1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
|
struct Material
{
vec4 diffuse,emissive,specular;
vec4 parameters;
};
struct Light
{
vec3 direction;
vec3 color;
};
uniform int nlights;
uniform Light lights[max(Nlights,1)];
uniform MaterialBuffer {
Material Materials[Nmaterials];
};
#ifdef NORMAL
#ifndef ORTHOGRAPHIC
in vec3 ViewPosition;
#endif
in vec3 Normal;
vec3 normal;
#endif
#ifdef COLOR
in vec4 Color;
#endif
flat in int materialIndex;
out vec4 outColor;
// PBR material parameters
vec3 Diffuse; // Diffuse for nonmetals, reflectance for metals.
vec3 Specular; // Specular tint for nonmetals
float Metallic; // Metallic/Nonmetals parameter
float Fresnel0; // Fresnel at zero for nonmetals
float Roughness2; // roughness squared, for smoothing
#ifdef ENABLE_TEXTURE
uniform sampler2D environmentMap;
const float PI=acos(-1.0);
const float twopi=2*PI;
const float halfpi=PI/2;
const int numSamples=7;
// (x,y,z) -> (r,theta,phi);
// theta -> [0,\pi]: colatitude
// phi -> [0, 2\pi]: longitude
vec3 cart2sphere(vec3 cart)
{
float x=cart.z;
float y=cart.x;
float z=cart.y;
float r=length(cart);
float phi=atan(y,x);
float theta=acos(z/r);
return vec3(r,phi,theta);
}
vec2 normalizedAngle(vec3 cartVec)
{
vec3 sphericalVec=cart2sphere(cartVec);
sphericalVec.y=sphericalVec.y/(2*PI)-0.25;
sphericalVec.z=sphericalVec.z/PI;
return sphericalVec.yz;
}
#endif
#ifdef NORMAL
// h is the halfway vector between normal and light direction
// GGX Trowbridge-Reitz Approximation
float NDF_TRG(vec3 h)
{
float ndoth=max(dot(normal,h),0.0);
float alpha2=Roughness2*Roughness2;
float denom=ndoth*ndoth*(alpha2-1.0)+1.0;
return denom != 0.0 ? alpha2/(denom*denom) : 0.0;
}
float GGX_Geom(vec3 v)
{
float ndotv=max(dot(v,normal),0.0);
float ap=1.0+Roughness2;
float k=0.125*ap*ap;
return ndotv/((ndotv*(1.0-k))+k);
}
float Geom(vec3 v, vec3 l)
{
return GGX_Geom(v)*GGX_Geom(l);
}
// Schlick's approximation
float Fresnel(vec3 h, vec3 v, float fresnel0)
{
float a=1.0-max(dot(h,v),0.0);
float b=a*a;
return fresnel0+(1.0-fresnel0)*b*b*a;
}
vec3 BRDF(vec3 viewDirection, vec3 lightDirection)
{
vec3 lambertian=Diffuse;
// Cook-Torrance model
vec3 h=normalize(lightDirection+viewDirection);
float omegain=max(dot(viewDirection,normal),0.0);
float omegaln=max(dot(lightDirection,normal),0.0);
float D=NDF_TRG(h);
float G=Geom(viewDirection,lightDirection);
float F=Fresnel(h,viewDirection,Fresnel0);
float denom=4.0*omegain*omegaln;
float rawReflectance=denom > 0.0 ? (D*G)/denom : 0.0;
vec3 dielectric=mix(lambertian,rawReflectance*Specular,F);
vec3 metal=rawReflectance*Diffuse;
return mix(dielectric,metal,Metallic);
}
#endif
void main()
{
vec4 diffuse;
vec4 emissive;
Material m;
#ifdef TRANSPARENT
m=Materials[abs(materialIndex)-1];
if(materialIndex >= 0) {
diffuse=m.diffuse;
emissive=m.emissive;
} else {
diffuse=Color;
#if Nlights > 0
emissive=vec4(0.0);
#else
emissive=Color;
#endif
}
#else
m=Materials[int(materialIndex)];
#ifdef COLOR
diffuse=Color;
#if Nlights > 0
emissive=vec4(0.0);
#else
emissive=Color;
#endif
#else
diffuse=m.diffuse;
emissive=m.emissive;
#endif
#endif
#if defined(NORMAL) && Nlights > 0
Specular=m.specular.rgb;
vec4 parameters=m.parameters;
Roughness2=1.0-parameters[0];
Roughness2=Roughness2*Roughness2;
Metallic=parameters[1];
Fresnel0=parameters[2];
Diffuse=diffuse.rgb;
// Given a point x and direction \omega,
// L_i=\int_{\Omega}f(x,\omega_i,\omega) L(x,\omega_i)(\hat{n}\cdot \omega_i)
// d\omega_i, where \Omega is the hemisphere covering a point,
// f is the BRDF function, L is the radiance from a given angle and position.
normal=normalize(Normal);
normal=gl_FrontFacing ? normal : -normal;
#ifdef ORTHOGRAPHIC
vec3 viewDir=vec3(0.0,0.0,1.0);
#else
vec3 viewDir=-normalize(ViewPosition);
#endif
// For a finite point light, the rendering equation simplifies.
vec3 color=emissive.rgb;
for(int i=0; i < nlights; ++i) {
Light Li=lights[i];
vec3 L=Li.direction;
float cosTheta=max(dot(normal,L),0.0); // $\omega_i \cdot n$ term
vec3 radiance=cosTheta*Li.color;
color += BRDF(viewDir,L)*radiance;
}
#if defined(ENABLE_TEXTURE) && !defined(COLOR)
// Experimental environment radiance using Riemann sums;
// can also do importance sampling.
vec3 envRadiance=vec3(0.0,0.0,0.0);
vec3 normalPerp=vec3(-normal.y,normal.x,0.0);
if(length(normalPerp) == 0.0)
normalPerp=vec3(1.0,0.0,0.0);
// we now have a normal basis;
normalPerp=normalize(normalPerp);
vec3 normalPerp2=normalize(cross(normal,normalPerp));
const float step=1.0/numSamples;
const float phistep=twopi*step;
const float thetastep=halfpi*step;
for (int iphi=0; iphi < numSamples; ++iphi) {
float phi=iphi*phistep;
for (int itheta=0; itheta < numSamples; ++itheta) {
float theta=itheta*thetastep;
vec3 azimuth=cos(phi)*normalPerp+sin(phi)*normalPerp2;
vec3 L=sin(theta)*azimuth+cos(theta)*normal;
vec3 rawRadiance=texture(environmentMap,normalizedAngle(L)).rgb;
vec3 surfRefl=BRDF(Z,L);
envRadiance += surfRefl*rawRadiance*sin(2.0*theta);
}
}
envRadiance *= halfpi*step*step;
color += envRadiance.rgb;
#endif
outColor=vec4(color,diffuse.a);
#else
outColor=emissive;
#endif
}
|