1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
|
%% (c) copyright 2006, 2007
%% Antonis Tsolomitis
%% Department of Mathematics, University of the Aegean
%%
%% This document can be redistributed and/or modified under the terms
%% of the LaTeX Project Public License Distributed from CTAN
%% archives in directory macros/latex/base/lppl.txt; either
%% version 1 of the License, or any later version.
\documentclass{article}
\usepackage[polutonikogreek,english]{babel}
\usepackage[iso-8859-7]{inputenc}
\usepackage{gfsdidot}
%\renewcommand{\ttdefault}{hlst}
%%%%% Theorems and friends
\newtheorem{theorem}{Èåþñçìá}[section]
\newtheorem{lemma}[theorem]{ËÞììá}
\newtheorem{proposition}[theorem]{Ðñüôáóç}
\newtheorem{corollary}[theorem]{Ðüñéóìá}
\newtheorem{definition}[theorem]{Ïñéóìüò}
\newtheorem{remark}[theorem]{ÐáñáôÞñçóç}
\newtheorem{axiom}[theorem]{Áîßùìá}
\newtheorem{exercise}[theorem]{¶óêçóç}
%%%%% Environment ``proof''
\newenvironment{proof}[1]{{\textit{Áðüäåéîç:}}}{\ \hfill$\Box$}
\newenvironment{hint}[1]{{\textit{Õðüäåéîç:}}}{\ \hfill$\Box$}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\title{The \textsc{gfsdidot} font family}
\author{Antonis Tsolomitis\\
Laboratory of Digital Typography\\ and Mathematical Software\\
Department of Mathematics\\
University of the Aegean}
\date {\textsc{28} January \textsc{2006}}
\begin{document}
\maketitle
\section{Introduction}
The Didot family of the Greek Font Society was made available for free
in autumn 2005. This font existed with a commercial license for many
years before. Support for LaTeX and the babel package was prepared
several years ago by the author and I.\ Vasilogiorgakis. With the
free availability of the fonts I have modified the original package
so that it reflects the changes occured in the latest releases by \textsc{gfs}.
The package supports three encodings: OT1, T1 and LGR to the extend
that the font themselves cover these. OT1 and LGR should be
fairly complete. The greek part is to be used with the greek option of
the Babel package.
The fonts are loaded with
\verb|\usepackage{gfsdidot}|.
The fonts as released contain an italic version, but its greek part is
just the roman in slanted form. To overcome this problem for the greek
part, we use for italic another font by \textsc{gfs} called Olga.
As far as the latin part is concerned the italic characters are taken
from Didot-Italic (Olga contains no latin characters).
The package provides also a matching small caps shape for both latin
and greek including old style numbers.
Finally, the math symbols are taken from the pxfonts package except
of course the characters that are already provided by Didot and Olga.
The choice of pxfonts was made on the basis that the latin part of
Didot is based on Palatino. Moreover, all Didot characters are scaled
in the \verb|.fd| files by a factor of 1.04 in order to match the
x-height of pxfonts.
\section{Installation}
Copy the contents of the subdirectory afm in
texmf/fonts/afm/GFS/Didot/
\medskip
\noindent Copy the contents of the subdirectory doc in
texmf/doc/latex/GFS/Didot/
\medskip
\noindent Copy the contents of the subdirectory enc in
texmf/fonts/enc/dvips/GFS/Didot/
\medskip
\noindent Copy the contents of the subdirectory map in
texmf/fonts/map/dvips/GFS/Didot/
\medskip
\noindent Copy the contents of the subdirectory tex in
texmf/tex/latex/GFS/Didot/
\medskip
\noindent Copy the contents of the subdirectory tfm in
texmf/fonts/tfm/GFS/Didot/
\medskip
\noindent Copy the contents of the subdirectory type1 in
texmf/fonts/type1/GFS/Didot/
\medskip
\noindent Copy the contents of the subdirectory vf in
texmf/fonts/vf/GFS/Didot/
\medskip
\noindent In your installations updmap.cfg file add the line
\medskip
\noindent Map gfsdidot.map
\medskip
Refresh your filename database and the map file database (for example, on Unix systems
run mktexlsr and then run the updmap script as root).
You are now ready to use the fonts provided that you have a relatively
modern installation that includes pxfonts.
\section{Usage}
As said in the introduction the package covers both english and
greek. Greek covers polytonic too through babel (read the
documentation
of the babel package and its greek option).
For example, the preample
\begin{verbatim}
\documentclass{article}
\usepackage[english,greek]{babel}
\usepackage[iso-8859-7]{inputenc}
\usepackage{gfsdidot}
\end{verbatim}
will be the correct setup for articles in Greek.
\bigskip
\subsection{Transformations by \texttt{dvips}}
Other than the shapes provided by the fonts themselves, this package
provides an upright italic shape and a slanted small caps shape
using the standard mechanism provided by dvips. Upright italics
are called with \verb|\uishape| and slanted small caps with \verb|\scslshape|.
For example, the code
\begin{verbatim}
{\itshape italics {\uishape upright italics} {\itshape italics again}
\textgreek{{\itshape >'áâãäæîöø`ù| {\uishape >'áâãäæîöø`ù|} {\itshape >'áâãäæîöø`ù|}}}}
\textsc{small caps \textgreek{ðåæïêåöáëáßá} 0123456789} {\scslshape
\textgreek{ðåæïêåöáëáßá 0123456789}}
\end{verbatim}
will give
{\itshape italics {\uishape upright italics} {\itshape italics again}
\textgreek{{\itshape >'áâãäæîöø`ù| {\uishape >'áâãäæîöø`ù|} {\itshape
>'áâãäæîöø`ù|}}}}
\textsc{small caps \textgreek{ðåæïêåöáëáßá} 0123456789} {\scslshape
\textgreek{ðåæïêåöáëáßá 0123456789}}
\noindent The commands \verb|\textui{}| and \verb|\textscsl{}| are also provided.
\subsection{Tabular numbers}
Tabular numbers (of fixed width) are accessed with the command
\verb|\tabnums{}|. Compare
\begin{tabular}{ll}
\verb+|0|1|2|3|4|5|6|7|8|9|+ & |0|1|2|3|4|5|6|7|8|9|\\
\verb+\tabnums{|0|1|2|3|4|5|6|7|8|9|}+ & \tabnums{|0|1|2|3|4|5|6|7|8|9|}
\end{tabular}
\subsection{Text fractions}
Text fractions are composed using the lower and upper numerals
provided by the fonts, and are
accessed with the command \verb|\textfrac{}{}|.
For example, \verb|\textfrac{-22}{7}| gives \textfrac{-22}{7}.
Precomposed fractions are provided too by \verb|\onehalf|,
\verb|\onethird|, etc.
\subsection{Additional characters}
\begin{center}
\begin{tabular}{|c|c|}\hline
\verb|\textbullet| &\textbullet \\ \hline
\verb|\textparagraph| &\textparagraph \\ \hline
\verb|\textparagraphalt| & \textparagraphalt\\ \hline
\verb|\careof| & \careof\\ \hline
\verb|\numero| & \numero\\ \hline
\verb|\estimated| & \estimated\\ \hline
\verb|\whitebullet| & \whitebullet\\ \hline
\verb|\textlozenge| & \textlozenge\\ \hline
\verb|\eurocurrency| & \eurocurrency\\ \hline
\verb|\interrobang| & \interrobang\\ \hline
\verb|\textdagger| & \textdagger\\ \hline
\verb|\textdaggerdbl| & \textdaggerdbl\\ \hline
\verb|\yencurrency| & \yencurrency\\ \hline
\end{tabular}
\end{center}
Euro is also available in LGR enconding. \verb|\textgreek{\euro}|
gives \textgreek{\euro}.
\subsection{Alternate characters}
In the greek encoding the initial theta is chosen
automatically. Compare: \textgreek{èÜëáóóá} but \textgreek{ÁèçíÜ}.
Other alternate characters are not chosen automatically.
Olga provides a double lambda: \lambdadbl. This can be accessed with the
command \verb|\lambdadbl| in textmode.
For example, in LGR encoding
\medskip
\verb|\textit{a\lambdadbl'a kat'allhlos metasjhmatism;oc}|
\smallskip
gives
\smallskip
\textgreek{\textit{a\lambdadbl'a kat'allhlos metasqhmatism'oc}}.
\section{Problems}
The
accents of the capital letters should hang in the left margin when such a letter starts a
line. \TeX\ and \LaTeX\ do not provide the tools for such a
feature. However, this seems to be possible with
\textlatin{pdf\TeX}
As this is work in progress, please be patient\ldots
\section{Samples}
The next two pages provide samples in english and greek with math.
\newpage
Adding up these inequalities with respect to $i$, we get
\begin{equation} \sum c_i d_i \leq \frac1{p} +\frac1{q} =1\label{10}\end{equation}
since $\sum c_i^p =\sum d_i^q =1$.\hfill$\Box$
In the case $p=q=2$
the above inequality is also called the
\textit{Cauchy-Schwartz inequality}.
Notice, also, that by formally defining $\left( \sum |b_k|^q\right)^{1/q}$ to be
$\sup |b_k|$ for $q=\infty$, we give sense to (9) for all
$1\leq p\leq\infty$.
A similar inequality is true for functions instead of sequences with the sums
being substituted by integrals.
\medskip
\textbf{Theorem} {\itshape Let $1<p<\infty$ and let $q$ be such that $1/p +1/q =1$. Then,
for all functions $f,g$ on an interval $[a,b]$
such that the integrals $\int_a^b |f(t)|^p\,dt$, $\int_a^b |g(t)|^q\,dt$ and
$\int_a^b |f(t)g(t)|\,dt$ exist \textup{(}as Riemann integrals\textup{)},
we have
\begin{equation}
\int_a^b |f(t)g(t)|\,dt\leq
\biggl(\int_a^b |f(t)|^p\,dt\biggr)^{1/p}
\biggl(\int_a^b |g(t)|^q\,dt\biggr)^{1/q} .
\end{equation}
}
Notice that if the Riemann integral $\int_a^b f(t)g(t)\,dt$ also exists, then
from the inequality $\left|\int_a^b f(t)g(t)\,dt\right|\leq
\int_a^b |f(t)g(t)|\,dt$ follows that
\begin{equation}
\left|\int_a^b f(t)g(t)\,dt\right|\leq
\biggl(\int_a^b |f(t)|^p\,dt\biggr)^{1/p}
\biggl(\int_a^b |g(t)|^q\,dt\biggr)^{1/q} .
\end{equation}
\textit{Proof:} Consider a partition of the interval $[a,b]$ in $n$ equal
subintervals with endpoints
$a=x_0<x_1<\cdots<x_n=b$. Let $\Delta x=(b-a)/n$.
We have
\begin{eqnarray}
\sum_{i=1}^n |f(x_i)g(x_i)|\Delta x &\leq&
\sum_{i=1}^n |f(x_i)g(x_i)|(\Delta x)^{\frac1{p}+\frac1{q}}\nonumber\\
&=&\sum_{i=1}^n \left(|f(x_i)|^p \Delta x\right)^{1/p} \left(|g(x_i)|^q
\Delta x\right)^{1/q}.\label{functionalHolder1}\\ \nonumber
\end{eqnarray}
\newpage\greektext
% $\bullet$ ÌÞêïò ôüîïõ êáìðýëçò
% \begin{proposition}\label{chap2:sec1:prop 23}
% ¸óôù $\gamma$ êáìðýëç ìå ðáñáìåôñéêÞ åîßóùóç $x=g(t)$, $y=f(t)$,
% $t\in [a,\,b]$ áí $g'$, $f'$ óõíå÷åßò óôï $[a,\,b]$ ôüôå ç
% $\gamma$ Ý÷åé ìÞêïò $S=L(\gamma)=\int_a^b \sqrt{g'(t)^2+f'(t)^2}
% dt$.
% \end{proposition}
\textbullet\ Åìâáäüí åðéöÜíåéáò áðü ðåñéóôñïöÞ\\
\begin{proposition}\label{chap2:sec1:prop23-2}
¸óôù $\gamma$ êáìðýëç ìå ðáñáìåôñéêÞ åîßóùóç $x=g(t)$, $y=f(t)$,
$t\in [a,\,b]$ áí $g'$, $f'$ óõíå÷åßò óôï $[a,\,b]$ ôüôå ôï
åìâáäüí áðü ðåñéóôñïöÞ ôçò $\gamma$ ãýñù áðü ôïí $xx'$ äßíåôáé \\
$Â=2\pi\int_a^b |f(t)| \sqrt{g'(t)^2+f^{\prime}(t^2)} dt$. \\ Áí ç
$\gamma$ äßíåôáé áðü ôçí $y=f(x)$, $x\in [a,\,b]$ ôüôå
$Â=2\pi\int_a^b |f(t)| \sqrt{1+f'(x)^2} dx$
\end{proposition}
\textbullet\ ¼ãêïò óôåñåþí áðü ðåñéóôñïöÞ\\ ¸óôù $f :
[a,\,b]\rightarrow \mathbb{R}$ óõíå÷Þò êáé $R=\{f, Ox,x=a,x=b\}$
åßíáé ï üãêïò áðü ðåñéóôñïöÞ ôïõ ãñáöÞìáôïò ôçò $f$ ãýñù áðü ôïí
$Ox$ ìåôáîý ôùí åõèåéþí $x=a$, êáé $x=b$, ôüôå $V=\pi\int_a^b f
(x)^2 dx$
\textbullet\ Áí $f,g : [a,\,b]\rightarrow \mathbb{R}$ êáé $0\leq
g(x)\leq f(x)$ ôüôå ï üãêïò óôåñåïý ðïõ ðáñÜãåôáé áðü ðåñéóôñïöÞ
ôùí ãñáöçìÜôùí ôùí $f$ êáé $g$, $R=\{f,g, Ox,x=a,x=b\}$ åßíáé \\
$V=\pi\int_a^b\{ f (x)^2-g(x)^2\} dx$.
\textbullet\ Áí $x=g(t)$, $y=f(t)$, $t=[t_1,\,t_2]$ ôüôå
$V=\pi\int_{t_1}^{t_2}\{ f (t)^2 g'(t)\} dt$ ãéá $g(t_1)=a$,
$g(t_2)=b$.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{ÁóêÞóåéò}\label{chap2:sec2}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{exercise}\label{chap2:ex1}
Íá åêöñáóôåß ôï ðáñáêÜôù üñéï ùò ïëïêëÞñùìá $Riemann$ êáôÜë\-ëçëçò
óõíÜñôçóçò\\
$$\lim_{n\rightarrow\infty} \frac{1}{n}\sum_{k=1}^{n}\sqrt[n]{e^k} $$
\end{exercise}
%%%%%%%%%
\textit{Õðüäåéîç:}
ÐñÝðåé íá óêåöôïýìå ìéá óõíÜñôçóç ôçò ïðïßáò ãíùñßæïõìå üôé õðÜñ÷åé ôï ïëïêëÞñùìá.
Ôüôå ðáßñíïõìå ìéá äéáìÝñéóç $P_n$ êáé äåß÷íïõìå ð.÷. üôé ôï $U(f,P_n)$ åßíáé ç æçôïýìåíç óåéñÜ.
\bigskip
%%%%%%%%%%%%%%
\textit{Ëýóç:}
ÐñÝðåé íá óêåöôïýìå ìéá óõíÜñôçóç ôçò ïðïßáò ãíùñßæïõìå üôé õðÜñ÷åé ôï ïëïêëÞñùìá.
Ôüôå ðáßñíïõìå ìéá äéáìÝñéóç $P_n$ êáé äåß÷íïõìå ð.÷. üôé ôï $U(f,P_n)$ åßíáé ç æçôïýìåíç óåéñÜ.\\
¸÷ïõìå üôé
\begin{eqnarray}\frac{1}{n}\sum_{k=1}^{n}\sqrt[n]{e^k} =
\frac{1}{n}\sqrt[n]{e}+\frac{1}{n}\sqrt[n]{e^2}+\cdots +
\frac{1}{n}\sqrt[n]{e^n}\nonumber\\
=\frac{1}{n}e^{\frac{1}{n}}+\frac{1}{n}e^{\frac{2}{n}}+\cdots+\frac{1}{n}e^{\frac{n}{n}}\nonumber
\end{eqnarray}
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End:
|