mathcommand
Returns |1| if the integer part of \mvar{x} is odd. Otherwise, returns |0|.
\begin{codeexample}[]
\pgfmathparse{isodd(2)} \pgfmathresult,
\pgfmathparse{isodd(3)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{iseven(\mvar{x})}
\mathcommand
Returns |1| if the integer part of \mvar{x} is even. Otherwise, returns |0|.
\begin{codeexample}[]
\pgfmathparse{iseven(2)} \pgfmathresult,
\pgfmathparse{iseven(3)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{isprime(\mvar{x})}
\mathcommand
Returns |1| if the integer part of \mvar{x} is prime. Otherwise, returns |0|.
\begin{codeexample}[]
\pgfmathparse{isprime(1)} \pgfmathresult,
\pgfmathparse{isprime(2)} \pgfmathresult,
\pgfmathparse{isprime(31)} \pgfmathresult,
\pgfmathparse{isprime(64)} \pgfmathresult
\end{codeexample}
\end{math-function}
\subsubsection{Trigonometric functions}
\label{pgfmath-functions-trigonometric}
\begin{math-function}{pi}
\mathcommand
Returns the value $\pi=3.141592654$.
\begin{codeexample}[]
\pgfmathparse{pi} \pgfmathresult
\end{codeexample}
\begin{codeexample}[]
\pgfmathparse{pi r} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{rad(\mvar{x})}
\mathcommand
Convert \mvar{x} to radians. \mvar{x} is assumed to be in degrees.
\begin{codeexample}[]
\pgfmathparse{rad(90)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{deg(\mvar{x})}
\mathcommand
Convert \mvar{x} to degrees. \mvar{x} is assumed to be in radians.
\begin{codeexample}[]
\pgfmathparse{deg(3*pi/2)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{sin(\mvar{x})}
\mathcommand
Sine of \mvar{x}. By employing the |r| operator, \mvar{x} can be in
radians.
\begin{codeexample}[]
\pgfmathparse{sin(60)} \pgfmathresult
\end{codeexample}
\begin{codeexample}[]
\pgfmathparse{sin(pi/3 r)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{cos(\mvar{x})}
\mathcommand
Cosine of \mvar{x}. By employing the |r| operator, \mvar{x} can be in
radians.
\begin{codeexample}[]
\pgfmathparse{cos(60)} \pgfmathresult
\end{codeexample}
\begin{codeexample}[]
\pgfmathparse{cos(pi/3 r)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{tan(\mvar{x})}
\mathcommand
Tangent of \mvar{x}. By employing the |r| operator, \mvar{x} can be in
radians.
\begin{codeexample}[]
\pgfmathparse{tan(45)} \pgfmathresult
\end{codeexample}
\begin{codeexample}[]
\pgfmathparse{tan(2*pi/8 r)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{sec(\mvar{x})}
\mathcommand
Secant of \mvar{x}. By employing the |r| operator, \mvar{x} can be in
radians.
\begin{codeexample}[]
\pgfmathparse{sec(45)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{cosec(\mvar{x})}
\mathcommand
Cosecant of \mvar{x}. By employing the |r| operator, \mvar{x} can be in
radians.
\begin{codeexample}[]
\pgfmathparse{cosec(30)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{cot(\mvar{x})}
\mathcommand
Cotangent of \mvar{x}. By employing the |r| operator, \mvar{x} can be in
radians.
\begin{codeexample}[]
\pgfmathparse{cot(15)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{asin(\mvar{x})}
\mathcommand
Arcsine of \mvar{x}. The result is in degrees and in the range $\pm90^\circ$.
\begin{codeexample}[]
\pgfmathparse{asin(0.7071)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{acos(\mvar{x})}
\mathcommand
Arccosine of \mvar{x} in degrees. The result is in the range $[0^\circ,180^\circ]$.
\begin{codeexample}[]
\pgfmathparse{acos(0.5)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{atan(\mvar{x})}
\mathcommand
Arctangent of $x$ in degrees.
\begin{codeexample}[]
\pgfmathparse{atan(1)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{atan2(\mvar{y},\mvar{x})}
\mathcommand[atantwo(\mvar{y},\mvar{x})]
Arctangent of $y\div x$ in degrees. This also takes into account the
quadrants.
\begin{codeexample}[]
\pgfmathparse{atan2(-4,3)} \pgfmathresult
\end{codeexample}
\end{math-function}
\subsubsection{Comparison and logical functions}
\label{pgfmath-functions-comparison}
\begin{math-function}{equal(\mvar{x},\mvar{y})}
\mathcommand
This returns |1| if $\mvar{x}=\mvar{y}$ and |0| otherwise.
\begin{codeexample}[]
\pgfmathparse{equal(20,20)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{greater(\mvar{x},\mvar{y})}
\mathcommand
This returns |1| if $\mvar{x}>\mvar{y}$ and |0| otherwise.
\begin{codeexample}[]
\pgfmathparse{greater(20,25)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{less(\mvar{x},\mvar{y})}
\mathcommand
This returns |1| if $\mvar{x}<\mvar{y}$ and |0| otherwise.
\begin{codeexample}[]
\pgfmathparse{greater(20,25)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{notequal(\mvar{x},\mvar{y})}
\mathcommand
This returns |0| if $\mvar{x}=\mvar{y}$ and |1| otherwise.
\begin{codeexample}[]
\pgfmathparse{notequal(20,25)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{notgreater(\mvar{x},\mvar{y})}
\mathcommand
This returns |1| if $\mvar{x}\leq\mvar{y}$ and |0| otherwise.
\begin{codeexample}[]
\pgfmathparse{notgreater(20,25)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{notless(\mvar{x},\mvar{y})}
\mathcommand
This returns |1| if $\mvar{x}\geq\mvar{y}$ and |0| otherwise.
\begin{codeexample}[]
\pgfmathparse{notless(20,25)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{and(\mvar{x},\mvar{y})}
\mathcommand
This returns |1| if \mvar{x} and \mvar{y} both evaluate to
non-zero values. Otherwise |0| is returned.
\begin{codeexample}[]
\pgfmathparse{and(5>4,6>7)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{or(\mvar{x},\mvar{y})}
\mathcommand
This returns |1| if either \mvar{x} or \mvar{y} evaluate to
non-zero values. Otherwise |0| is returned.
\begin{codeexample}[]
\pgfmathparse{and(5>4,6>7)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{not(\mvar{x})}
\mathcommand
This returns |1| if $\mvar{x}=0$, otherwise |0|.
\begin{codeexample}[]
\pgfmathparse{not(true)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{ifthenelse(\mvar{x},\mvar{y},\mvar{z})}
\mathcommand
This returns \mvar{y} if \mvar{x} evaluates to some non-zero value,
otherwise \mvar{z} is returned.
\begin{codeexample}[]
\pgfmathparse{ifthenelse(5==4,"yes","no")} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{true}
\mathcommand
This evaluates to |1|.
\begin{codeexample}[]
\pgfmathparse{true ? "yes" : "no"} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{false}
\mathcommand
This evaluates to |0|.
\begin{codeexample}[]
\pgfmathparse{false ? "yes" : "no"} \pgfmathresult
\end{codeexample}
\end{math-function}
\subsubsection{Pseudo-random functions}
\label{pgfmath-functions-random}
\begin{math-function}{rnd}
\mathcommand
Generates a pseudo-random number between $0$ and $1$ with a uniform distribution.
\begin{codeexample}[]
\foreach \x in {1,...,10}{\pgfmathparse{rnd}\pgfmathresult, }
\end{codeexample}
\end{math-function}
\begin{math-function}{rand}
\mathcommand
Generates a pseudo-random number between $-1$ and $1$ with a uniform distribution.
\begin{codeexample}[]
\foreach \x in {1,...,10}{\pgfmathparse{rand}\pgfmathresult, }
\end{codeexample}
\end{math-function}
\begin{math-function}{random(\opt{\mvar{x},\mvar{y}})}
\mathcommand
This function takes zero, one or two arguments. If there are zero
arguments, a uniform random number between $0$ and $1$ is generated. If there is
one argument \mvar{x}, a random integer between $1$ and \mvar{x} is
generated. Finally, if there are two arguments, a random integer
between \mvar{x} and \mvar{y} is generated. If there are no
arguments, the \pgfname{} command should be called as follows:
|\pgfmathrandom{}|.
\begin{codeexample}[]
\foreach \x in {1,...,10}{\pgfmathparse{random()}\pgfmathresult, }
\end{codeexample}
\begin{codeexample}[]
\foreach \x in {1,...,10}{\pgfmathparse{random(100)}\pgfmathresult, }
\end{codeexample}
\begin{codeexample}[]
\foreach \x in {1,...,10}{\pgfmathparse{random(232,762)}\pgfmathresult, }
\end{codeexample}
\end{math-function}
\subsubsection{Base conversion functions}
\label{pgfmath-functions-base}
\begin{math-function}{hex(\mvar{x})}
\mathcommand
Convert \mvar{x}{} (assumed to be an integer in base 10) to a
hexadecimal representation, using lower case alphabetic digits.
No further calculation will be possible with the result.
\begin{codeexample}[]
\pgfmathparse{hex(65535)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{Hex(\mvar{x})}
\mathcommand
Convert \mvar{x}{} (assumed to be an integer in base 10) to a
hexadecimal representation, using upper case alphabetic digits.
No further calculation will be possible with the result.
\begin{codeexample}[]
\pgfmathparse{Hex(65535)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{oct(\mvar{x})}
\mathcommand
Convert \mvar{x}{} (assumed to be an integer in base 10) to an
octal representation.
No further calculation should be attempted with the result, as
the parser can only process numbers converted to base 10.
\begin{codeexample}[]
\pgfmathparse{oct(63)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{bin(\mvar{x})}
\mathcommand
Convert \mvar{x}{} (assumed to be an integer in base 10) to a
binary representation.
No further calculation should be attempted with the result, as
the parser can only process numbers converted to base 10.
\begin{codeexample}[]
\pgfmathparse{bin(185)} \pgfmathresult
\end{codeexample}
\end{math-function}
\subsubsection{Miscellaneous functions}
\label{pgfmath-functions-misc}
\begin{math-function}{min(\mvar{x$_1$},\mvar{x$_2$},\ldots,\mvar{x$_n$})}
\mathcommand[min({\mvar{x$_1$},\mvar{x$_2$},\ldots},{\ldots,\mvar{x$_{n-1}$},\mvar{x$_n$}})]
Return the minimum value from \mvar{x$_1$}\ldots\mvar{x$_n$}.
For historical reasons, the command |\pgfmathmin| takes two
arguments, but each of these can contain an arbitrary number
of comma separated values.
\begin{codeexample}[]
\pgfmathparse{min(3,4,-2,250,-8,100)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{max(\mvar{x$_1$},\mvar{x$_2$},\ldots,\mvar{x$_n$})}
\mathcommand[max({\mvar{x$_1$},\mvar{x$_2$},\ldots},{\ldots,\mvar{x$_{n-1}$},\mvar{x$_n$}})]
Return the maximum value from \mvar{x$_1$}\ldots\mvar{x$_n$}.
Again, for historical reasons, the command |\pgfmathmax| takes two
arguments, but each of these can contain an arbitrary number
of comma separated values.
\begin{codeexample}[]
\pgfmathparse{max(3,4,-2,250,-8,100)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{veclen(\mvar{x},\mvar{y})}
\mathcommand
Calculates $\sqrt{\left(\textrm{\mvar{x}}^2+\textrm{\mvar{y}}^2\right)}$.
This uses a polynomial approximation, based on ideas of Rouben Rostamian
\begin{codeexample}[]
\pgfmathparse{veclen(12,5)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{array(\mvar{x},\mvar{y})}
\mathcommand
This accesses the array \mvar{x} at the index \mvar{y}. The
array must begin and end with braces (e.g., |{1,2,3,4}|) and
array indexing starts at |0|.
\begin{codeexample}[]
\pgfmathparse{array({9,13,17,21},2)} \pgfmathresult
\end{codeexample}
\end{math-function}
The following hyperbolic functions were adapted from code
suggested by Martin Heller:
\begin{math-function}{sinh(\mvar{x})}
\mathcommand
The hyperbolic sine of \mvar{x}%
\begin{codeexample}[]
\pgfmathparse{sinh(0.5)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{cosh(\mvar{x})}
\mathcommand
The hyperbolic cosine of \mvar{x}%
\begin{codeexample}[]
\pgfmathparse{cosh(0.5)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{tanh(\mvar{x})}
\mathcommand
The hyperbolic tangent of \mvar{x}%
\begin{codeexample}[]
\pgfmathparse{tanh(0.5)} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{width("\mvar{x}")}
\mathcommand
Return the width of a \TeX{} (horizontal) box containing \mvar{x}.
The quote characters are necessary to prevent \mvar{x}{} from being
parsed.
It is important to remember that any expression is expanded with
|\edef| before being parsed, so any macros (e.g., font commands
like |\tt| or |\Huge|) will need to be ``protected'' (e.g.,
|\noexpand\Huge| is usually sufficient).
\begin{codeexample}[]
\pgfmathparse{width("Some Lovely Text")} \pgfmathresult
\end{codeexample}
Note that results of this method are provided in points.
\end{math-function}
\begin{math-function}{height("\mvar{x}")}
\mathcommand
Return the height of a box containing \mvar{x}.
\begin{codeexample}[]
\pgfmathparse{height("Some Lovely Text")} \pgfmathresult
\end{codeexample}
\end{math-function}
\begin{math-function}{depth("\mvar{x}")}
\mathcommand
Returns the depth of a box containing \mvar{x}.
\begin{codeexample}[]
\pgfmathparse{depth("Some Lovely Text")} \pgfmathresult
\end{codeexample}
\end{math-function}
|