summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/fonts/qpxqtx/t01tst.tex
blob: 34824820492460140e44bf0a6266613f2ce11a30 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
%&mex --translate-file=il2-pl
%% test of qtxmath.tex (03.02.2007. Public domain)
\def\PT{dd} %% sk³ad 10dd zamiast 10pt ;-)
%\def\altg{a}
%\def\fontenc{rm}
\input qtxmath
\parindent0pt
%%======
\def\TEST{Nieco zwyk³ego tekstu \bf pó³grubo, \it a teraz kursyw±,
a~mo¿e nawet \sc Kapitalikiem. \rm OK, wystarczy. Teraz matematyka
w~tek¶cie $\sum_{\alpha\rightarrow\infty}{a+1\over a-b^4}$
i~dalej ($f_m,f_n)=(f_{r_{k-1}}, f_{r_k})$. I~jeszcze $x^{4m}+y^{4m}=z^{4m}$,
gdzie $m\xgeq 1$. $\cal A + \cal G$. ${\mit\Gamma}+\Phi$. Cyfry nautyczne
$\oldstyle 1967$}

\tenpoint 10pt. \TEST

\smallskip\ninepoint 9pt. \TEST

\smallskip\eightpoint 8pt. \TEST

\medskip\tenpoint 10pt (albo 10dd)
$$A,\dots,Z\quad a,\dots,z\quad \Gamma, \dots,\Omega\quad
 \varGamma, \dots, \varOmega\quad
 \alpha,\dots,\omega\quad \varg\quad \varv\quad \varw\quad \vary$$
\smallskip
$$\aleph_\alpha\times\aleph_\beta=\aleph_\beta\iff \alpha\le \beta$$
\smallskip
$$\forall \varepsilon >\alpha, \Gamma_\alpha\hookrightarrow
  \Gamma_\varepsilon$$
$$|x-a| < \delta \Rightarrow |f(x)-l| < \varepsilon$$
\smallskip
$$\underbrace {V \times \cdots \times V}_k \times
  \underbrace {V \times \cdots \times V}_l \rightarrow
  \underbrace {V \times \cdots \times V}_{k+l}$$
\smallskip
$$\{x\mid x \ne x\} = \emptyset\qquad (A\cap B)^\circ\subset A^\circ
  \cap B^\circ$$
\medskip
$$\eqalign{\omega &= \nu+v(x,y)\,dx + w(x,y)\,dy+d\varPsi\cr
  d\omega &=d\nu+ \left({\partial w\over \partial x}-
  {\partial v\over \partial y}\right) dx\wedge dy\cr}$$
\medskip
$$\hat x+\widehat X+\widehat{xy}+\widehat{xyz}+\vec A$$
\smallskip
$$R_{ijkl}=-R_{jikl}=-R_{ijlk}=R_{klij}$$
\smallskip
% $$(f\comp g)'(x)=f'(g(x))\cdot g'(x)$$
\smallskip
$$f(x)=\cases{|x|&$x>a$\cr -|x|&$x\le a$\cr}$$
\smallskip
$$\int_{-\infty}^\infty e^{-x\cdot\,x}\,dx=\sqrt\pi$$
\smallskip
$$ X=\sum_i \xi^i {\partial\over\partial x^i}+\sum_j
  x^j{\partial\over\partial \dot x^j}$$
\smallskip
$$\prod_{j\ge0}\biggl(\sum_{k\ge0}a_{jk}z^k\biggr)
  =\sum_{n\ge0}z^n\,\Biggl(\sum_
     {\scriptstyle k_0,k_1,\ldots\ge0\atop
      \scriptstyle k_0+k_1+\cdots=n}
   a_{0k_0}a_{1k_1}\ldots\,\Biggr)$$
\smallskip
$$\def\\#1#2{(1-q^{#1_#2+n})} % to save typing
\Pi_R{a_1,a_2,\ldots,a_M\atopwithdelims[]b_1,b_2,\ldots,b_N}
  =\prod_{n=0}^R{\\a1\\a2\ldots\\aM\over\\b1\\b2\ldots\\bN}$$
\smallskip
$$\int_0^\infty{t-ib\over t^2+b^2}e^{iat}\,dt=e^{ab}E_1(ab),\qquad a,b>0$$

%%
\smallskip\ninepoint 9pt (albo dd)
$$A,\dots,Z\quad a,\dots,z\quad \Gamma, \dots,\Omega\quad
 \varGamma, \dots, \varOmega\quad
 \alpha,\dots,\omega\quad \varg\quad \varv\quad \varw\quad \vary$$
\smallskip
$$\aleph_\alpha\times\aleph_\beta=\aleph_\beta\iff \alpha\le \beta$$
\smallskip
$$\forall \varepsilon >\alpha, \Gamma_\alpha\hookrightarrow
  \Gamma_\varepsilon$$
$$|x-a| < \delta \Rightarrow |f(x)-l| < \varepsilon$$
\smallskip
$$\underbrace {V \times \cdots \times V}_k \times
  \underbrace {V \times \cdots \times V}_l \rightarrow
  \underbrace {V \times \cdots \times V}_{k+l}$$
\smallskip
$$\{x\mid x \ne x\} = \emptyset\qquad (A\cap B)^\circ\subset A^\circ
  \cap B^\circ$$
\medskip
$$\eqalign{\omega &= \nu+v(x,y)\,dx + w(x,y)\,dy+d\varPsi\cr
  d\omega &=d\nu+ \left({\partial w\over \partial x}-
  {\partial v\over \partial y}\right) dx\wedge dy\cr}$$
\medskip
$$\hat x+\widehat X+\widehat{xy}+\widehat{xyz}+\vec A$$
\smallskip
$$R_{ijkl}=-R_{jikl}=-R_{ijlk}=R_{klij}$$
\smallskip
%%-- $$(f\comp g)'(x)=f'(g(x))\cdot g'(x)$$
\smallskip
$$f(x)=\cases{|x|&$x>a$\cr -|x|&$x\le a$\cr}$$
\smallskip
$$\int_{-\infty}^\infty e^{-x\cdot\,x}\,dx=\sqrt\pi$$
\smallskip
$$ X=\sum_i \xi^i {\partial\over\partial x^i}+\sum_j
  x^j{\partial\over\partial \dot x^j}$$
\smallskip
$$\prod_{j\ge0}\biggl(\sum_{k\ge0}a_{jk}z^k\biggr)
  =\sum_{n\ge0}z^n\,\Biggl(\sum_
     {\scriptstyle k_0,k_1,\ldots\ge0\atop
      \scriptstyle k_0+k_1+\cdots=n}
   a_{0k_0}a_{1k_1}\ldots\,\Biggr)$$
\smallskip
$$\def\\#1#2{(1-q^{#1_#2+n})} % to save typing
\Pi_R{a_1,a_2,\ldots,a_M\atopwithdelims[]b_1,b_2,\ldots,b_N}
  =\prod_{n=0}^R{\\a1\\a2\ldots\\aM\over\\b1\\b2\ldots\\bN}$$
\smallskip
$$\int_0^\infty{t-ib\over t^2+b^2}e^{iat}\,dt=e^{ab}E_1(ab),\qquad a,b>0$$

%%
\smallskip \eightpoint 8pt (albo dd)
$$A,\dots,Z\quad a,\dots,z\quad \Gamma, \dots,\Omega\quad
 \varGamma, \dots, \varOmega\quad
 \alpha,\dots,\omega\quad \varg\quad \varv\quad \varw\quad \vary$$
\smallskip
$$\aleph_\alpha\times\aleph_\beta=\aleph_\beta\iff \alpha\le \beta$$
\smallskip
$$\forall \varepsilon >\alpha, \Gamma_\alpha\hookrightarrow
  \Gamma_\varepsilon$$
$$|x-a| < \delta \Rightarrow |f(x)-l| < \varepsilon$$
\smallskip
$$\underbrace {V \times \cdots \times V}_k \times
  \underbrace {V \times \cdots \times V}_l \rightarrow
  \underbrace {V \times \cdots \times V}_{k+l}$$
\smallskip
$$\{x\mid x \ne x\} = \emptyset\qquad (A\cap B)^\circ\subset A^\circ
  \cap B^\circ$$
\medskip
$$\eqalign{\omega &= \nu+v(x,y)\,dx + w(x,y)\,dy+d\varPsi\cr
  d\omega &=d\nu+ \left({\partial w\over \partial x}-
  {\partial v\over \partial y}\right) dx\wedge dy\cr}$$
\medskip
$$\hat x+\widehat X+\widehat{xy}+\widehat{xyz}+\vec A$$
\smallskip
$$R_{ijkl}=-R_{jikl}=-R_{ijlk}=R_{klij}$$
\smallskip
%%-- $$(f\comp g)'(x)=f'(g(x))\cdot g'(x)$$
\smallskip
$$f(x)=\cases{|x|&$x>a$\cr -|x|&$x\le a$\cr}$$
\smallskip
$$\int_{-\infty}^\infty e^{-x\cdot\,x}\,dx=\sqrt\pi$$
\smallskip
$$ X=\sum_i \xi^i {\partial\over\partial x^i}+\sum_j
  x^j{\partial\over\partial \dot x^j}$$
\smallskip
$$\prod_{j\ge0}\biggl(\sum_{k\ge0}a_{jk}z^k\biggr)
  =\sum_{n\ge0}z^n\,\Biggl(\sum_
     {\scriptstyle k_0,k_1,\ldots\ge0\atop
      \scriptstyle k_0+k_1+\cdots=n}
   a_{0k_0}a_{1k_1}\ldots\,\Biggr)$$
\smallskip
$$\def\\#1#2{(1-q^{#1_#2+n})} % to save typing
\Pi_R{a_1,a_2,\ldots,a_M\atopwithdelims[]b_1,b_2,\ldots,b_N}
  =\prod_{n=0}^R{\\a1\\a2\ldots\\aM\over\\b1\\b2\ldots\\bN}$$
\smallskip
$$\int_0^\infty{t-ib\over t^2+b^2}e^{iat}\,dt=e^{ab}E_1(ab),\qquad a,b>0$$

\bye