summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/generic/pgf/text-en/pgfmanual-en-library-lsystems.tex
blob: 0aeb8113b01b953792ae92fe115d0ac68804366d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
% Copyright 2008 by Mark Wibrow
%
% This file may be distributed and/or modified
%
% 1. under the LaTeX Project Public License and/or
% 2. under the GNU Public License.
%
% See the file doc/generic/pgf/licenses/LICENSE for more details.


\section{Lindenmayer System Drawing Library}
\subsection{Overview}

Lindenmayer systems (also commonly known as ``L-systems''), were
originally developed by Aristid Lindenmayer as a theory of algae
growth patterns and then subsequently used to model branching
patterns in plants and produce fractal patterns.
Typically, an L-system consists of a set of symbols, each of which
is associated with some graphical action (such as ``turn left'' or
``move forward'') and a set of rules (``production'' or ``rewrite''
rules). Given a string of symbols, the rewrite rules are applied
several times and the when resulting string is processed the action
associated with each symbol is executed.

In \pgfname, L-systems can be used to create simple 2-dimensional
fractal patterns\ldots	
\begin{codeexample}[pre={\expandafter\let\csname pgf@lsystem@Koch curve\endcsname=\relax}]
\begin{tikzpicture}
\pgfdeclarelindenmayersystem{Koch curve}{
  \rule{F -> F-F++F-F}
}

\shadedraw [top color=white, bottom color=blue!50, draw=blue!50!black]
  [l-system={Koch curve, step=2pt, angle=60, axiom=F++F++F, order=3}]
  lindenmayer system -- cycle;
\end{tikzpicture}
\end{codeexample}

\noindent\ldots and ``plant like'' patterns\ldots

\begin{codeexample}[]
\begin{tikzpicture}
\draw [green!50!black, rotate=90]
  [l-system={rule set={F -> FF-[-F+F]+[+F-F]}, axiom=F, order=4, step=2pt,
   randomize step percent=25, angle=30, randomize angle percent=5}]
  lindenmayer system;
\end{tikzpicture}
\end{codeexample}

\noindent
\ldots but it is important to bear in mind that even moderately
complex L-systems can exceed the available memory of \TeX,
and can be very slow.
If possible, you are advised to increase the main memory and save
stack to their maximum possible values for your particular
\TeX{} distribution.
However, even by doing this you may find you still run out of memory
quite quickly.

For an excellent introduction to L-systems (containing some
``really cool'' pictures -- many of which are sadly not possible in
\pgfname)
see \emph{The Algorithmic Beauty of Plants} by
Przemyslaw Prusinkiewicz and Aristid Lindenmayer (which is freely
available via the internet).

\begin{pgflibrary}{lindenmayersystems}
  This \pgfname-library provides basic commands for defining and using
  simple L-systems. The \tikzname-library provides, furthermore, a
  front end for using L-systems in  \tikzname.
\end{pgflibrary}



\subsubsection{Declaring L-systems}
  Before an L-system can be used, it must be declared using the
  following command:

\begin{command}{\pgfdeclarelindenmayersystem\marg{name}\marg{specification}}

This command declares a Lindenmayer system called \meta{name}.
The \meta{specification} argument contains a description of the
L-system's symbols and rules. Two commands |\symbol| and |\rule| are
only defined when the \meta{specification} argument is executed.

\begin{command}{\symbol\marg{name}\marg{code}}
  This defines a symbol called \meta{name} for a specific L-system,
  and associates it with \meta{code}.

  A symbol should consist of a single
  alpha-numeric character (i.e., |A|-|Z|, |a|-|z| or |0|-|9|).
  The symbols
  |F|, |f|, |+|, |-|, |[| and |]| are available by default so do
  not need to be defined for each L-system. However, if you are
  feeling adventurous, they can be redefined for specific L-systems
  if required. The L-system treats the default symbols as follows
  (the commands they execute are described below):

  \begin{itemize}
  	\item
  	|F| move forward a certain distance, drawing a line. Uses
  	|\pgflsystemdrawforward|.
  	
  	\item
  	|f| move forward a certain distance, without drawing a line.
  	Uses |\pgflsystemmoveforward|.
  	
  	\item
  	|+| turn left by some angle.
  	Uses |\pgflsystemturnleft|.
  	
  	\item
  	|-| turn right by some angle.
  	Uses |\pgflsystemturnright|.
  	
  	\item
  	|[| save the current state (i.e., the position and direction).
  	Uses |\pgflsystemsavestate|.
  	
  	\item
  	|]| restore the last saved state.
  	Uses |\pgflsystemrestorestate|.
  	
  \end{itemize}

  The symbols |[| and |]| act like a stack: |[| pushes the state of the
  L-system on to the stack, and |]| pops a state off the stack.

   When \meta{code} is executed the transformation matrix is set up
  so that the origin is at the current position and the positive
  x-axis ``points forward'', so |\pgfpathlineto{\pgfpoint{1cm}{0cm}}|
  draws a line 1cm forward.

The following keys can alter the production of an L-system. However,
thy do not store values in themselves.

\begin{key}{/pgf/lindenmayer system/step=\meta{length} (initially 5pt)}
  How far the L-system moves forward if required. This key sets the
  \TeX{} dimension |\pgflsystemstep|.
\end{key}

\begin{key}{/pgf/lindenmayer system/randomize step percent=\meta{percentage} (initially 0)}
  If the step is to be randomized, this key specifies by how much.
  The value is stored in the \TeX{} macro |\pgflsystemrandomizesteppercent|.
\end{key}

\begin{key}{/pgf/lindenmayer system/left angle=\meta{angle} (initially 90)}
  This key sets the angle through which the L-system turns when it
  turns left.
  The value is stored in the \TeX{} macro |\pgflsystemrleftangle|.
\end{key}

\begin{key}{/pgf/lindenmayer system/right angle=\meta{angle} (initially 90)}
  This key sets the angle through which the L-system turns when it
  turns right.
  The value is stored in the \TeX{} macro |\pgflsystemrrightangle|.
\end{key}

\begin{key}{/pgf/lindenmayer system/randomize angle percent=\meta{percentage} (initially 0)}
  If the angles are to be randomized, this key specifies by how much.
  The value is stored in the \TeX{} macro |\pgflsystemrandomizeanglepercent|.
\end{key}

For speed and convenience, when the code for a symbol is executed the
following commands are available.

\begin{command}{\pgflsystemcurrentstep}
	The current ``step'' of the L-system (i.e., how far the system
	will move forward if required). This is initially set to the
	value in the \TeX-dimensions |\pgflsystemstep|, but the actual
	value may be changed if |\pgflsystemrandomizestep| is used
	(see below).
\end{command}

\begin{command}{\pgflsystemcurrentleftangle}
	The angle the L-system will turn when it turns left.
	The value stored in this macro may be changed if
	|\pgflsystemrandomizeleftangle| is used.
\end{command}

\begin{command}{\pgflsystemcurrentrightangle}
	The angle the L-system will turn when it turns right.
	The value stored in this macro may be changed if
	|\pgflsystemrandomizerightangle| is used.
\end{command}


The following commands may be useful if you wish to define your own
symbols.

\begin{command}{\pgflsystemrandomizestep}
	Randomizes the value in |\pgflsystemcurrentstep| according to the
	value of the |randomize| |step| |percent| key.
\end{command}

\begin{command}{\pgflsystemrandomizeleftangle}
	Randomizes the value in |\pgflsystemcurrentleftangle| according to
	the value of the |randomize| |angle| |percent| key.
\end{command}

\begin{command}{\pgflsystemrandomizerightangle}
	Randomizes the value in |\pgflsystemcurrentrightangle| according
	to the value of	the |randomize| |angle| key.
\end{command}

\begin{command}{\pgflsystemdrawforward}
	Move forward in the current direction, by |\pgflsystemcurrentstep|,
	drawing a line in the process. This macro calls
	|\pgflsystemrandomizestep|. Internally, \pgfname{} simply
	shifts the transformation matrix in the positive direction of
	the current (transformed) x-axis by |\pgflsystemstep|
	and then executes a line-to to the (newly transformed) origin.
\end{command}

\begin{command}{\pgflsystemmoveforward}
	Move forward in the current direction, by |\pgflsystemcurrentstep|,
	without drawing a line. This macro calls
	|\pgflsystemrandomizestep|. \pgfname{} executes a transformation
	as above, but executes a move-to to the (newly transformed)
	origin.
\end{command}

\begin{command}{\pgflsystemturnleft}
  Turn left by |\pgflsystemcurrentleftangle|. Internally, \pgfname{}
	simply rotates the transformation matrix. This macro calls
	|\pgflsystemrandomizeleftangle|.
\end{command}

\begin{command}{\pgflsystemturnright}
	Turn right by |\pgflsystemcurrentrightangle|.  Internally, \pgfname{}
	simply rotates the transformation matrix. This macro calls
	|\pgflsystemrandomizerightangle|.
\end{command}

\begin{command}{\pgflsystemsavestate}
	Save the current position and orientation. Internally,
	\pgfname{} simply starts a new \TeX-group.
\end{command}

\begin{command}{\pgflsystemrestorestate}
	Restore the last saved position and orientation. Internally,
	\pgfname{} closes a \TeX-group, restoring the transformation
	matrix of the outer scope, and a move-to command is executed to
	the (transformed) origin.
\end{command}


\end{command}

\begin{command}{\rule{\ttfamily\char`\{}\meta{head}{\ttfamily->}\meta{body}{\ttfamily\char`\}}}
  Declare a rule. \meta{head} should consist of a single symbol, which
  need not have been declared using |\symbol| or exist as a default
  symbol (in fact, the more interesting L-systems depend on using
  symbols with no corresponding code, to control the ``growth'' of the
  system).
 	\meta{body} consists of a string of symbols, which again need not
 	necessarily have any code associated with them.
 	
\end{command}

  As an example, the following shows an L-system that uses
  some of these commands. This example illustrates the point
  that some symbols, in this case |A| and |B|, do not have to
  have code associated with them. They simply control the
  growth of the system.

\begin{codeexample}[pre={\nullfont\expandafter\let\csname pgf@lsystem@Hilbert curve\endcsname=\relax}]
\pgfdeclarelindenmayersystem{Hilbert curve}{
  \symbol{X}{\pgflsystemdrawforward}
  \symbol{+}{\pgflsystemturnright} % Explicitly define + and - symbols.
  \symbol{-}{\pgflsystemturnleft}
  \rule{A -> +BX-AXA-XB+}
  \rule{B -> -AX+BXB+XA-}
}
\tikz\draw[lindenmayer system={Hilbert curve, axiom=A, order=4, angle=90}]
  lindenmayer system;
\end{codeexample}


\end{command}

\subsection{Using Lindenmayer Systems}
\subsubsection{Using L-Systems in PGF}

The following command is used to run an L-system in \pgfname:
\begin{command}{\pgflindenmayersystem\marg{name}\marg{axiom}\marg{order}}
  Runs the L-system called \meta{name} using the input string \meta{axiom}
  for \meta{order} iterations.
  In general, prior to calling this command the
  transformation matrix should be set appropriately for shifting and
  rotating, and a move-to to the (transformed) origin should be
  executed. This origin will be where the L-system starts.
  In addition the relevant keys should be set appropriately.

\begin{codeexample}[]
\begin{tikzpicture}
  \draw [help lines] grid (3,2);
  \pgfset{lindenmayer system/.cd, angle=60, step=2pt}
  \foreach \x/\y in {0cm/1cm, 1.5cm/1.5cm, 2.5cm/0.5cm, 1cm/0cm}{
    \pgftransformshift{\pgfqpoint{\x}{\y}}
    \pgfpathmoveto{\pgfpointorigin}
    \pgflindenmayersystem{Koch curve}{F++F++F}{2}
    \pgfusepath{stroke}
  }
\end{tikzpicture}
\end{codeexample}

  Note that, it is perfectly feasible for an L-system to define
  special symbols which perform the move-to and use-path
  operations.

\end{command}

\subsubsection{Using L-Systems in Ti\emph{k}Z}

  In \tikzname, an L-system is created using a path operation.
  However, \tikzname{} is more flexible regarding the positioning
  of the L-system and also provides keys to create L-systems
  ``on-line''.

\begin{pathoperation}{lindenmayer system}{ \opt{|[|\meta{keys}|]|}}
  This will run an L-system according to the parameters
  specified in \meta{keys} (which can also contain normal \tikz{} keys
  such as |draw| or |thin|). The syntax is flexible
  regarding the L-system parameters and the following all do
  the same thing:

\begin{codeexample}[code only]
\draw lindenmayer system [lindenmayer system={Hilbert curve, axiom=4, order=3}];
\end{codeexample}

\begin{codeexample}[code only]
\draw [lindenmayer system={Hilbert curve, axiom=4, order=3}] lindenmayer system;
\end{codeexample}

\begin{codeexample}[code only]
\tikzset{lindenmayer system={Hilbert curve, axiom=4, order=3}}
\draw lindenmayer system;
\end{codeexample}

\end{pathoperation}

\begin{pathoperation}{l-system}{ \opt{|[|\meta{keys}|]|}}
  A more compact version of the |lindenmayer system| path command.
\end{pathoperation}

This library adds some additional keys for specifying L-systems.
These keys only work in \tikzname{} and all
have the same path, namely, |/pgf/lindenmayer| |system|, but so
you do not have to keep repeating this path the following keys are
provided:

\begin{stylekey}{/pgf/lindenmayer system=\marg{keys}}
\keyalias{tikz}
This key changes the key path to |/pgf/lindenmayer systems| and
executes \meta{keys}.
\end{stylekey}

\begin{stylekey}{/pgf/l-system=\marg{keys}}
\keyalias{tikz}
A more compact version of the previous key.
\end{stylekey}

\begin{key}{/pgf/lindenmayer system/name=\marg{name}}
  Set the name for the L-system.
\end{key}

\begin{key}{/pgf/lindenmayer system/axiom=\marg{string}}
  Set the axiom (or input string) for the L-system.
\end{key}

\begin{key}{/pgf/lindenmayer system/order=\marg{integer}}
  Set the number of iterations the L-system will perform.
\end{key}

\begin{key}{/pgf/lindenmayer system/rule set=\marg{list}}
  This key allows an (anonymous) L-system to be declared ``on-line''.
  There is, however, a restriction that only the default symbols can be
  used for drawing (empty symbols can still be used to control
  the growth of the system). The rules in \meta{list} should
  be separated by commas.

\begin{codeexample}[]
\tikz[rotate=65]\draw [green!60!black] l-system
  [l-system={rule set={F -> F[+F]F[-F]}, axiom=F, order=4, angle=25,step=3pt}];
\end{codeexample}
\end{key}

\begin{key}{/pgf/lindenmayer system/anchor=\meta{anchor}}
  Be default, when this key is not used, the L-system will start from
  the last specified coordinate. By using this key, the L-system
  will be placed inside a special (rectangle) node which can be
	positioned using \meta{anchor}.


\begin{codeexample}[]
\begin{tikzpicture}[l-system={step=1.75pt, order=5, angle=60}]
  \pgfdeclarelindenmayersystem{Sierpinski triangle}{
    \symbol{X}{\pgflsystemdrawforward}
    \symbol{Y}{\pgflsystemdrawforward}
    \rule{X -> Y-X-Y}
    \rule{Y -> X+Y+X}
  }
  \draw [help lines] grid (3,2);
  \draw [red] (0,0) l-system
    [l-system={Sierpinski triangle, axiom=+++X, anchor=south west}];
  \draw [blue] (3,2) l-system
    [l-system={Sierpinski triangle, axiom=X, anchor=north east}];
\end{tikzpicture}
\end{codeexample}
\end{key}