1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
|
\documentclass[12pt]{article}
\usepackage[T1]{fontenc}
\usepackage[latin1]{inputenc}
% \usepackage[french]{babel}
\usepackage{amsmath}
\usepackage{amsthm}
%\usepackage{mathrsfs}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{definition}{Definition}[section]
\newenvironment{demo}{\noindent {\bf Dem.}}{\qed}
\newenvironment{remarque}{\noindent {\bf Rem.} \small \itshape}{}
\newenvironment{exemple}{\noindent {\bf Example}}{}
\newcommand{\Lu}{L^1(\Rset)}
\newcommand{\tf}[1]{{\cal F}\left(#1\right)}
\newcommand{\ii}{{\mathrm{i}}}
\newcommand{\Cn}{{\cal C}^{n}}
\newcommand{\dd}{\mathrm{d}}
% ;; \newcommand{\Rset}{{\mathbb R}}
\newcommand{\Rset}{R}
\newcommand{\R}{\mathbb R}
\newcommand{\C}{\mathbb R}
\newcommand{\ex}{\mathrm{e}}
\newcommand{\Cinf}{{\cal C}^{\infty}}
\newcommand{\abs}[1]{\left| #1 \right|}
\newcommand{\dx}{\dd x}
\newcommand{\ds}{\displaystyle}
\newcommand{\vect}[1]{\overrightarrow{#1}}
\newcommand{\Boule}[2]{\mathscr B(#1,#2)}
\newcommand{\Cercle}[2]{\mathscr C(#1,#2)}
\DeclareMathOperator{\Arg}{Arg}
\newcommand{\dep}[2]{\ds \frac{\partial #1}{\partial #2}}
\title{Example of the \textsf{mdugm} fonts.}
\author{Paul Pichaureau}
\usepackage[cal=scr,mdugm,greekfamily = didot]{mathdesign}
%% \usepackage{amssymb}
\begin{document}
\maketitle
\begin{abstract}
The package \textsf{mdugm} consists of a full set of
mathematical fonts, designed to be combined with Urw
Garamondno8 as the main text font.
This example is extracted from the excellent book {\em
Mathematics for Physics and Physicists}, {\sc W. Appel},
Princeton University Press, {\sc 2007}.
\end{abstract}
\section{Conformal maps}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Preliminaries}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Consider a change of variable $(x,y)\mapsto
(u,v)=\big(u(x,y),v(x,y)\big)$ in the plane $\R^2$, identified
with~$\C$. This change of variable really only deserves the name if
$f$ is locally bijective (i.e., one-to-one); this is the case if the
jacobian of the map is nonzero (then so is the jacobian of the
inverse map):
\begin{equation*}
\left| \frac{{D}(u,v)}{{D}(x,y)}\right| =
\begin{vmatrix}
\ds\frac{\displaystyle\partial u}{\displaystyle\partial x} &
\ds\frac{\displaystyle\partial u}{\displaystyle\partial y} \\[4mm]
\ds\frac{\displaystyle\partial v}{\displaystyle\partial x} &
\ds\frac{\displaystyle\partial v}{\displaystyle\partial y}
\end{vmatrix}\neq 0
\qquad\text{and}\qquad
\left| \frac{{D}(x,y)}{{D}(u,v)}\right|
=\begin{vmatrix}\ds\dep{x}{u} &\ds \dep{x}{v}\\[4mm]
\ds\dep{y}{u} &\ds \dep{y}{v}
\end{vmatrix}\neq 0.
\end{equation*}
\begin{theorem}
In a complex change of variable
\begin{equation*}
z= x+\ii y\longmapsto w=f(z)=u+\ii v,
\end{equation*}
and \emph{if $f$ is holomorphic}, then the jacobian of the map is equal to
\begin{equation*}
J_f(z)=\left| \frac{{D}(u,v)}{{D}(x,y)}\right|=
\abs{f'(z)}^2.
\end{equation*}
\end{theorem}
\begin{demo}
Indeed, we have $f'(z)=\dep{u}{x}+\ii\dep{v}{x}$ and hence, by the
Cauchy-Riemann relations,
\begin{align*}
\abs{f'(z)}^2 & =
\left(\dep{u}{x}\right)^2+\left(\dep{v}{x}\right)^2
=
\dep{u}{x}\dep{v}{y}-\dep{v}{x}\dep{u}{y}=J_f(z).
\end{align*}
\end{demo}
\begin{definition}
\index{Conformal map}%
\index{Transformation!conformal ---}%
A \emph{conformal map} or \emph{conformal transformation} of an
open subset $\Omega\subset\R^2$ into another open subset
$\Omega'\subset\R^2$ is any map $f:\Omega\mapsto \Omega'$, locally
bijective, that preserves angles and orientation.
\end{definition}
\begin{theorem}
Any conformal map is given by a holomorphic function $f$ such
that the derivative of $f$ does not vanish.
\end{theorem}
This justifies the next definition:
%% ----------------------------------------------------------------------
\begin{definition}
\index{Conformal map}%
\index{Transformation!conformal ---}%
A \emph{conformal transformation} or \emph{conformal map} of
an open subset
$\Omega\subset\C$ into another open subset
$\Omega'\subset\C$ is any holomorphic function
$f:\Omega\mapsto \Omega'$ such that
$f'(z)\neq 0$ for all $z\in\Omega$.
\end{definition}
%% ----------------------------------------------------------------------
%% ----------------------------------------------------------------------
\begin{demo}[that the definitions are equivalent]
We will denote in general $w=f(z)$. Consider, in the complex plane, two
line segments $\gamma_1$ and $\gamma_2$ contained inside the set $\Omega$
where $f$ is defined, and intersecting at a point $z_0$ in $\Omega$.
Denote by $\gamma'_1$ and $\gamma_2'$ their images by~$f$.
We want to show that if the angle between $\gamma_1$ and $\gamma_2$ is
equal to $\theta$, then the same holds for their images, which means that
the angle between the tangent lines to $\gamma'_1$ and $\gamma'_2$ at
$w_0=f(z_0)$ is also equal to $\theta$.
Consider a point $z\in\gamma_1$ close to~$z_0$. Its image $w=f(z)$
satisfies
\begin{equation*}
\lim_{z\to z_0} \frac{w-w_0}{z-z_0}=f'(z_0),
\end{equation*}
and hence
$$\displaystyle \lim_{z\to z_0} \Arg
(w-w_0)-\Arg(z-z_0) = \Arg f'(z_0), $$%
which shows that the angle between the curve $\gamma'_1$ and the real
axis is equal to the angle between the original segment $\gamma_1$ and
the real axis, plus the angle $\alpha=\Arg f'(z_0)$ (which is well
defined because $f'(z)\neq 0$).
Similarly, the angle between the image curve $\gamma'_2$ and the real
axis is equal to that between the segment $\gamma_2$ and the real axis,
plus the same~$\alpha$.
Therefore, the angle between the two image curves is the same as that
between the two line segments, namely, $\theta$.
Another way to see this is as follows: the tangent vectors of the curves
are transformed according to the rule $\vect{V}'=\dd f_{z_0}\vect{V}$. But the
differential of $f$ (when $f$ is seen as a map from $\R^2$ to~$\R^2$) is
of the form
\begin{equation}
\displaystyle \dd f_{z_0}=\begin{pmatrix}
\displaystyle \dep{P}{x} & \displaystyle \dep{P}{y} \\[4mm]
\displaystyle \dep{Q}{x} & \displaystyle \dep{Q}{y}\end{pmatrix}
=
\abs{f'(z_0)}\begin{pmatrix}\cos\alpha& -\sin\alpha
\\ \sin\alpha &\cos\alpha \end{pmatrix},
\label{eq:FSimil}
\end{equation}
where $\alpha$ is the argument of $f'(z_0)$. This is the matrix of a
rotation composed with a homothety, that is, a similitude.
\medskip
%% ······································································
% {\begin{picture}(300,100)
% \put(0,0){\epsfig{file=\Figures/TC.\Ext,height=3.2cm}}
% \put(20,65){$\gamma_2$} \put(80,55){$\theta$}
% \put(100,80){$\gamma_1$} \put(195,85){$\gamma'_1$}
% \put(245,35){$\theta$} \put(270,60){$\gamma'_2$}
% \end{picture}}
%% ······································································
Conversely, if $f$ is a map which is $\R^2$-differentiable and preserves
angles, then at any point $\dd f$ is an endomorphism of~$\R^2$ which
preserves angles. Since $f$ also preserves orientation, its determinant
is positive, so $\dd f$ is a similitude, and its matrix is exactly
as in equation~\eqref{eq:FSimil}. The Cauchy-Riemann equations are
immediate consequences.
\end{demo}
%% ----------------------------------------------------------------------
%% ----------------------------------------------------------------------
\begin{remarque}
\index{Antiholomorphic function}%
\index{Function!antiholomorphic ---}%
An \emph{antiholomorphic} map also preserves angles, but it
reverses the orientation.
\end{remarque}
%% ----------------------------------------------------------------------
\newpage
\subsection*{Calcul différentiel}
Pour obtenir la différentielle totale de cette expression, considérée comme fonction de $x$, $y$, ..., donnons à $x$, $y$, ... des accroissements $d\!x$, $d\!y$, .... Soient $\Delta u$, $\Delta v$, ..., $\Delta f$ les accroissements correspondants de $u$, $v$, ...,$f$. On aura
\begin{equation*}
\Delta f= \dfrac{\partial\! f}{\partial u} \Delta u + \dfrac{\partial\! f}{\partial v} \Delta v + \hdots + R\Delta u + R_1 \Delta v + \hdots,
\end{equation*}
$R$, $R_1$, ... tendant vers zéro avec $\Delta u$, $\Delta v$, ....
Mais on a, d'autre part,
\begin{align*}
\Delta u & = \dfrac{\partial u}{\partial x} d\! x + + \dfrac{\partial u}{\partial y} \Delta y + \hdots + S\Delta x + S_1 \Delta y + \hdots \\
& = du + Sd\! x + S_1 d\! y + \hdots \\
\Delta v & = \dfrac{\partial v}{\partial x} d\! x + + \dfrac{\partial v}{\partial y} \Delta y + \hdots + T\Delta x + T_1 \Delta y + \hdots \\
& = dv + Td\! x + T_1 d\! y + \hdots \\
\hdots
\end{align*}
$S$, $S_1$, ..., $T$, $T_1$,... tendant vers zéro avec $d\! x$, $d\! y$, ....
Substituant ces valeurs dans l'expression de $\Delta f$, il vient
\begin{equation*}
\begin{array}{rcl}
\vbox to 25pt {} \Delta f & = &\dfrac{\partial\! f}{\partial u} d u + \dfrac{\partial\! f}{\partial v} d v + \hdots + \rho d\! x + \rho_1 d\! y + \hdots \\
\vbox to 25pt {}& = & \phantom{+} \left( \dfrac{\partial\! f}{\partial u} \dfrac{\partial u}{\partial x} + \dfrac{\partial\! f}{\partial v} \dfrac{\partial v}{\partial x} + \hdots \right) d\! x \\
\vbox to 25pt {}& & + \left( \dfrac{\partial\! f}{\partial u} \dfrac{\partial u}{\partial y} + \dfrac{\partial\! f}{\partial v} \dfrac{\partial v}{\partial y} + \hdots \right) d\! y \\
\vbox to 25pt {}&& + \hdots + \rho d\! x + \rho_1 d\! y + \hdots
\end{array}
\end{equation*}
$\rho$, $\rho_1$, ... tendant vers zéro avec $d\! x$, $d\! y$, ....
On aura donc
\begin{align*}
\dfrac{\partial\! f}{\partial x}& = \dfrac{\partial\! f}{\partial u} \dfrac{\partial u}{\partial x} + \dfrac{\partial\! f}{\partial v} \dfrac{\partial v}{\partial x} + \hdots, \\
\dfrac{\partial\! f}{\partial y}& = \dfrac{\partial\! f}{\partial u} \dfrac{\partial u}{\partial y} + \dfrac{\partial\! f}{\partial v} \dfrac{\partial v}{\partial y} + \hdots, \\
\hdots
\end{align*}
et, d'autre part,
\begin{equation*}
df = \dfrac{\partial\! f}{\partial u} {\mathrm d} u + \dfrac{\partial\! f}{\partial v} {\mathrm d} v + \hdots ;
\end{equation*}
d'où les deux propositions suivantes :
{\em La dérivée, par rapport à une variable indépendante $x$, d'une fonction composée $f(u,v,\hdots)$ s'obtient en ajoutant ensemble les dérivées partielles $\dfrac{\partial\! f}{\partial u}$, $\dfrac{\partial\! f}{\partial v}$, ..., respectivement multipliées par les dérivées de $u$, $v$, ... par rapport à $x$.
La différentielle totale $df$ s'exprimer au moyen de $u$, $v$, ..., $du$, $dv$, ..., de la même manière que si $u$, $v$, ... étaient des variables indépendantes.
}
\hbox to \textwidth { \hfill
{\sc Camille Jordan}, {\em Cours d'analyse de l'\'Ecole polytechnique}
}
\end{document}
|