summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/generic/pgf/text-en/pgfmanual-en-math-parsing.tex
blob: 8cdadabe28165b3181a565fbe1cfc829100d9f6c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
% Copyright 2007 by Mark Wibrow
%
% This file may be distributed and/or modified
%
% 1. under the LaTeX Project Public License and/or
% 2. under the GNU Free Documentation License.
%
% See the file doc/generic/pgf/licenses/LICENSE for more details.
%

\section{Mathematical Expressions}

\label{pgfmath-syntax}

The easiest way of using \pgfname's mathematical engine is to provide
a mathematical expression given in familiar infix notation, for
example, |1cm+4*2cm/5.5| or |2*3+3*sin(30)|. This expression can be
parsed by the mathematical engine and the result can be placed in a
dimension register, a counter, or a macro.

It should be noted that all
calculations must not exceed $\pm16383.99999$ at \emph{any} point,
because the underlying computations rely on \TeX{} dimensions. This
means that many of the underlying computations are necessarily
approximate and, in addition, not very fast. \TeX{} is,
after all, a typesetting language and not ideally
suited to relatively advanced mathematical operations. However, it
is possible to change the computations as described in
Section~\ref{pgfmath-reimplement}.

In the present section, the high-level macros for parsing an
expression are explained first, then the syntax for expression is
explained.


\subsection{Parsing Expressions}

\label{pgfmath-registers}

\label{pgfmath-parsing}

\subsubsection{Commands}

The basic command for invoking the parser of \pgfname's mathematical
engine is the following:

\begin{command}{\pgfmathparse\marg{expression}}
  This macro parses \meta{expression} and returns the result without
  units in  the macro |\pgfmathresult|.

  \example |\pgfmathparse{2pt+3.5pt}| will set |\pgfmathresult| to the
  text |5.5|.

  In the following, the special properties of this command are
  explained. The exact syntax of mathematical expressions is explained
  in Sections \ref{pgfmath-operators} and~\ref{pgfmath-functions}.

  \begin{itemize}
  \item
    The result stored in the macro |\pgfmathresult| is a decimal
    \emph{without units}. This is true regardless of whether the
    \meta{expression} contains any unit specification. All numbers
    with units are converted to points first. See
    Section~\ref{pgfmath-units} for details on units.
  \item
    The parser will recognize \TeX{} registers and box dimensions,
    so |\mydimen|, |0.5\mydimen|, |\wd\mybox|, |0.5\dp\mybox|,
    |\mycount\mydimen| and so on can be parsed.
    
  \item
    The $\varepsilon$-TeX\ extensions |\dimexpr|, |\numexpr|, |\glueexpr|, and
    |\muexpr| are recognized and evaluated. The values they
    result in will be used in the further evaluation, as if you had
    put |\the| before them. 
    
  \item
    Parenthesis can be used to change the order of the evaluation.
    
  \item
    Various functions are recognized, so it is possible to parse
    |sin(.5*pi r)*60|, which means ``the sine of $0.5$ times $\pi$
    radians, multiplied by 60''. The argument of functions can
    be any expression.
    
  \item
    Scientific notation in the form |1.234e+4| is recognized (but
    the restriction on the range of values still applies). The exponent
    symbol can be upper or lower case (i.e., |E| or |e|).
    
  \item
    An integer with a zero-prefix (excluding, of course zero itself),
    is interpreted as an octal number and is automatically converted
    to base 10.
    
  \item
    An integer with prefix |0x| or |0X| is interpreted as a hexadecimal
    number and is automatically converted to base 10. Alphabetic digits
    can be in uppercase or lowercase.
    
  \item
    An integer with prefix |0b| or |0B| is interpreted as a binary
    number and is automatically converted to base 10.
    
  \item
    An expression (or part of an expression) surrounded with double
    quotes (i.e., the character |"|) will not be evaluated.
    Obviously this should be used with great care.
    
  \end{itemize}

\end{command}



\begin{command}{\pgfmathqparse\marg{expression}}
  This macro is similar to |\pgfmathparse|: it parses
  \meta{expression} and returns the result in the macro
  |\pgfmathresult|. It differs in two respects. Firstly,
  |\pgfmathqparse| does not parse functions, scientific
  notation, the prefixes for binary octal, or hexadecimal numbers,
  nor does it accept the special use of |"|, |?| or |:| characters.
  Secondly, numbers in \meta{expression} \emph{must}
  specify a \TeX{} unit (except in such instances as |0.5\pgf@x|),
  which greatly simplifies the problem of parsing real numbers.
  As a result of these restrictions |\pgfmathqparse|
  is about twice as fast as |\pgfmathparse|. Note that the result
  will still be a number without units.	
\end{command}

\begin{command}{\pgfmathpostparse}

  At the end of the parse this command is executed, allowing some
  custom action to be performed on the result of the parse. When this
  command is executed, the macro |\pgfmathresult| will hold the result
  of the parse (as always, without units). The result of the custom
  action should be used to redefine |\pgfmathresult| appropriately.
  By default, this command is equivalent to |\relax|. This differs
  from previous versions, where, if the parsed expression contained
  no units, the result of the parse was scaled according to the value
  in |\pgfmathresultunitscale| (which by default was |1|).

  This scaling can be  turned on again using:
  |\let\pgfmathpostparse=\pgfmathscaleresult|.
  Note, however that by scaling the result, the base conversion
  functions will not work, and the |"| character should not be
  used to quote parts of an expression.

\end{command}

Instead of the |\pgfmathparse| macro you can also use wrapper commands,
whose usage is very similar to their cousins in the \calcname{}
package. The only difference is that the expressions can be any
expression that is handled by |\pgfmathparse|.
For all of the following commands, if \meta{expression} starts with
|+|, no parsing is done and a simple assignment or increment is done
using normal \TeX\ assignments or increments. This will be orders of
magnitude faster than calling the parser.

The effect of the following commands is always local to the current
\TeX\ scope.

\begin{command}{\pgfmathsetlength\marg{register}\marg{expression}}
  Basically, this command sets the length of the \TeX{}
  \meta{register} to the value specified by
  \meta{expression}. However, there is some fine print:

  First, in case \meta{expression} starts with a |+|, a simple \TeX\
  assignment is done. In particular, \meta{register} can be a glue
  register and \meta{expression} be something like |+1pt plus 1fil|
  and the \meta{register} will be assigned the expected value.

  Second, when the \meta{expression} does not start with |+|, it is
  first parsed using |\pgfmathparse|, resulting in a (dimensionless)
  value |\pgfmathresult|. Now, if the parser encountered the unit |mu|
  somewhere in the expression, it assumes that \meta{register} is a
  |\muskip| register and will try to assign to \meta{register} the
  value |\pgfmathresult| followed by |mu|. Otherwise, in case |mu| was
  not encountered, it is assumed that \meta{register} is a dimension
  register or a glue register and we assign |\pgfmathresult| followed
  by |pt| to it.

  The net effect of the above is that you can write things like
\begin{codeexample}[]
  \muskipdef\mymuskip=0
  \pgfmathsetlength{\mymuskip}{1mu+3*4mu} \the\mymuskip 
\end{codeexample}
\begin{codeexample}[]  
  \dimendef\mydimen=0  
  \pgfmathsetlength{\mydimen}{1pt+3*4pt}  \the\mydimen
\end{codeexample}
\begin{codeexample}[]  
  \skipdef\myskip=0  
  \pgfmathsetlength{\myskip}{1pt+3*4pt}  \the\myskip
\end{codeexample}

  One thing that will \emph{not} work is
  |\pgfmathsetlength{\myskip}{1pt plus 1fil}| since the parser does
  not support fill's. You can, however, use the |+| notation in this
  case: 
\begin{codeexample}[]  
  \skipdef\myskip=0  
  \pgfmathsetlength{\myskip}{+1pt plus 1fil}  \the\myskip
\end{codeexample}
\end{command}

\begin{command}{\pgfmathaddtolength\marg{register}\marg{expression}}
  Adds the value of \meta{expression} to the \TeX{}
  \meta{register}. All of the special consideration mentioned for
  |\pgfmathsetlength| also apply here in the same way.
\end{command}

\begin{command}{\pgfmathsetcount\marg{count register}\marg{expression}}
  Sets the value of the \TeX{} \meta{count register}, to the
  \emph{truncated} value specified by \meta{expression}.
\end{command}

\begin{command}{\pgfmathaddtocount\marg{count register}\marg{expression}}
  Adds the \emph{truncated} value  of \meta{expression} to the \TeX{}
  \meta{count register}.
\end{command}

\begin{command}{\pgfmathsetcounter\marg{counter}\marg{expression}}
  Sets the value of the \LaTeX{} \meta{counter} to the \emph{truncated}
  value specified by \meta{expression}.
\end{command}

\begin{command}{\pgfmathaddtocounter\marg{counter}\marg{expression}}
  Adds the \emph{truncated} value  of \meta{expression} to
  \meta{counter}.
\end{command}

\begin{command}{\pgfmathsetmacro\marg{macro}\marg{expression}}
  Defines \meta{macro} as the  value of \meta{expression}. The result
  is a decimal without units.
\end{command}

\begin{command}{\pgfmathsetlengthmacro\marg{macro}\marg{expression}}
  Defines \meta{macro} as the value of \meta{expression}
  \LaTeX{} \emph{in points}.
\end{command}

\begin{command}{\pgfmathtruncatemacro\marg{macro}\marg{expression}}
  Defines \meta{macro} as the truncated value of \meta{expression}.
\end{command}


\subsubsection{Considerations Concerning Units}
\label{pgfmath-units}

As was explained earlier, the parser commands like |\pgfmathparse|
will always return a result without units in it and all dimensions
that have a unit like |10pt| or |1in| will first be converted to \TeX\
points (|pt|) and, then, the unit is dropped.

Sometimes it is useful, nevertheless, to find out whether an
expression or not. For this, you can use the following commands:

{\let\ifpgfmathunitsdeclared\relax
  \begin{command}{\ifpgfmathunitsdeclared}
    After a call  of |\pgfmathparse| this if will be true exactly if
    some unit was encountered in the expression. It is always set
    globally in each call.
    
    Note that \emph{any} ``mentioning'' of a unit inside an
    expression will set this \TeX-if to true. In particular, even an
    expressionlike |2pt/1pt|, which arguably should be considered
    ``scalar'' or ``unit-free'' will still have this \TeX-if set to
    true. However, see the |scalar| function for a way to change
    this. 
  \end{command}
}

\begin{math-function}{scalar(\mvar{value})}
  \mathcommand
  
  This function is the identity function on its input, but it will
  reset the \TeX-if |\ifpgfmathunitsdeclared|. Thus, it can be used to
  indicate that the given \meta{value} should be considered as a
  ``scalar'' even when it contains units; but note that it will work
  even when the \meta{value} is a string or something else. The only
  effect of this function is to clear the unit declaration.

\begin{codeexample}[]
\pgfmathparse{scalar(1pt/2pt)} \pgfmathresult\
\ifpgfmathunitsdeclared with \else without \fi unit
\end{codeexample}

  Note, however, that this command (currently) really just clears the
  \TeX-if as the input is scanned from left-to-right. Thus, even if
  there is a use of a unit before the |scalar| function is used, the
  \TeX-if will be cleared:

\begin{codeexample}[]
\pgfmathparse{1pt+scalar(1pt)} \pgfmathresult\
\ifpgfmathunitsdeclared with \else without \fi unit
\end{codeexample}

  The other way round, a use of a unit after the |scalar| function
  will set the units once more.
\begin{codeexample}[]
\pgfmathparse{scalar(1pt)+1pt} \pgfmathresult\
\ifpgfmathunitsdeclared with \else without \fi unit
\end{codeexample}

  For these reasons, you should use the function only on the outermost
  level of an expression.
  
  A typical use of this function is the following:
\begin{codeexample}[]
\tikz{
  \coordinate["$A$"]       (A) at (2,2);
  \coordinate["$B$" below] (B) at (0,0);
  \coordinate["$C$" below] (C) at (3,0);
  \draw (A) -- (B) -- (C) -- cycle;
  \path
    let \p1 =($(A)-(B)$), \p2 =($(A)-(C)$),
        \n1 = {veclen(\x1,\y1)}, \n2 = {veclen(\x2,\y2)}
    in  coordinate ["$D$" below] (D) at ($ (B)!scalar(\n1/(\n1+\n2))!(C) $);
  \draw (A) -- (D);
}
\end{codeexample}
\end{math-function}

A special kind of units are \TeX's ``math units'' (|mu|). It will
be treated as if |pt| had been used, but you can
check whether an expression contained a math unit using the
following: 
{\let\ifpgfmathmathunitsdeclared\relax
  \begin{command}{\ifpgfmathmathunitsdeclared}
    This \TeX-if is similar to |\ifpgfmathunitsdeclared|, but it
    is only set when the unit |mu| is encountered at least
    once. In this case, |\ifpgfmathunitsdeclared| will \emph{also}
    be set to true. The |scalar| function has no effect on this \TeX-if.
  \end{command}
}
  
\subsection{Syntax for Mathematical Expressions: Operators}

The syntax for the expressions recognized by |\pgfmathparse| and
friends is rather straightforward. Let us start with the operators.

\label{pgfmath-operators}

The following operators (presented in the context in which they are used)
are recognized:

\begin{math-operator}{+}{infix}{add}
 Adds \mvar{x} to \mvar{y}.
\end{math-operator}

\begin{math-operator}{-}{infix}{subtract}
  Subtracts \mvar{y} from \mvar{x}.
\end{math-operator}

\begin{math-operator}{-}{prefix}{neg}
  Reverses the sign of \mvar{x}.
\end{math-operator}

\begin{math-operator}{*}{infix}{multiply}
  Multiples \mvar{x} by \mvar{y}.
\end{math-operator}

\begin{math-operator}{/}{infix}{divide}
  Divides \mvar{x} by \mvar{y}. An error will result if \mvar{y} is 0,
  or if the result of the division is too big for the mathematical
  engine. Please remember when using this command that accurate (and
  reasonably quick) division of real numbers that are not integers
  is particularly tricky in \TeX.
\end{math-operator}

\begin{math-operator}{\char`\^}{infix}{pow}
  Raises \mvar{x} to the power \mvar{y}.
\end{math-operator}

\begin{math-operator}{\protect\exclamationmarktext}{postfix}{factorial}
  Calculates the factorial of \mvar{x}.
\end{math-operator}

\begin{math-operator}{r}{postfix}{deg}
  Converts \mvar{x} to degrees (\mvar{x} is assumed to be in radians).
  This operator has the same precedence as multiplication.
\end{math-operator}

\begin{math-operators}{?}{:}{conditional}{ifthenelse}

  |?| and |:| are special operators which can be used as a shorthand
  for |if| \mvar{x} |then| \mvar{y} |else| \mvar{z} inside the parser.
  The expression \mvar{x} is taken to be true if it evaluates to any
  non-zero value.

\end{math-operators}

\begin{math-operator}{==}{infix}{equal}
  Returns |1| if \mvar{x}$=$\mvar{y}, |0| otherwise.
\end{math-operator}

\begin{math-operator}{>}{infix}{greater}
  Returns |1| if \mvar{x}$>$\mvar{y}, |0| otherwise.
\end{math-operator}

\begin{math-operator}{<}{infix}{less}
  Returns |1| if \mvar{x}$<$\mvar{y}, |0| otherwise.
\end{math-operator}

\begin{math-operator}{\protect\exclamationmarktext=}{infix}{notequal}
  Returns |1| if \mvar{x}$\neq$\mvar{y}, |0| otherwise.
\end{math-operator}

\begin{math-operator}{>=}{infix}{notless}
  Returns |1| if \mvar{x}$\geq$\mvar{y}, |0| otherwise.
\end{math-operator}

\begin{math-operator}{<=}{infix}{notgreater}
  Returns |1| if \mvar{x}$\leq$\mvar{y}, |0| otherwise.
\end{math-operator}

\begin{math-operator}{{\char`\&}{\char`\&}}{infix}{and}
  Returns |1| if both \mvar{x} and \mvar{y} evaluate to some
  non-zero value. Both arguments are evaluated.
\end{math-operator}



{
 \catcode`\|=12
\begin{math-operator}[no index]{||}{infix}{or}
	\index{*pgfmanualvbarvbarr@\protect\texttt{\protect\pgfmanualvbarvbar} math operator}%
  \index{Math operators!*pgfmanualvbarvbar@\protect\texttt{\protect\pgfmanualvbarvbar}}%
  Returns {\tt 1} if either \mvar{x} or \mvar{y} evaluate to some
  non-zero value.
\end{math-operator}
}

\begin{math-operator}{\protect\exclamationmarktext}{prefix}{not}
  Returns |1| if \mvar{x} evaluates to zero, |0| otherwise.
\end{math-operator}


\begin{math-operators}{(}{)}{group}{}

These operators act in the usual way, that is, to control the order
in which operators are executed, for example, |(1+2)*3|. This
includes the grouping of arguments for functions, for example,
|sin(30*10)| or |mod(72,3)| (the comma character is also treated
as an operator).

Parentheses for functions with one argument are not always
necessary, |sin 30| (note the space) is the same as |sin(30)|.
However, functions have the highest precedence so, |sin 30*10|
is the same as |sin(30)*10|.

\end{math-operators}


\begin{math-operators}{\char`\{}{\char`\}}{array}{}

These operators are used to process array-like structures (within an
expression these characters do not act like \TeX{} grouping tokens).
The \meta{array specification} consists of comma separated elements,
for example, |{1, 2, 3, 4, 5}|. Each element in the array will be
evaluated as it is parsed, so expressions can be used.
In addition, an element of an array can be an array itself,
allowing multiple dimension arrays to be simulated:
|{1, {2,3}, {4,5}, 6}|.
When storing an array in a macro, do not forget the surrounding
braces: |\def\myarray{{1,2,3}}| not |\def\myarray{1,2,3}|.

\begin{codeexample}[]
\def\myarray{{1,"two",2+1,"IV","cinq","sechs",sin(\i*5)*14}}
\foreach \i in  {0,...,6}{\pgfmathparse{\myarray[\i]}\pgfmathresult, }
\end{codeexample}

\end{math-operators}

\begin{math-operators}{\char`\[}{\char`\]}{array access}{array}

|[| and |]| are two operators used in one particular circumstance: to
access an array (specified using the |{| and |}| operators)
using the index \mvar{x}. Indexing starts from zero,
so, if the index is greater than, or equal to, the number of values in
the array, an error will occur, and zero will be returned.

\begin{codeexample}[]
\def\myarray{{7,-3,4,-9,11}}
\pgfmathparse{\myarray[3]} \pgfmathresult
\end{codeexample}

If the array is defined to have multiple dimensions, then the array
access operators can be immediately repeated.

\begin{codeexample}[]
\def\print#1{\pgfmathparse{#1}\pgfmathresult}
\def\identitymatrix{{{1,0,0},{0,1,0},{0,0,1}}}
\tikz[x=0.5cm,y=0.5cm]\foreach \i in {0,1,2} \foreach \j in {0,1,2}
  \node at (\j,-\i) [anchor=base] {\print{\identitymatrix[\i][\j]}};
\end{codeexample}

\end{math-operators}


\begin{math-operators}{\char`\"}{\char`\"}{group}{}

These operators are used to quote \mvar{x}. However, as every
expression is expanded with |\edef| before it is parsed, macros
(e.g., font commands like |\tt| or |\Huge|) may need to be
``protected'' from this expansion (e.g., |\noexpand\Huge|). Ideally,
you should avoid such macros anyway.
Obviously, these operators should be used with great care as further
calculations are unlikely to be possible with the result.

\begin{codeexample}[]
\def\x{5}
\foreach \y in {0,10}{
  \pgfmathparse{\x > \y ? "\noexpand\Large Bigger" : "\noexpand\tiny smaller"}
  \x\ is \pgfmathresult\ than \y.
}
\end{codeexample}

\end{math-operators}




\subsection{Syntax for Mathematical Expressions: Functions}

\label{pgfmath-functions}

The following functions are recognized:

\medskip
\def\mathlink#1{\hyperlink{math:#1}{\tt#1}}
\begin{tikzpicture}
\foreach \f [count=\i from 0] in
{abs,acos,add,and,array,asin,atan,atan2,bin,ceil,cos,
 cosec,cosh,cot,deg,depth,div,divide,e,equal,factorial, false,
 floor,frac,gcd,greater,height,hex,Hex,int,ifthenelse,iseven,isodd,isprime,
 less,ln,log10,log2,max,min,mod,Mod,multiply,
 neg,not,notequal,notgreater,notless,
 oct,or,pi,pow,rad,rand,random,real,rnd,round,
 scalar,sec,sign,sin,sinh,sqrt,subtract,tan,tanh,true, veclen,width}
\node [anchor=base west] at ({int(\i/12)*2.5cm},{-mod(\i,12)*1.1*\baselineskip}) {\mathlink{\f}};
\end{tikzpicture}
\bigskip

Each function has a \pgfname{} command associated with it (which is
also shown with the function below). In general, the command
is simply the name of the function prefixed with |\pgfmath|, for
example, |\pgfmathadd|, but there are some notable exceptions.

\subsubsection{Basic arithmetic functions}

\label{pgfmath-functions-basic}

\begin{math-function}{add(\mvar{x},\mvar{y})}
\mathcommand

  Adds $x$ and $y$.

\begin{codeexample}[]
\pgfmathparse{add(75,6)} \pgfmathresult
\end{codeexample}
\end{math-function}

\begin{math-function}{subtract(\mvar{x},\mvar{y})}
\mathcommand

  Subtract $x$ from $y$.

\begin{codeexample}[]
\pgfmathparse{subtract(75,6)} \pgfmathresult
\end{codeexample}
\end{math-function}

\begin{math-function}{neg(\mvar{x})}
\mathcommand

	This returns $-\mvar{x}$.
	
\begin{codeexample}[]
\pgfmathparse{neg(50)} \pgfmathresult
\end{codeexample}

\end{math-function}

\begin{math-function}{multiply(\mvar{x},\mvar{y})}
\mathcommand

  Multiply $x$ by $y$.

\begin{codeexample}[]
\pgfmathparse{multiply(75,6)} \pgfmathresult
\end{codeexample}
\end{math-function}

\begin{math-function}{divide(\mvar{x},\mvar{y})}
\mathcommand

  Divide $x$ by $y$.

\begin{codeexample}[]
\pgfmathparse{divide(75,6)} \pgfmathresult
\end{codeexample}
\end{math-function}

\begin{math-function}{div(\mvar{x},\mvar{y})}
\mathcommand

  Divide $x$ by $y$ and round to the nearest integer

\begin{codeexample}[]
\pgfmathparse{div(75,9)} \pgfmathresult
\end{codeexample}
\end{math-function}

\begin{math-function}{factorial(\mvar{x})}
\mathcommand

  Return \mvar{x}!.

\begin{codeexample}[]
\pgfmathparse{factorial(5)} \pgfmathresult
\end{codeexample}

\end{math-function}

\begin{math-function}{sqrt(\mvar{x})}
\mathcommand

 Calculates $\sqrt{\textrm{\mvar{x}}}$.

\begin{codeexample}[]
\pgfmathparse{sqrt(10)} \pgfmathresult
\end{codeexample}

\begin{codeexample}[]
\pgfmathparse{sqrt(8765.432)}  \pgfmathresult
\end{codeexample}

\end{math-function}

\begin{math-function}{pow(\mvar{x},\mvar{y})}
\mathcommand

 Raises \mvar{x} to the power \mvar{y}. For greatest accuracy,
 \mvar{y} should be an integer. If \mvar{y} is not an integer,
 the actual calculation will be an approximation of $e^{y\text{ln}(x)}$.

\begin{codeexample}[]
\pgfmathparse{pow(2,7)} \pgfmathresult
\end{codeexample}

\end{math-function}


\begin{math-function}{e}
\mathcommand

  Returns the value 2.718281828.
{
\catcode`\^=7

\begin{codeexample}[]
\pgfmathparse{(e^2-e^-2)/2} \pgfmathresult
\end{codeexample}

}
\end{math-function}

\begin{math-function}{exp(\mvar{x})}
\mathcommand

{
\catcode`\^=7

	Maclaurin series for $e^x$.
}	
\begin{codeexample}[]
\pgfmathparse{exp(1)} \pgfmathresult
\end{codeexample}

\begin{codeexample}[]
\pgfmathparse{exp(2.34)} \pgfmathresult
\end{codeexample}

\end{math-function}


\begin{math-function}{ln(\mvar{x})}
\mathcommand

{
\catcode`\^=7

	An approximation for $\ln(\textrm{\mvar{x}})$.
	This uses an algorithm of Rouben Rostamian, and coefficients
	suggested by Alain Matthes.
}	
\begin{codeexample}[]
\pgfmathparse{ln(10)} \pgfmathresult
\end{codeexample}

\begin{codeexample}[]
\pgfmathparse{ln(exp(5))} \pgfmathresult
\end{codeexample}

\end{math-function}

\begin{math-function}{log10(\mvar{x})}
\mathcommand[logten(\mvar{x})]

	An approximation for $\log_{10}(\textrm{\mvar{x}})$.

\begin{codeexample}[]
\pgfmathparse{log10(100)} \pgfmathresult
\end{codeexample}

\end{math-function}

\begin{math-function}{log2(\mvar{x})}
\mathcommand[logtwo(\mvar{x})]

	An approximation for $\log_2(\textrm{\mvar{x}})$.

\begin{codeexample}[]
\pgfmathparse{log2(128)} \pgfmathresult
\end{codeexample}

\end{math-function}

\begin{math-function}{abs(\mvar{x})}
\mathcommand

	Evaluates the absolute value of $x$.
	
\begin{codeexample}[]
\pgfmathparse{abs(-5)} \pgfmathresult
\end{codeexample}

\begin{codeexample}[]
\pgfmathparse{-abs(4*-3)} \pgfmathresult
\end{codeexample}
\end{math-function}

\begin{math-function}{mod(\mvar{x},\mvar{y})}
\mathcommand

	This evaluates \mvar{x} modulo \mvar{y}, using truncated division.
	The sign of the result is the same as the sign of
	$\frac{\textrm{\mvar{x}}}{\textrm{\mvar{y}}}$.

\begin{codeexample}[]
\pgfmathparse{mod(20,6)} \pgfmathresult
\end{codeexample}

\begin{codeexample}[]
\pgfmathparse{mod(-100,30)} \pgfmathresult
\end{codeexample}

\end{math-function}

\begin{math-function}{Mod(\mvar{x},\mvar{y})}
\mathcommand

	This evaluates \mvar{x} modulo \mvar{y}, using floored division.
	The sign of the result is never negative.

\begin{codeexample}[]
\pgfmathparse{Mod(-100,30)} \pgfmathresult
\end{codeexample}

\end{math-function}

\begin{math-function}{sign(\mvar{x})}
\mathcommand

	Returns the sign of $x$.
	
\begin{codeexample}[]
\pgfmathparse{sign(-5)} \pgfmathresult
\end{codeexample}

\begin{codeexample}[]
\pgfmathparse{sign(0)} \pgfmathresult
\end{codeexample}

\begin{codeexample}[]
\pgfmathparse{sign(5)} \pgfmathresult
\end{codeexample}
\end{math-function}




\subsubsection{Rounding functions}

\label{pgfmath-functions-rounding}

\begin{math-function}{round(\mvar{x})}
\mathcommand

	Rounds \mvar{x} to the nearest integer. It uses ``asymmetric half-up''
	rounding. So |1.5| is rounded to |2|, but |-1.5| is rounded to |-2|
	(\emph{not} |-1|).

\begin{codeexample}[]
\pgfmathparse{round(32.5/17)} \pgfmathresult
\end{codeexample}

\begin{codeexample}[]
\pgfmathparse{round(398/12)} \pgfmathresult
\end{codeexample}

\end{math-function}

\begin{math-function}{floor(\mvar{x})}
\mathcommand

	Rounds \mvar{x} down to the nearest integer.
	
\begin{codeexample}[]
\pgfmathparse{floor(32.5/17)} \pgfmathresult
\end{codeexample}

\begin{codeexample}[]
\pgfmathparse{floor(398/12)} \pgfmathresult
\end{codeexample}

\begin{codeexample}[]
\pgfmathparse{floor(-398/12)} \pgfmathresult
\end{codeexample}
\end{math-function}

\begin{math-function}{ceil(\mvar{x})}
\mathcommand

	Rounds \mvar{x} up to the nearest integer.

\begin{codeexample}[]
\pgfmathparse{ceil(32.5/17)} \pgfmathresult
\end{codeexample}

\begin{codeexample}[]
\pgfmathparse{ceil(398/12)} \pgfmathresult
\end{codeexample}

\begin{codeexample}[]
\pgfmathparse{ceil(-398/12)} \pgfmathresult
\end{codeexample}

\end{math-function}

\begin{math-function}{int(\mvar{x})}
\mathcommand

	Returns the integer part of \mvar{x}.

\begin{codeexample}[]
\pgfmathparse{int(32.5/17)} \pgfmathresult
\end{codeexample}

\end{math-function}

\begin{math-function}{frac(\mvar{x})}
\mathcommand

	Returns the fractional part of \mvar{x}.

\begin{codeexample}[]
\pgfmathparse{frac(32.5/17)} \pgfmathresult
\end{codeexample}

\end{math-function}

\begin{math-function}{real(\mvar{x})}
\mathcommand

	Ensures \mvar{x} contains a decimal point.

\begin{codeexample}[]
\pgfmathparse{real(4)} \pgfmathresult
\end{codeexample}

\end{math-function}


\subsubsection{Integer arithmetics functions}

\label{pgfmath-functions-integerarithmetics}

\begin{math-function}{gcd(\mvar{x},\mvar{y})}
\mathcommand

  Computes the greatest common divider of \mvar{x} and \mvar{y}. 

\begin{codeexample}[]
\pgfmathparse{gcd(42,56)} \pgfmathresult
\end{codeexample}

\end{math-function}

\begin{math-function}{isodd(\mvar{x})}
\mathcommand

  Returns |1| if the integer part of \mvar{x} is odd. Otherwise, returns |0|.

\begin{codeexample}[]
\pgfmathparse{isodd(2)} \pgfmathresult, 
\pgfmathparse{isodd(3)} \pgfmathresult
\end{codeexample}

\end{math-function}

\begin{math-function}{iseven(\mvar{x})}
\mathcommand

  Returns |1| if the integer part of \mvar{x} is even. Otherwise, returns |0|.

\begin{codeexample}[]
\pgfmathparse{iseven(2)} \pgfmathresult, 
\pgfmathparse{iseven(3)} \pgfmathresult
\end{codeexample}

\end{math-function}

\begin{math-function}{isprime(\mvar{x})}
\mathcommand

  Returns |1| if the integer part of \mvar{x} is prime. Otherwise, returns |0|.

\begin{codeexample}[]
\pgfmathparse{isprime(1)} \pgfmathresult, 
\pgfmathparse{isprime(2)} \pgfmathresult,
\pgfmathparse{isprime(31)} \pgfmathresult,
\pgfmathparse{isprime(64)} \pgfmathresult
\end{codeexample}

\end{math-function}


\subsubsection{Trigonometric functions}

\label{pgfmath-functions-trigonometric}

\begin{math-function}{pi}
\mathcommand

	Returns the value $\pi=3.141592654$.
	
\begin{codeexample}[]
\pgfmathparse{pi} \pgfmathresult
\end{codeexample}

\begin{codeexample}[]
\pgfmathparse{pi r} \pgfmathresult
\end{codeexample}

\end{math-function}

\begin{math-function}{rad(\mvar{x})}
\mathcommand

	Convert \mvar{x} to radians. \mvar{x} is assumed to be in degrees.
	
\begin{codeexample}[]
\pgfmathparse{rad(90)} \pgfmathresult
\end{codeexample}

\end{math-function}

\begin{math-function}{deg(\mvar{x})}
\mathcommand

	Convert \mvar{x} to degrees. \mvar{x} is assumed to be in radians.
	
\begin{codeexample}[]
\pgfmathparse{deg(3*pi/2)} \pgfmathresult
\end{codeexample}

\end{math-function}

\begin{math-function}{sin(\mvar{x})}
\mathcommand

	Sine of \mvar{x}. By employing the |r| operator, \mvar{x} can be in
	radians.
	
\begin{codeexample}[]
\pgfmathparse{sin(60)} \pgfmathresult
\end{codeexample}

\begin{codeexample}[]
\pgfmathparse{sin(pi/3 r)} \pgfmathresult
\end{codeexample}

\end{math-function}

\begin{math-function}{cos(\mvar{x})}
\mathcommand

	Cosine of \mvar{x}. By employing the |r| operator, \mvar{x} can be in
	radians.

\begin{codeexample}[]
\pgfmathparse{cos(60)} \pgfmathresult
\end{codeexample}

\begin{codeexample}[]
\pgfmathparse{cos(pi/3 r)} \pgfmathresult
\end{codeexample}

\end{math-function}

\begin{math-function}{tan(\mvar{x})}
\mathcommand

	Tangent of \mvar{x}. By employing the |r| operator, \mvar{x} can be in
	radians.
	
\begin{codeexample}[]
\pgfmathparse{tan(45)} \pgfmathresult
\end{codeexample}

\begin{codeexample}[]
\pgfmathparse{tan(2*pi/8 r)} \pgfmathresult
\end{codeexample}

\end{math-function}


\begin{math-function}{sec(\mvar{x})}
\mathcommand

	Secant of \mvar{x}. By employing the |r| operator, \mvar{x} can be in
	radians.

\begin{codeexample}[]
\pgfmathparse{sec(45)} \pgfmathresult
\end{codeexample}

\end{math-function}

\begin{math-function}{cosec(\mvar{x})}
\mathcommand

	Cosecant of \mvar{x}. By employing the |r| operator, \mvar{x} can be in
	radians.
	
\begin{codeexample}[]
\pgfmathparse{cosec(30)} \pgfmathresult
\end{codeexample}

\end{math-function}

\begin{math-function}{cot(\mvar{x})}
\mathcommand

	Cotangent of \mvar{x}. By employing the |r| operator, \mvar{x} can be in
	radians.
	
\begin{codeexample}[]
\pgfmathparse{cot(15)} \pgfmathresult
\end{codeexample}

\end{math-function}

\begin{math-function}{asin(\mvar{x})}
\mathcommand

	Arcsine of \mvar{x}. The result is in degrees and in the range $\pm90^\circ$.

\begin{codeexample}[]
\pgfmathparse{asin(0.7071)} \pgfmathresult
\end{codeexample}

\end{math-function}

\begin{math-function}{acos(\mvar{x})}
\mathcommand

	Arccosine of \mvar{x} in degrees. The result is in the range $[0^\circ,180^\circ]$.

\begin{codeexample}[]
\pgfmathparse{acos(0.5)} \pgfmathresult
\end{codeexample}

\end{math-function}

\begin{math-function}{atan(\mvar{x})}
\mathcommand

	Arctangent of $x$ in degrees.

\begin{codeexample}[]
\pgfmathparse{atan(1)} \pgfmathresult
\end{codeexample}

\end{math-function}

\begin{math-function}{atan2(\mvar{y},\mvar{x})}
\mathcommand[atantwo(\mvar{y},\mvar{x})]

	Arctangent of $y\div x$ in degrees. This also takes into account the
	quadrants.

\begin{codeexample}[]
\pgfmathparse{atan2(-4,3)} \pgfmathresult
\end{codeexample}

\end{math-function}

\begin{key}{/pgf/trig format=\mchoice{deg,rad} (initially deg)}
	Allows to define whether trigonometric math functions (i.e.\ all in this subsection) operate with degrees or with radians.

\begin{codeexample}[]
\pgfmathparse{cos(45)} \pgfmathresult
\end{codeexample}
\begin{codeexample}[]
\pgfkeys{/pgf/trig format=rad}
\pgfmathparse{cos(pi/2)} \pgfmathresult
\end{codeexample}
	
	The initial configuration |trig format=deg| is the base of \pgfname: almost all of it is based on degrees. 
	
	Specifying |trig format=rad| is most useful for data visualization where the angles are typically given in radians. However, it is applied to all trigonometric functions for which the option applies, including any drawing instructions which operate on angles.
\begin{codeexample}[]
\begin{tikzpicture}
	\draw[-stealth] 
		(0:1) -- (45:1) -- (90:1) -- (135:1) -- (180:1);

	\draw[-stealth,trig format=rad,red] 
		(pi:1) -- (5/4*pi:1) -- (6/4*pi:1) -- (7/4*pi:1) -- (2*pi:1);
\end{tikzpicture}
\end{codeexample}
	
	\paragraph{Warning:} At the time of this writing, this feature is ``experimental''. Please handle it with care: there may be path instructions or libraries in \pgfname\ which rely on |trig format=deg|. The intented usage of |trig format=rad| is for local scopes -- and as option for data visualization.
\end{key}


\subsubsection{Comparison and logical functions}

\label{pgfmath-functions-comparison}

\begin{math-function}{equal(\mvar{x},\mvar{y})}
\mathcommand

	This returns |1| if $\mvar{x}=\mvar{y}$ and |0| otherwise.
	
\begin{codeexample}[]
\pgfmathparse{equal(20,20)} \pgfmathresult
\end{codeexample}

\end{math-function}

\begin{math-function}{greater(\mvar{x},\mvar{y})}
\mathcommand

	This returns |1| if $\mvar{x}>\mvar{y}$ and |0| otherwise.
	
\begin{codeexample}[]
\pgfmathparse{greater(20,25)} \pgfmathresult
\end{codeexample}

\end{math-function}

\begin{math-function}{less(\mvar{x},\mvar{y})}
\mathcommand

	This returns |1| if $\mvar{x}<\mvar{y}$ and |0| otherwise.
	
\begin{codeexample}[]
\pgfmathparse{greater(20,25)} \pgfmathresult
\end{codeexample}
\end{math-function}

\begin{math-function}{notequal(\mvar{x},\mvar{y})}
\mathcommand

	This returns |0| if $\mvar{x}=\mvar{y}$ and |1| otherwise.
	
\begin{codeexample}[]
\pgfmathparse{notequal(20,25)} \pgfmathresult
\end{codeexample}

\end{math-function}

\begin{math-function}{notgreater(\mvar{x},\mvar{y})}
\mathcommand

	This returns |1| if $\mvar{x}\leq\mvar{y}$ and |0| otherwise.
	
\begin{codeexample}[]
\pgfmathparse{notgreater(20,25)} \pgfmathresult
\end{codeexample}
\end{math-function}

\begin{math-function}{notless(\mvar{x},\mvar{y})}
\mathcommand

	This returns |1| if $\mvar{x}\geq\mvar{y}$ and |0| otherwise.
	
\begin{codeexample}[]
\pgfmathparse{notless(20,25)} \pgfmathresult
\end{codeexample}

\end{math-function}

\begin{math-function}{and(\mvar{x},\mvar{y})}
\mathcommand

	This returns |1| if \mvar{x} and \mvar{y} both evaluate to
	non-zero values. Otherwise |0| is returned.
	
\begin{codeexample}[]
\pgfmathparse{and(5>4,6>7)} \pgfmathresult
\end{codeexample}

\end{math-function}

\begin{math-function}{or(\mvar{x},\mvar{y})}
\mathcommand

	This returns |1| if either \mvar{x} or \mvar{y} evaluate to
	non-zero values. Otherwise |0| is returned.
	
\begin{codeexample}[]
\pgfmathparse{and(5>4,6>7)} \pgfmathresult
\end{codeexample}

\end{math-function}

\begin{math-function}{not(\mvar{x})}
\mathcommand

	This returns |1| if $\mvar{x}=0$, otherwise |0|.
	
\begin{codeexample}[]
\pgfmathparse{not(true)} \pgfmathresult
\end{codeexample}

\end{math-function}


\begin{math-function}{ifthenelse(\mvar{x},\mvar{y},\mvar{z})}
\mathcommand

	This returns \mvar{y} if \mvar{x} evaluates to some non-zero value,
	otherwise \mvar{z} is returned.
	
\begin{codeexample}[]
\pgfmathparse{ifthenelse(5==4,"yes","no")} \pgfmathresult
\end{codeexample}

\end{math-function}

\begin{math-function}{true}
\mathcommand

	This evaluates to |1|.
	
\begin{codeexample}[]
\pgfmathparse{true ? "yes" : "no"} \pgfmathresult
\end{codeexample}

\end{math-function}

\begin{math-function}{false}
\mathcommand

	This evaluates to |0|.
	
\begin{codeexample}[]
\pgfmathparse{false ? "yes" : "no"} \pgfmathresult
\end{codeexample}

\end{math-function}



\subsubsection{Pseudo-random functions}

\label{pgfmath-functions-random}

\begin{math-function}{rnd}
\mathcommand

	Generates a pseudo-random number between $0$ and $1$ with a uniform distribution.

\begin{codeexample}[]
\foreach \x in {1,...,10}{\pgfmathparse{rnd}\pgfmathresult, }
\end{codeexample}

\end{math-function}

\begin{math-function}{rand}
\mathcommand

	Generates a pseudo-random number between $-1$ and $1$ with a uniform distribution.

\begin{codeexample}[]
\foreach \x in {1,...,10}{\pgfmathparse{rand}\pgfmathresult, }
\end{codeexample}

\end{math-function}

\begin{math-function}{random(\opt{\mvar{x},\mvar{y}})}
\mathcommand
  This function takes zero, one or two arguments. If there are zero
  arguments, a uniform random number between $0$ and $1$ is generated. If there is
  one argument \mvar{x}, a random integer between $1$ and \mvar{x} is
  generated. Finally, if there are two arguments, a random integer
  between \mvar{x} and \mvar{y} is generated. If there are no
  arguments, the \pgfname{} command should be called as follows:
  |\pgfmathrandom{}|.

\begin{codeexample}[]
\foreach \x in {1,...,10}{\pgfmathparse{random()}\pgfmathresult, }
\end{codeexample}

\begin{codeexample}[]
\foreach \x in {1,...,10}{\pgfmathparse{random(100)}\pgfmathresult, }
\end{codeexample}

\begin{codeexample}[]
\foreach \x in {1,...,10}{\pgfmathparse{random(232,762)}\pgfmathresult, }
\end{codeexample}
\end{math-function}

\subsubsection{Base conversion functions}

\label{pgfmath-functions-base}

\begin{math-function}{hex(\mvar{x})}
\mathcommand

  Convert \mvar{x}{} (assumed to be an integer in base 10) to a
  hexadecimal representation, using lower case alphabetic digits.
	No further calculation will be possible with the result.
	
\begin{codeexample}[]
\pgfmathparse{hex(65535)} \pgfmathresult
\end{codeexample}
\end{math-function}

\begin{math-function}{Hex(\mvar{x})}
\mathcommand

  Convert \mvar{x}{} (assumed to be an integer in base 10) to a
  hexadecimal representation, using upper case alphabetic digits.
  No further calculation will be possible with the result.

\begin{codeexample}[]
\pgfmathparse{Hex(65535)} \pgfmathresult
\end{codeexample}
\end{math-function}

\begin{math-function}{oct(\mvar{x})}
\mathcommand

  Convert \mvar{x}{} (assumed to be an integer in base 10) to an
  octal representation.
  No further calculation should be attempted with the result, as
  the parser can only process numbers converted to base 10.
\begin{codeexample}[]
\pgfmathparse{oct(63)} \pgfmathresult
\end{codeexample}
\end{math-function}

\begin{math-function}{bin(\mvar{x})}
\mathcommand

  Convert \mvar{x}{} (assumed to be an integer in base 10) to a
  binary representation.
  No further calculation should be attempted with the result, as
  the parser can only process numbers converted to base 10.

\begin{codeexample}[]
\pgfmathparse{bin(185)} \pgfmathresult
\end{codeexample}
\end{math-function}

\subsubsection{Miscellaneous functions}

\label{pgfmath-functions-misc}

\begin{math-function}{min(\mvar{x$_1$},\mvar{x$_2$},\ldots,\mvar{x$_n$})}
\mathcommand[min({\mvar{x$_1$},\mvar{x$_2$},\ldots},{\ldots,\mvar{x$_{n-1}$},\mvar{x$_n$}})]

  Return the minimum value from \mvar{x$_1$}\ldots\mvar{x$_n$}.
  For historical reasons, the command |\pgfmathmin| takes two
  arguments, but each of these can contain an arbitrary number
  of comma separated values.

\begin{codeexample}[]
\pgfmathparse{min(3,4,-2,250,-8,100)} \pgfmathresult
\end{codeexample}

\end{math-function}


\begin{math-function}{max(\mvar{x$_1$},\mvar{x$_2$},\ldots,\mvar{x$_n$})}
\mathcommand[max({\mvar{x$_1$},\mvar{x$_2$},\ldots},{\ldots,\mvar{x$_{n-1}$},\mvar{x$_n$}})]

  Return the maximum value from \mvar{x$_1$}\ldots\mvar{x$_n$}.
  Again, for historical reasons, the command |\pgfmathmax| takes two
  arguments, but each of these can contain an arbitrary number
  of comma separated values.

\begin{codeexample}[]
\pgfmathparse{max(3,4,-2,250,-8,100)} \pgfmathresult
\end{codeexample}

\end{math-function}


\begin{math-function}{veclen(\mvar{x},\mvar{y})}
\mathcommand

 Calculates $\sqrt{\left(\textrm{\mvar{x}}^2+\textrm{\mvar{y}}^2\right)}$.
 This uses a polynomial approximation, based on ideas of Rouben Rostamian
\begin{codeexample}[]
\pgfmathparse{veclen(12,5)} \pgfmathresult
\end{codeexample}

\end{math-function}





\begin{math-function}{array(\mvar{x},\mvar{y})}
\mathcommand

	This accesses the array \mvar{x} at the index \mvar{y}. The
	array must begin and end with braces (e.g., |{1,2,3,4}|) and
	array indexing starts at |0|.
	
\begin{codeexample}[]
\pgfmathparse{array({9,13,17,21},2)} \pgfmathresult
\end{codeexample}

\end{math-function}


The following hyperbolic functions were adapted from code
suggested by Martin Heller:

\begin{math-function}{sinh(\mvar{x})}
\mathcommand

	The hyperbolic sine of \mvar{x}%
	
\begin{codeexample}[]
\pgfmathparse{sinh(0.5)} \pgfmathresult
\end{codeexample}

\end{math-function}

\begin{math-function}{cosh(\mvar{x})}
\mathcommand

	The hyperbolic cosine of \mvar{x}%
	
\begin{codeexample}[]
\pgfmathparse{cosh(0.5)} \pgfmathresult
\end{codeexample}

\end{math-function}

\begin{math-function}{tanh(\mvar{x})}
\mathcommand

	The hyperbolic tangent of \mvar{x}%
	
\begin{codeexample}[]
\pgfmathparse{tanh(0.5)} \pgfmathresult
\end{codeexample}

\end{math-function}

\begin{math-function}{width("\mvar{x}")}
\mathcommand

  Return the width of a \TeX{} (horizontal) box containing \mvar{x}.
  The quote characters are necessary to prevent \mvar{x}{} from being
  parsed.
  It is important to remember that any expression is expanded with
  |\edef| before being parsed, so any macros (e.g., font commands
  like |\tt| or |\Huge|) will need to be ``protected'' (e.g.,
  |\noexpand\Huge| is usually sufficient).

\begin{codeexample}[]
\pgfmathparse{width("Some Lovely Text")} \pgfmathresult
\end{codeexample}

	Note that results of this method are provided in points.
\end{math-function}

\begin{math-function}{height("\mvar{x}")}
\mathcommand

  Return the height of a box containing \mvar{x}.

\begin{codeexample}[]
\pgfmathparse{height("Some Lovely Text")} \pgfmathresult
\end{codeexample}
\end{math-function}

\begin{math-function}{depth("\mvar{x}")}
\mathcommand

  Returns the depth of a box containing \mvar{x}.

\begin{codeexample}[]
\pgfmathparse{depth("Some Lovely Text")} \pgfmathresult
\end{codeexample}
\end{math-function}