1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
|
% This is a demonstration file distributed with the
% Lecturer package (see lecturer-doc.pdf).
%
% You can recompile the file with a basic TeX implementation,
% using pdfTeX or LuaTeX with the plain format.
%
% The reusable part ends somewhere around line 250.
%
% Author: Paul Isambert.
% Date: July 2010.
\input lecturer
% Uncomment these to show the grid on which the presentation is built.
%\showgrid{1mm}
%\showgrid[-.5cm,-.5cm]{1cm}[black]
%\showgrid{1cm}[red][.4pt]
\font\maintitlefont = cmdunh10 at 23pt
\font\slidetitlefont = cmss12 at 20pt
\font\subtitlefont = cmss8
\font\titlefont = cmss10 at 20pt
\newcolor{darkred}{rgb}{.6 0 0}
\setparameter job:
mode = presentation
author = "Pete Agoras"
title = "The square root of 2 ain't rational"
date = "Some centuries B.C\rlap." % \rlap creates protrusion
fullscreen = true
autofullscreen = true
font = \tenrm
%
% Slides for the main matter.
%
\setparameter slide:
everyslide = \everyslide
top = 3cm
topskip = 1cm
left = 3.1cm
right = 5cm
baselineskip = .5cm
areas* = "title by author date"
bookmarkstyle = italic
font = \tenrm
vpos = top
\def\everyslide{%
\position{top}\slidetitle
\position{left}{\Author\par\Date}
\position{menu}{\quitvmode\showbookmarks\Bookmarks}
\position{menu}[0pt,0pt]{\the\numexpr\slidenumber-1\relax}
}
%
% Left and top areas.
%
\setarea{left}
hshift = 0pt
width = 3cm
right = .1cm
hpos = rf
bottom = .5cm
vpos = bottom
foreground = darkred
font = \subtitlefont
\setarea{top}
left = 3.1cm
vshift = 0pt
height = 2cm
vpos = bottom
font = \titlefont
\setarea{vline hline}
frame = "width = .15pt, color = black"
\setarea{vline}
hshift = 3cm
width = 0pt
\setarea{hline}
vshift = 2cm
height = 0pt
%
% The circle with the slide number.
%
\setarea{menu}
width height = 1cm
vshift* hshift* topskip = .5cm
vpos = bottom
hpos = rr
\newsymbol\Bookmarks[.35cm,padding=.1pt]
{pen .05,
move 1 -.6,
circle lu 1,
circle ur 1,
circle rd 1,
circle dl 1,
}
%
% The maths on the right.
%
\setarea{math}
width = 2cm
hshift* = 1.1cm
vshift* = 5.35cm
vshift = 5.25cm
topskip = .8cm
foreground = white
background = black
frame = width=.1cm,corner=round % No space => no need for quotes or braces. No readability either.
hpos = rr
%
% The title slide.
%
\setslide{titleslide}
areas = "title by author date"
bookmark = false
hpos = rr
everyslide = {}
\setarea{title}
hshift* = 1cm
hpos = rr
vshift = 2cm
height = 1.3cm
topskip = 1cm
background = darkred
foreground = white
frame = "width = .5em, corner = round, color = black"
font = \maintitlefont
\setarea{by}
hshift* = 5.8cm
hpos = rr
vshift = 4.5cm
height = .8cm
topskip = 10pt
top = 3pt
background = black
foreground = white
frame = "width = .5em, corner = round"
font = \it
\setarea{author}
hshift* = 5cm
hpos = rr
vshift = 6.3cm
height = 25pt
topskip = 15pt
top = 4pt
background = black
foreground = white
frame = "width = .5em, corner = round, color = darkred"
font = \slidetitlefont
\setarea{date}
hshift* = 5.5cm
vshift* = 1.7cm
height = .8cm
bottom = .3cm
topskip = 0pt
vpos = bottom
background = white
foreground = black
frame = "width = .5em, corner = bevel, color = darkred"
hpos = rr
%
% For the appendices.
% We remove the math area instead
% of redefining \everyslide.
%
\setslide{appslide}
top = 2.5cm
areas*= "math title by author date"
\abovedisplayshortskip = 0cm
\belowdisplayshortskip = 0cm
\abovedisplayskip = 0pt
\belowdisplayskip = 0pt
%
% Steps.
%
\setparameter step:
vskip = .5cm
% With this macro, the item symbol is always on the screen
% (since the step is "visible").
\def\Step{%
\step[visible=true]\quitvmode\llap{\stepsym\kern.2cm}%
\step}
%
% The maths.
%
\setstep\emptystep
everyvstep everyhstep = {}
vskip hskip = 0pt
\def\domath#1 #2 #3{%
\emptystep[on=#1,off=#2]
\domathstep{#3}%
}
\def\Domath#1 #2{%
\emptystep[off=#1,visible=true]
\domathstep{#2}%
}
\def\domathstep#1{%
\position{math}[0pt,0pt]{$#1$}%
}
%
% Item symbols.
%
\newsymbol\stepsym[2mm,padding=0pt]
{color darkred,
+ 1 .5, + -1 .5, fill,}
\newsymbol\backsym[2mm,padding=0pt]
{color darkred, move 1 0, + -1 .5, + 1 .5, fill,}
%
% Navigation to the appendices.
%
\def\Back#1{%
\presentationonly{\usecolor{darkred}{\gotoB{#1}{\subtitlefont\backsym\kern.3em Back}}}%
}
\def\To#1{%
\usecolor{darkred}{\gotoA{#1}{\subtitlefont\stepsym\kern.3em See why}}%
}
%
% And some structure.
%
\def\section#1{%
\def\sectiontitle{#1}%
\createbookmark[nosubmenutext,open]{.5}{#1}%
}
% \endinput
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% UNCOMMENT THE PREVIOUS LINE TO USE THIS FILE AS A TEMPLATE, %
% OR REMOVE EVERYTHING BELOW. %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\titleslide
\position{title}\Title
\position{by}{A Casual Talk By}
\position{author}\Author
\position{date}\Date
\endtitleslide
\section{Demonstration}
\slide[A simple assumption,font=]
\step[on=A]\position{math}[0cm,0cm]{}
\domath A B {{a\over b}=\sqrt2}
\domath B C {({a\over b})^2=2}
\domath C D {{a^2\over b^2}=2}
\domath D {} {a^2=2b^2}
\Step Some say the square root of 2 isn't rational.
\step Suppose it were.
\Step[A] Then we could write it as this, where $a$ and $b$ are
integers without a common factor.
\To{app1}
\Step[B] But then we can also write this.
\step[C] And this.
\step[D] And finally this.
\step Which means that $a^2$ is even.
\endslide
\slide[Its consequences]
\step[on=A]\position{math}[0cm,0cm]{}
\Domath A {a^2=2b^2}
\domath A B {(2k)^2=2b^2}
\domath B C {4k^2=2b^2}
\domath C D {2k^2=b^2}
\Step[visible=true] So what?
\step So $a$ is even. Because only even numbers produce even squares.
\To{app2}
\Step[A] Being even means being expressible in the form $2k$, where $k$ is
any integer.
\step[B] And $(2k)^2$ square gives $4k^2$.
\Step[C] Let's simplify.
\step Thus $b^2$ is even.
\step And $b$ is too.
\endslide
\slide[The problem]
\step[on=A]\position{math}[0cm,0cm]{}
\domath A {} {{a\over b}\neq\sqrt2}
\Step[visible=true] And but so we said $a$ and $b$ have no common factor.
\Step If both are even they do have a common factor: 2.
\step Which is absurd.
\Step Thus, our basic assumption is false.
\step[A] There are no such $a$ and $b$.
\Step The square root of 2 is irrational.
\step Too bad.
\endslide
\section{Appendices}
\appslide[All fractions are reducible]
\Step[visible=true]
Suppose $c\over d$ is a rational number. If c and d have no common
factor, then $a=b$ and $b=d$. If they have a common factor,
divide both by their greatest common divisor. The result
is $a\over b$, with no common factor.
\kern1em\Back{app1}
\endappslide
\appslide[An even square has an even root]
\Step[visible=true]
An even number, by definition, is expressible
in the form $2k$, where $k$ is any integer.
On the other hand, an odd number is expressible by
%
$$2k+1$$
%
Thus the square of an odd number is
%
$$(2k+1)^2$$
i.e. $$4k^2+4k+1$$
i.e. $$2\times2(k^2+k)+1$$
%
which is of the form $2k+1$
with $2(k^2+k)$ as $k$.
Hence, an odd number produces an odd square,
and thus if a square is even its root is even too.
\kern1em\Back{app2}
\endappslide
\bye
|